• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2019 - The N-termini of GRK2 and GRK3 simulate the stimulating effects of RKIP on β-adrenoceptors

Icon CE   CardioExcyte 96 publication in Biochemical and Biophysical Research Communications (2019)

Authors:
Maimari T., Krasel C., Bünemann M., Lorenz K.

Journal:
Biochemical and Biophysical Research Communications (2019) In Press, Corrected Proof


Highlights

• RKIP has a well-tolerated positive inotropic effect via β-adrenoceptor activation.

• RKIP binds N-termini of cardiac GRK2 and GRK3 – but not GRK5.

• GRK2/3 N-termini simulate RKIP effects on β-AR signaling by direct receptor interaction.

• Interference strategy using GRK peptides seems to be a promising tool for receptor regulation.

Abstract:

The Raf kinase inhibitor protein (RKIP) activates β-adrenoceptors (β-AR) and thereby induces a well-tolerated cardiac contractility and prevents heart failure in mice. Different to RKIP-mediated β-AR activation, chronic activation of β-AR by catecholamines was shown to be detrimental for the heart. RKIP is an endogenous inhibitor of G protein coupled receptor kinase 2 (GRK2); it binds GRK2 and thereby inhibits GRK2 mediated β-AR phosphorylation and desensitization.

Here, we evaluate RKIP-mediated effects on β-AR to explore new strategies for β-AR modulation. Co-immunoprecipitation assays and pull-down assays revealed subtype specificity of RKIP for the cardiac GRK isoforms GRK2 and GRK3 – not GRK5 – as well as several RKIP binding sites within their N-termini (GRK21−185 and GRK31−185). Overexpression of these N-termini prevented β2-AR phosphorylation and internalization, subsequently increased receptor signaling in HEK293 cells and cardiomyocyte contractility. Co-immunoprecipitation assays of β2-AR with these N-terminal GRK fragments revealed a direct interaction suggesting a steric interference of the fragments with the functional GRK-receptor interaction.

Altogether, N-termini of GRK2 and GRK3 efficiently simulate RKIP effects on β-AR signaling in HEK293 cells and in cardiomyocytes by their binding to β2-AR and, thus, provide important insights for the development of new strategies to modulate β2-AR signaling.


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.