• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2017 - Effect of cisplatin on the transport activity of PII-type ATPases

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Metallomics (2017)

Authors:
Tadini-Buoninsegni F., Sordi G, Smeazzetto S, Natile G, Arnesano F.

Journal:
Metallomics (2017) 9(7):960-968


Abstract:

Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+,K+-ATPase. Cisplatin-induced inhibition of Na+,K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+,K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+,K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+,K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+,K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+,K+-ATPase do not perform ATP-dependent cisplatin displacement.


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.