• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

28.04.2020 | Webinar: Validation and optimization of automated patch clamp voltage-gated Ca2+ channel assays

icon pl   Patchliner Webinar

Date: April 28. 2020, 4:00 PM CET (10:00 AM EDT)

200605 blog image Patchliner Webinar Playback

Marc will outline the development, optimization and validation of a range of voltage-gated Ca2+ channel assays on the Patchliner automated patch clamp platform that were subsequently used in an 8 year drug discovery collaboration between Metrion Biosciences and a german pharma company.

Speakers:
Dr. Marc Rogers (Chief Scientific Officer, Metrion Biosciences)
Dr. András Horváth (Application Scientist, Nanion Technologies)

Abstract:

Marc will outline the development, optimization and validation of a range of voltage-gated Ca2+ channel assays on the Patchliner automated patch clamp platform that were subsequently used in an 8 year drug discovery collaboration between Metrion Biosciences and a german pharma company.

The project was successful in identifying several lead series of selective,state-dependent inhibitors of Cav2.2 N-type channels for use as novel, non-opioid analgesic.This required the creation of biophysical screening assays to identify the potency of small molecules against the resting and inactivated state of the human neuronal Ca2+ channels Cav2.1(P/Q type), Cav2.2 and Cav3.2 (T-type), some of which are notoriously difficult in terms of expression levels and current rundown.




Access the Q&A from the webinar here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.