• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

NaV1.5 - "Increase throughput by recording in unattended mode on the SyncroPatch 384"

icon sp96   SyncroPatch 384PE and SyncroPatch 384i (a predecessor model of the SyncroPatch 384) application note:   logo pdf   (2.2 MB)
Cells were kindly provided by Charles River.  

Summary:

High throughput screening (HTS) is used in the pharmaceutical industry to aid drug discovery. Large numbers of chemical compounds can be tested for biological activity using a range of techniques. The patch clamp technique remains the gold standard to test activity of compounds on ion channels and automated patch clamp (APC) is increasingly adopted in HTS labs as an alternative to conventional patch clamp given its increased ease-of-use and higher throughput. APC is employed in all aspects of drug discovery from hit finding and lead optimization through to target validation and safety testing. This is only possible due to the increase in throughput toward HTS capabilities, the compatibility with HTS workflows, and a lower cost per data point which can compete with other techniques such as fluorescence imaging (using, for example, the FLIPR™ instrument) and calcium imaging with the added benefit of real-time kinetics of drug effects. Indeed, all the major contract research organizations worldwide use APC for ion channel screening and cardiac safety testing. Increased automation, including unattended operation, is also an important factor for increasing throughput, and instruments can reliably work beyond an 8-h day provided they are serviced with enough cells, solutions, and compounds. For this to work effectively, data must be reliable with high success rates, low false positive and negative rates along with reproducible IC50 values.


Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.