• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2022 - Polymer Micelles vs Polymer–Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells

icon vpp Vesicle Prep Pro Publication in Frontiers in Biomacromolecules (2022)

Authors:
Ade C., Qian X., Brodszkij E., Andres P.D.D., Spanjers J., Westensee I.N., Städler B.

Journal:
Biomacromolecules (2022) doi.org/10.1021/acs.biomac.1c01403


Abstract:

Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer–lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.

Download here

Back

 

Nanion コーポレートブログ

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.