• Nanion Technologies: イオンチャネル研究のスマートツール

    Nanion Technologies: イオンチャネル研究のスマートツール

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: ラベルフリーのトランスポーターHTS

    SURFE²R 96SE: ラベルフリーのトランスポーターHTS

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂質二分子膜実験: Orbitシリーズ

    脂質二分子膜実験: Orbitシリーズ

  • CardioExcyte 96 SOL: 心筋の光ペーシング

    CardioExcyte 96 SOL: 心筋の光ペーシング

Our Product Portfolio

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

Patient hiPSC-derived cardiomyocytes - "iPSC-derived cardiomyocytes as a model to dissect mechanical dysfunctions of caveolinopathies"

Icon FLEX   FLEXcyte 96 application note  logo pdf   (2.6 MB) 
patient hiPSC-derived cardiomyocytes

Summary:

Cardiac diseases remain one of the major causes of mortality and morbidity in our society with enormous costs for the health system. Arrhythmias and cardiomyopathy diseases are difficult to prevent/cure because the molecular mechanisms behind their onset are in most cases not fully clarified. Causes and effect are often confused, even when directly studying patients’ cardiomyocytes, because of the maladaptive remodeling imposed by electro-mechanical alterations. To overcome this limitation, studying the arrhythmogenic risk associated with genetic cardiac diseases using patient-derived iPS-CMs, provides a good model.

Caveolinopathies are a group of muscular diseases that arise from mutation in the caveolin-3 gene (CAV3). Several CAV3 variants have been found in patients with both skeletal and cardiac pathologies. While electrophysiological alterations behind caveolinopathies have been partly elucidated using different models, the impact of such mutations on cardiomyocyte contraction and thus on the risk of developing cardiomyopathy, although quite probable, has never been studied before. Caveolin-3 along with cholesterol, forms membrane caveolae and plays a key role in the maintenance of plasma membrane integrity and interacts with several signaling proteins and ion channels.

Here, CardioExcyte 96 and FLEXcyte 96 compared relative amplitude and kinetics of contraction and relaxation in patient/control hiPS-lines in order to shed light on the relations between electrical and mechanical dysfunctions. This analysis offered various advantages, such as the possibility of electrical stimulation, recordings in an environment with an elastic surface area resembling that of the native cardiac tissue, as well as high throughput.

Back

Nanion コーポレートブログ

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.