• KV7.1

    Analysis of KV7.1/KCNE co-expressed channels on the Patchliner

2019 - Postpartum hormones oxytocin and prolactin cause pro-arrhythmic prolongation of cardiac repolarization in long QT syndrome type 2

icon pap   Port-a Patch Publication in EP Europace (2019)

Bodi I., Sorge J., Castiglione A., Glatz S.M., Wuelfers E.M., Franke G., Perez-Feliz S., Koren G., Zehender M., Bugger H., Seemann G., Brunner M., Bode C., Odening K.E.

EP Europace (2019) euz037, https://doi.org/10.1093/europace/euz037


Women with long QT syndrome 2 (LQT2) have a particularly high postpartal risk for lethal arrhythmias. We aimed at investigating whether oxytocin and prolactin contribute to this risk by affecting repolarization.
Methods and results
In female transgenic LQT2 rabbits (HERG-G628S, loss of IKr), hormone effects on QT/action potential duration (APD) were assessed (0.2–200 ng/L). Hormone effects (200 ng/L) on ion currents and cellular APD were determined in transfected cells and LQT2 cardiomyocytes. Hormone effects on ion channels were assessed with qPCR and western blot. Experimental data were incorporated into in silico models to determine the pro-arrhythmic potential. Oxytocin prolonged QTc and steepened QT/RR-slope in vivo and prolonged ex vivo APD75 in LQT2 hearts. Prolactin prolonged APD75 at high concentrations. As underlying mechanisms, we identified an oxytocin- and prolactin-induced acute reduction of IKs-tail and IKs-steady (−25.5%, oxytocin; −13.3%, prolactin, P < 0.05) in CHO-cells and LQT2-cardiomyocytes. IKr currents were not altered. This oxytocin-/prolactin-induced IKs reduction caused APD90 prolongation (+11.9%/+13%, P < 0.05) in the context of reduced/absent IKr in LQT2 cardiomyocytes. Hormones had no effect on IK1 and ICa,L in cardiomyocytes. Protein and mRNA levels of CACNA1C/Cav1.2 and RyR2 were enhanced by oxytocin and prolactin. Incorporating these hormone effects into computational models resulted in reduced repolarization reserve and increased propensity to pro-arrhythmic permanent depolarization, lack of capture and early afterdepolarizations formation.
Postpartum hormones oxytocin and prolactin prolong QT/APD in LQT2 by reducing IKs and by increasing CaV1.2 and RyR2 expression/transcription, thereby contributing to the increased postpartal arrhythmic risk in LQT2.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.