• SERCA

    Vesicles incorporating SERCA were adsorbed on a negatively charged SSM using the SURFE²R N1.

    Sacconi et al. (2013)

SERCA - Sarco/Endoplasmic Reticulum Calcium-ATPase

Family:
P-type ATPase (P-ATPase) Superfamily

Subgroups:
P-type ATPases can be divided into five subfamilies (types)
Type I consists of the transition/heavy metal ATPases.
Type II ATPases (specific for Na+,K+, H+ Ca2+, Mg2+ and phospholipids) predominate in eukaryotes. SERCA and  Na+/K+ ATPases are member of this group.
There are 3 major paralogs, SERCA1-3, which are expressed at various levels in different cell types: SERCA1 - SERCA3, encoded by the genes  ATP2A1 - ATP2A3.
Type III ATPases contains the plasma membrane H+-ATPases from plants and fungi.
Type IV ATPases have been shown to be involved in the transport of phospholipids
Type V ATPases have unknown specificity.

Topology:
Many of these protein complexes are multisubunit with a large subunit serving the primary ATPase and ion translocation functions. Many eukaryotic P-type ATPases are monomeric or homodimeric enzymes of the catalytic subunit that hydrolyzes ATP. They contain the aspartyl phosphorylation site and catalyzes ion transport. The Na+/K+-ATPases, the Ca2+-ATPases and the (fungal) H+-ATPases of higher organisms exhibit 10 transmembrane α helical spanners (TMSs).

Function:
P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). Most members of this transporter superfamily catalyze cation uptake and/or efflux, however one subfamily is involved in flipping phospholipids to maintain the asymmetric nature of the biomembrane.

Publications

2019 - Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems

Icon N1   SURFE2R N1 and   Icon Orbit   Orbit 16 publication in Frontiers in Pharmacology (2019)

Authors:
Dondapati S.K., Lübberding H., Zemella A., Thoring L., Wüstenhagen D.A., Kubick S.

2014 - Anticancer Ruthenium(III) Complex KP1019 Interferes with ATP-Dependent Ca2+ Translocation by Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA)

Icon N1  SURFE²R N1 publication in ChemMedChem (2014)

Authors: 
Sadafi F.Z., Massai L., Bartolommei G., Moncelli M.R., Messori L., Tadini-Buoninsegni F.

2013 - Enhanced adsorption of Ca-ATPase containing vesicles on a negatively charged solid supported membrane for the investigation of membrane transporters

Icon N1   SURFE²R N1 publication in Langmuir (2013)

Authors: 
Sacconi A., Moncelli M.R., Mergheri G., Tadini-Buoninsegni F.

a.      P-bond hydrolysis driven transporters

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies).

You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.