icon sp96   SyncroPatch 384PE (a predecessor model of SyncroPatch 384) application note   logo pdf   (1.7 MB)
Cells were kindly provided by Charles River.


N-Methyl-D-aspartate (NMDA) receptors are a member of the ionotropic glutamate receptor family, ligandgated ion channels that mediate the majority of excitatory neurotransmission in the mammalian CNS. They are expressed primarily in the CNS but also in peripheral locations such as pancreatic islet cells, sensory nerve terminals in skin and cardiac ganglia. Seven subunits of the NMDA receptor have been identified, NR1, NR2A-D and NR3A-B2 , they assemble as a tetramer consisting of two NR1 subunits and either two NR2 subunits or a combination of NR2 and NR3 subunits. Activation of NMDA receptors requires the simultaneous binding of glutamate and glycine. Calcium entry through NMDA receptors plays an important role in development and synaptic plasticity and is proposed to underlie higher processes such as learning and memory. It is also proposed to play a role in a number of neurological diseases such as epilepsy and Alzheimer’s. Indeed, memantine is an NMDA antagonist which has been approved for the treatment of moderate to severe Alzheimer’s. NMDA antagonists may also be targets for the treatment of neuropathic pain, major depression and Parkinson’s disease. Here we present high quality data at a high throughput collected on the SyncroPatch 384PE showing activation and inhibition of NMDA NR1/ NR2B expressed in HEK cells. Stable recordings of NMDA receptor were achieved and modulation of the response by spermine and ketamine is shown.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.