• CardioExcyte 96

    インピーダンス&細胞外電位のハイブリッド測定
  • CardioExcyte 96

    心臓安全性スクリーニングに最適
  • CardioExcyte 96

    ラベルフリー:次世代の細胞解析
  • CardioExcyte 96

    直感的にデータ解析可能 & 不整脈の検出
  • CardioExcyte 96

    イメージング用透過性プレートもラインナップ

CardioExcyte 96 – 収縮力測定, 電気生理学, 細胞生死アッセイのハイブリッド装置

CardioExcyte 96(カルディオエキサイト96) は、収縮力測定および非侵襲での心筋細胞ネットワークの電気生理学測定が行えるハイブリッドシステムです。さらに、急性および慢性の細胞活動の評価用にベースインピーダンス値が常に自動モニターされています。肝細胞様細胞やがん細胞などの収縮しない細胞、収縮する心筋細胞の何れにおいても微妙な細胞障害の応答も見逃すことはありません。インピーダンスと細胞外電位は高分解能かつ非侵襲、ラベルフリーで測定可能です。CardioExcyte 96 は完全自動で96ウェル同時測定が可能なシステムです。CardioExcyte 96 は以下の特徴と優位性を有しています:

  • インピーダンス & 細胞外電位を同一ウェルで測定可能
  • 96 ウェル同時測定
  • 非侵襲 & ラベルフリー測定
  • 高解像度
  • 電気的 & 光学的ペーシングオプション
  • 細胞活動・細胞毒性の急性 & 慢性評価
  • CiPA用にバリデート済システム

96ウェルタイプの測定プレートに統合された電気回路と高度なセンサー技術により、CardioExcyte 96 は効率的なインピーダンスと細胞外電位測定が行えるターンキーシステムとなっています。また、パッケージにはインキュベーター無しでの測定が可能なインキュベーションシステムが含まれており、実験台の上でCO2ガス、温度、湿度の制御が行えます。

CardioExcyte 96システムには、効率的かつ容易にデータハンドリングとエクスポートが行える強力なソフトウェアパッケージが同梱されており、ソフトウェアの簡便さは CardioExcyte 96 システムの大きな特徴のひとつとなっています。システムはすべてのメジャーな細胞提供会社の幹細胞由来心筋細胞でバリデート済であり、単層または3D心筋塊のほか、細胞毒性評価用として細胞株(肝細胞様細胞、がん細胞など)も使用できます。

詳細情報:

オプション&特徴

CardioExcyte 96 プラットフォーム

CardioExcyte Integra 1

CardioExcyte 96 パッケージには、96ウェルプレートの細胞や溶液操作をマルチチャンネルで自動ピペッティング可能なIntegra社の Viaflo Assistが同梱されており、ユーザーの負担軽減、再現性向上を可能にしています。


CardioExcyte 96 インキュベーションシステム

CardioExcyte Incubation System 1

CardioExcyte 96 パッケージには、温湿度、混合ガスを制御するインキュベーションシステムが同梱されています。 当システムによりインキュベーターの外で実験が可能で、CardioExcyte 96のフルシステムをラボ実験台の上に設置できます。


CardioExcyte 96 SOL(オプション)

光刺激による,インピーダンス及び細胞外電位の同時測定を実現:

CardioExcyte Sol 1

光ペーシング用オプション CardioExcyte 96 SOL は,チャネルロドプシン2(ChR2)等のリガンド依存性イオンチャネルを遺伝子導入した細胞に対して,LEDによる空間的に均一な刺激が可能です。iPS心筋細胞へChR2導入後,青色LED光による刺激が可能です。各光パルスにより細胞は脱分極を起こし,活動電位が誘因されます。電気刺激に比べ,光刺激は高精度な刺激のタイミング,拍動心筋細胞のネットワーク全体を確実に同時刺激できる点で優位性があります。一方,電気刺激は電極からウェル中を伝播するため,細胞は徐々に刺激されます。光刺激で得られた高精度な拍動タイミングのデータを mean beat計算することで,詳細な化合物解析および用量依存性を可能にします。この解析機能は,CardioExcyte 96システムに同梱される CardioExcyte Control/ DataControlソフトウェアパッケージの主要な解析機能のひとつとなっています。


ソフトウェア

CardioExcyte 96 ソフトウェアパッケージ

CardioExcyte Analysis Software

CardioExcyte Controlソフトウェアは,拍動パラメータのオンライン解析をサポートしています。独自の "Mean Beat"機能は自動で各ウェルの拍動トレース標準偏差付きの平均値を可視化し,例えば,細胞ネットワークの拍動の同期しているかなど,測定ウェルでの拍動パターンの均一性を示します。制御ソフトウェアは直感的かつ簡便,実験セットアップ及びオンラインでの測定データの可視化において極めて強力なツールとなっています。

DataControl 96 ソフトウェアパッケージは CardioExcyte 96で測定したデータをロード,解析する独立したソフトウェアパッケージです。 カスタマイズ可能な解析結果のエクスポートフォーマットも統合されています。

Online Analysis Post Processor (OAPP)は,well-to-wellの統計および濃度依存的影響の迅速な可視化を可能にするソフトウェアツールです。パラメーター,波形トレースはコントロール値またはタイムポイントでの標準化が可能です。また、分かりやすいグラフ出力により,ルーチンな解析作業において極めて多才な解析ツールとなっています。


DataControl 96 パッケージに関するステートメント

Hans-Peter Scholz - Statement about the Analysis Software of the CardioExcyte 96 "DataControl 96"

Icon CE   “DataControl 96 allows us to analyze large amounts of data and represents a huge step towards standardized experiment analysis. All the well's individual raw data, analysis results, concentration response curves and also the fits averaged per compound are displayed on a single screen, which means that all relevant information is right at the place where we want to see it. Analysis templates can be used to re-do the same analysis procedures on a different compound, but same target, thus reducing the effort for data handling to just a couple of mouse clicks. Powerful averaging with standard deviation display and referencing methods allow for great quality control. Furthermore, multiple export options are available to allow a seamless integration in databases.”

Hans-Peter Scholz, Technician,
Biopharma, Global Early Non Clinical Safety, Merck KGaA, Darmstadt, Germany

消耗品

NSP-96 センサープレート

CE Plate

NPC-96センサープレートは,CardioExcyte 96専用に開発された革新的なNanion Technologiesの自社製品です。製品はナニオン及びパートナー会社およびドイツのナニオン本社ラボで厳格な品質チェックを行い、ドイツミュンヘンから世界のユーザーへ発送されます。 実験内容に合わせて、各種のNSP-96センサープレートから最適なプレートをお選びいただけます。


NSP-96 センサープレートの特徴
  • 96-wellプレートフォーマット
  • 容量: 25-340 µl (表面積 34mm2)
  • 2極式平面金電極
  • 単層心筋および3D心筋細胞塊の測定に対応
  • EFPとインピーダンス測定を可能にしたハイブリッド式センサー設計

NSP-96 センサープレート 製品ラインナップ
  • "NSP-96, CardioExcyte 96 Sensor Plates - Stim": Type standard with extra stimulation electrode (Order # 201003)
  • "NSP-96 CardioExcyte96 Sensor Plates 0.6 mm": Type standard, 0.6 mm recording electrode (Order # 201002)
  • "NSP-96 CardioExcyte96 Sensor Plates 2.0 mm": Type standard, 2.0 mm recording electrode (Order # 201001)

カスタマイズもご相談いただけます。

インタビュー&ケーススタディー

Prof. Bjorn C. Knollmann - Statement about the CardioExcyte 96

Icon CE  “We are happy to have acquired the CardioExcyte 96 from Nanion and look forward to publishing the first of many papers. We looked at several different devices on the market but were impressed by the resolution and ease-of-use of the CardioExcyte 96 and Nanion’s enthusiasm and friendly customer support. I was particularly intrigued by the pacing feature, the single electrode design giving better signal to noise ratio, the dual EFP + impedance capability, and the environmental chamber so that you can run everything on the benchtop. The new optical pacing feature added in 2017 has further expanded the utility of the instrument for drug testing and disease modeling: For the first time, rate-dependent changes of cardiac electrophysiology and contractility can be easily quantified.”

Prof. Bjorn C. Knollmann, Director of the Center for Arrhythmia Research and Therapeutics of Vanderbilt University School of Medicine:

Marc Rogers - Statement about the Patchliner and CardioExcyte 96

icon pl   "It has been an absolute pleasure and privilege to work with Niels and the Nanion team over the past decade. I firmly believe that our two small, but independently minded ion channel focused companies, share a similar business ethos and a clear focus on delivering cost-effective solutions to our customers. In our extensive use of the Patchliner platform since 2007, my teams have benefited from the dedication of Nanion’s service engineers, application scientists, and bespoke data acquisition routines, whilst Nanion have benefited from seeing their products applied and adapted to real-world drug discovery projects and assays."

Icon CE   "This fruitful working relationship has now been extended to our use of the CardioExcyte96 phenotypic assay platform, which we utilise to develop and validate human iPSC cardiomyocyte cell lines and assays to meet the post-hERG, predictive cardiac safety testing needs of the drug discovery industry”."

Dr. Marc Rogers, CSO
Metrion Biosciences

Hans-Peter Scholz - Statement about the Analysis Software of the CardioExcyte 96 "DataControl 96"

Icon CE   “DataControl 96 allows us to analyze large amounts of data and represents a huge step towards standardized experiment analysis. All the well's individual raw data, analysis results, concentration response curves and also the fits averaged per compound are displayed on a single screen, which means that all relevant information is right at the place where we want to see it. Analysis templates can be used to re-do the same analysis procedures on a different compound, but same target, thus reducing the effort for data handling to just a couple of mouse clicks. Powerful averaging with standard deviation display and referencing methods allow for great quality control. Furthermore, multiple export options are available to allow a seamless integration in databases.”

Hans-Peter Scholz, Technician,
Biopharma, Global Early Non Clinical Safety, Merck KGaA, Darmstadt, Germany

Dr. Ralf Kettenhofen - Statement about the CardioExcyte 96

Icon CE   "CardioExcyte 96 is an easy-to-use system, providing impedance-based and MEA-like cardiac safety data from a diversity of stem cell-derived cardiomyocytes, and constitutes an excellent complement to automated patch clamp-based safety screening. Concentration- and time-dependence of a compound’s potential cardiotoxicity can efficiently be obtained where the alteration of beating patterns can give a hint as to which cardiac ion channel(s) is affected, after which detailed electrophysiology investigations can be undertaken. Cardiac network responses offer a comprehensive view of a compound’s safety profile, without having to use in-vivo methods, which saves time, costs and suffering. Further on, the powerful software, used for recordings and analysis, employs comprehensive beat investigation algorithms, displaying detailed beating kinetics in real-time. Data handling and export is straightforward, easy to grasp and yet very, very powerful."

Dr. Ralf Kettenhofen, Head of Laboratory 
Ncardia, Cologne, Germany.

Dr. Daniel Konrad - Statement about the CardioExcyte 96

Icon CE   “Impedance and field potential data of beating cardiomyocytes is getting increasingly important to obtain a comprehensive view of the cardiac liability of test compounds. To answer these questions for our clients, B’SYS successfully implemented the CardioExcyte 96 system and provides related validated services to its customers, mostly using ipS derived cardiomyocytes. B’SYS’ scientists are pleased with the CardioExcyte’s ease of operation and data acquisition. The powerful software allows for applying meaningful data analysis and time saving export of data as needed for our daily customer reports.“

Dr. Daniel Konrad
CEO B'SYS

Anika Duenbostell-Schmidt - Statement about the CardioExcyte 96

Icon CE   "I use the CardioExcyte 96 weekly to test substances on our human iPSC-derived cardiomyocytes. It allows me to map, compare and evaluate a wide variety of pharmacological responses with a high degree of reliability and uniformity, and evaluate them through the rapid analysis function."

Anika Duenbostell-Schmidt, Head QC at Ncardia 
Ncardia, Cologne, Germany.

データ&アプリケーション

NCX1 - Effect of block of cardiac NCX on beat rate

Icon CE   NCX1 iCell SEA0400 CE96CardioExcyte data and applications:
Cells were kindly provided by Cellular Dynamics.

Block of NCX1 expressed in iCell® Cardiomyocytes2 by SEA 0400 caused a dose dependent increase in beat rate. 

 

Cardiac Ion Channels - Pharmacology of Sotalol

CiPA PE CE Pharmacology SotalolIcon CE    CardioExcyte 96 and   icon sp96   SyncroPatch 384PE data and applications:
Cells were kindly provided by Charles River and Cellular Dynamics.

The image on the left hand side displays the results of the blocking effect of Sotalol on hERG. The result is in good agreement with manual patch clamp data (Crumb et al., 2016). The compound induced arrhythmia when iPSC-CM were exposed to a minimum concentration of 10 µM. Arrhytmic events were both detected in field potential recordings as well as in the impedance based contractility measurements.

Cardiac Ion Channels - Pharmacology of Vandetanib

CiPA PE CE Pharmacology VandetanibIcon CE    CardioExcyte 96 and   icon pl   Patchliner data and applications:
Cells were kindly provided by Charles River and Cellular Dynamics.

The image on the left hand side displays the results of the blocking effect of Vandetanib on hERG, NaV1.5, CaV1.2 and KV4.3. The compound induced arrhythmia when iPSC-CM were exposed to a minimum concentration of 1 µM. Arrhytmic events were both detected in field potential recordings as well as in the impedance based contractility.

Cardiomyocytes - Myocyte phase II study: CiPA conform analysis and arrhythmia detection

Icon CE   CardioExcyte CiPAII 1CardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

Nanion developed a CiPA conform analysis for the Myocyte phase II study. The feature comes along is included in our CiPA analysis routine. Automated arrhythmia detection is just one highlight out of many when it comes to the CardioExcyte 96 software.

Cardiomyocytes - Channelrhodopsin 2 (ChR2) transfected Cor.4U cells and optical pacing

Icon CE   CardioExcyte Optogenetics 2CardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

ChR2 transfected Cor.4U cells are following the optical pace rate.

Raw data traces upon a 1 Hz, 1.5 Hz, 2 Hz., 2.5 Hz and 3 Hz stimulation rate, extracellular field potentials (top) and impedance (bottom).

 

 

 

Cardiomyocytes - Optogenetics meets cardiac safety

Icon CE   CardioExcyte Optogenetics 1CardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

The stimulating optical lid, CardioExcyte 96 SOL, uses LEDs for spatially uniform stimulation of cells transfected with light-gated ion channels such as Channelrhodopsin2 (ChR2).

Right graph: LPM – Light pulse per minute plotted against the recorded beat rate (average of 96 wells). ChR2 transfected Cor.4U cells are following the optical pace rate.

Murine Mammary Carcinoma Cells - Effect of CAF (cyclophosphamide, adriamycin (doxorubicin) and 5-fluouracil)

Icon CE   CardioExcyte Murine CarcinomaCells 1CardioExcyte data and applications:
Data kindly provided by Oliver Reinhardt, MPI Experimentelle Medizin, Göttingen

Murine mammary carcinoma cells (H8N8 and H8N8 T3.2) were monitored over a time period of 500 h. Changes in impedance, and therefore confluency, were used as a measure of toxicity.
H8N8 cells have been developed as a tool to investigate tumor cell recurrence, chemoresistance and epithelial-to-mesenchymal transition (EMT). Cells were treated with increasing concentrations of CAF (cyclophosphamide, adriamycin (doxorubicin) and 5-fluouracil) on the CardioExcyte 96 during impedance measurements. Therefore, the CardioExcyte 96 in combination with murine mammary carcinoma cells provides a novel tool for investigating therapy resistance of cancer cells in vitro.
Data kindly provided by Oliver Reinhardt, MPI Experimentelle Medizin, Göttingen

Cardiomyocytes - Effects of verapamil on impedance (left) and EFP (right) signals of Cellartis Cardiomyocytes

Icon CE   CardioExcyte VerapamilCardioExcyte data and applications:
Cells were kindly provided by Takara Bio Cellartis Clontech.

(A) Impedance (left) and EFP signals (right) in control conditions
(B) Upon application of 10 nM verapamil
(C) Upon application of 100 nM verapamil.
(D) The mean beats for impedance (left) and EFP (right) are shown in D

 

 

 

 

Cardiomyocytes - Effects of sotalol on impedance (left) and EFP (right) signals of Cellartis Cardiomyocytes

Icon CE   CardioExcyte SotalolCardioExcyte data and applications:
Cells were kindly provided by Takara Bio Cellartis Clontech.

Impedance (left) and EFP signals (right) in control conditions (A) and 1 μM sotalol (B) are shown. 
Irregular beating can be observed in the presence of sotalol.

Cardiomyocytes - Effect of the ß-adrenergic receptor agonist, Isoproterenol, on the impedance and EFP signals on iCells

Icon CE   CardioExcyte IsoproterenolCardioExcyte data and applications:
Cells were kindly provided by Cellular Dynamics.

A Impedance signal of 12 wells in control conditions (left) and the same 12 wells after 13 mins incubation in isoproterenol at the concentrations indicated. Isoproterenol acts as a heart stimulant, it increases heart rate, an effect which is highlighted in the inset where the trace in the presence of isoproterenol (300 nM; black) and the control trace (red) are shown overlaid. In the presence of even low concentrations of isoproterenol (1 nM), an increase in the beat rate is observed. B Bar graph showing beat rate before (dark blue) and after (light blue) incubation in isoproterenol at the concentrations indicated. At all concentrations, a clear increase in beat rate is observed. C EFP signal of 12 wells in control conditions (left) and the same 12 wells after 30 mins incubation in isoproterenol at the concentrations indicated (right). Isoproterenol shortens the FPD, an effect which is highlighted in the inset where the trace in the presence of isoproterenol (300 nM; black) and the control trace (red) are shown overlaid.

Cardiomyocytes - Effect of E4031 on the impedance and EFP signals on iCell cardiomyocytes

Icon CE   CardioExcyte E3031CardioExcyte data and applications:
Cells were kindly provided by Cellular Dynamics.

Effect of the specific hERG blocker, E4031, on the impedance and EFP signals. A Impedance signal of 12 wells in control conditions (left) and the same 12 wells after 13 mins incubation in E4031 at the concentrations indicated (right). E4031 (300 nM, 3 mins incubation) induces EAD, shown in the inset, which can lead to potentially fatal ventricular arrhythmias. B EFP signal of 12 wells in control conditions (left) and the same 12 wells after 13 mins incubation in E4031 at the concentrations indicated (right). E4031(300 nM, 30 mins incubation) also causes arrhythmic effects in the EFP mode shown in the inset.

Cardiomyocytes - Nifedipine and its concentration dependent effect on Cor.4U cells

Icon CE   Nifedipine Cor4UCardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

Nifedpinie is a dihydropyridine calcium channel blocker that primarily blocks L-type calcium channels. Impedance and EFP recordings on Cor.4U cells reveal a concentration dependent effect on impedance amplitude, beat rate and also a shortening of the FPD as expected.

Cardiomyocytes - Tetracaine dose response curves as recorded with Cor.4U cells

Icon CE   Tetracaine Cor4UCardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

Impedance amplitude is not changed by addition of increasing concentrations of Tetracaine (left panel), while beat rate of Cor.4U® cells is decreasing. For example, 29.6µM of Tetracaine decreased the beat rate by ~60% when compared to pre-addition values. Cumulative dose-response relationships indicate Tetracaine potency for same-well additions. Representative raw traces for impedance signals (middle panel) clearly indicate a decrease in cell monolayer beat rate with increasing concentrations of Tetracaine.
Extracellular Field Potential (EFP) spike amplitude is decreased by cumulative Tetracaine dose applications to the same monolayer of Cor.4U® hIPSC-CMs (top right), in agreement with compound mechanism of action. Representative raw traces for EFP signals (bottom graph) clearly indicate a decrease in spike amplitude.

Cardiomyocytes - Time-dependent effect of Pentamidine on Cor.4U cardiomyocytes

Icon CE   CardioExcyte Cor4U PentamidineCardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

Time-dependent effect of Pentamidine on Cor.4U cardiomyocytes. Pentamidine clinically causes acquired long QT syndrome, which is associated with prolonged QT intervals, tachycardias, and sudden cardiac arrest. Pentamidine delays terminal repolarization in human heart by acutely blocking cardiac inward rectifier currents. At the same time, it reduces surface expression of the cardiac potassium channel IKr/human ether à-go-go-related gene (hERG).
Insets: EFP raw traces and online analysis value FPDc in the presence of Pentamidine (10 µM) at different timepoints.

Cardiomyocytes - Data from different cell providers

Icon CE   CardioExcyte different ProvidersCardioExcyte data and applications:
Cells were kindly provided by Axiogenesis, Cellular Dynamics, GE Healthcare, Pluriomics, ReproCell, Takara Bio Cellartis Clonetech.

The CardioExcyte 96 allows for
• Non-invasive, label-free measurements of beating cardiomyocyte networks
• 96 recording wells in parallel with 1 ms time resolution
• Quick experiments or long-term compound effects on cardiotoxicity
• Real-time access to beating parameters
• Outstanding software for data analysis and export
• Cost effcient consumables - 96-well format

Hepatocytes - Paracetamol toxicity on hepatocyte-like MetaHeps cells

Icon CE   CardioExcyte ParacetamolCardioExcyte data and applications:
Cells were kindly provided by MetaHeps.

The impedance signal recorded on the CardioExcyte 96 changes as a result of alterations in confluency, cell contact (morphological shape) and conductivity of adherent cells and thereby provides a measure of toxicity. MH cells from MetaHeps® were grown on NSP-96 plates and base impedance was monitored over time. Increasing concentrations of paracetamol induce a decrease in base impedance of MH cells which can be monitored continuously. Tween (2%) induced 100% cell death and was used as a positive control.

ウェビナー&動画

Webinars

12.09.2018 | Webinar: CiPA study: Bridging ion channel and myocyte data

180912 event image CiPAII Webinar

Icon CE   CardioExcyte 96,   icon pl   Patchliner and   icon sp96   SyncroPatch 384PE Webinar

Date: September 12, 4:00 PM CEST (10:00 AM EDT)

 Get up-to-date with the CiPA progress of the Myocyte and Ion Channel Work Goups:

  • CiPA myocyte phase II validation study results: cross-site comparison using the CardioExcyte 96
  • HTS Phase I study: an update on progress of the CiPA Ion Channel Work Stream using the SyncroPatch 384PE and Patchliner

28.04.2015 | Webinar: Excited About Contraction – Combining Contractility and Excitability Measurements in Cardiotoxicity Screening

Icon CE   CardioExcyte 96

This Webinar covers the introduction of the CardioExcyte 96, a hybrid device for impedance- and MEA-type recordings from intact, beating networks of stem cell-derived cardiomyocytes.

Movies: Tutorials and Oral Presentations

2018 - HTS Phase I study: an update on progress of the CiPA Ion Channel Work Stream using the SyncroPatch 384PE and Patchliner

icon sp96   SyncroPatch 384PE,   icon pl   Patchliner and   Icon CE   CardioExcyte 96 Oral Presentation

Presenter: 
Tim Strassmaier, Nanion Technologies Inc. USA
Source:
Webinar: "CiPA study: Bridging ion channel and myocyte data", September 12, 2018

2018 - CiPA myocyte phase II validation study results: cross-site comparison using the CardioExcyte 96

Icon CE   CardioExcyte 96 Oral Presentation

Presenter: 
Dr. Sonja Stölzle-Feix, Nanion Technologies
Source:
Webinar: "CiPA study: Bridging ion channel and myocyte data", September 12, 2018

2017 - Impedance-Based Monitoring of Cell-Based Assays: The Power of MultiFrequency Recordings

Icon CE   CardioExcyte 96 Oral Presentation

Presenter: 
Prof. Dr. Joachim Wegener, University of Regensburg, Germany

2017 - CardioExcyte 96 Tutorial Video

Icon CE   CardioExcyte 96

Short introduction on the CardioExcyte 96 (tutorial video, 3 minutes)

ダウンロード:

アプリケーションノート

Cardiac Ion Channels - "High Throughput Screening of Cardiac Ion Channels"

icon sp96   SyncroPatch 384PE   icon pl   Patchliner   Icon CE   CardioExcyte 96 application note   logo pdf   (2.3 MB)

Cardiomyocytes - "Combining automated patch clamp, impedance and EFP of hiPSC-CMs"

Icon CE   CardioExcyte 96   icon sp96   SyncroPatch 3984PE   icon pl   Patchliner Application Note 
Cells kindly provided by Takara-Clonetech.

Cardiomyocytes - "Impedance and EFP recordings of Cor.4U cells using Nanion’s CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (1.3 MB)
Cells were kindly provided by Ncardia.  

Cardiomyocytes - "Impedance and EFP recordings of iCell Cardiomyocytes² on the CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (2.8 MB)
Cells were kindly provided by Cellular Dynamics.

Cardiomyocytes - "Impedance and EFP recordings of Pluricyte Cardiomyocytes on the CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (1.3 MB)
Cells were kindly provided by Ncardia.

CytoSwitch - "Inducing cell death using a photostatin on the CardioExcyte 96 and SOL"

Icon CE   CardioExcyte 96 and SOL Application Note   logo pdf   (0.4 MB)
Cells were kindly provided by LMU Munich/CytoSwitch.

Hepatocytes - "Investigating DILI using MetaHeps cells on Nanion’s CardioExcyte 96"

Icon CE   CardioExcyte 96 Application Note   logo pdf   (0.7 MB)
Cells were kindly provided by Metaheps GmbH.  

製品カタログ

CardioExcyte 96 - Product Sheet

Icon CE   CardioExcyte 96 product sheet   logo pdf   (0.7 MB)

CardioExcyte 96 Flyer - Pacing

Icon CE   CardioExcyte 96 Product flyer  logo pdf   (1.0 MB)

CardioExcyte 96 Flyer - SOL

Icon CE   CardioExcyte 96 Product flyer  logo pdf   (0.4 MB)

論文

2018 - The opioid oxycodone use‐dependently inhibits the cardiac sodium channel Nav1.5

Icon CE   CardioExcyte 96 publication in British Journal of Pharmacology (2018)

Authors:
Meents J.E., Juhasz K., Stölzle-Feix S., Peuckmann-Post V., Rolke R. Lampert A.

2018 - Simplified footprint-free Cas9/CRISPR editing of cardiac-associated genes in human pluripotent stem cells

Icon CE  CardioExcyte 96 publication in Stem Cells and Development

Authors:
Kondrashov A., Hoang M.D., Smith J., Bhagwan J., Duncan G., Mosqueira D., Munoz M., Vo N.T.N., Denning C.

2018 - Safety Pharmacology Methods and Models in an Evolving Regulatory Environment

Icon CE   CardioExcyte 96 & CiPA Editorial in Journal of Pharmacological and Toxicological Methods (2018)

Authors:
Pugsley M.K., Harter M.L., de Korte T., Connaughton C., Authier S., Curtis M.J.

2018 - Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes

Icon CE   CardioExcyte 96 publication in Journal of Molecular and Cellular Cardiology

Authors: 
Wang L., Kim K., Parikh S., Cadar A.G., Bersell K.R., He H., Pinto J.R., Kryshtal D.O., Knollmann B.C.

2018 - Cross-site comparison of excitation-contraction coupling using impedance and field potential recordings in hiPSC cardiomyocytes

Icon CE   CardioExcyte 96 publication in Journal of Pharmacological and Toxicological Methods (2018)

Authors:
Bot C.T., Juhasz K., Haeusermann F., Polonchuk L., Traebert M., Stölzle-Feix S.

2017 - Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes

Icon CE  CardioExcyte 96 publication in Stem Cell Research and Therapy (2017)

Authors: 
Cui C., Geng L., Shi J., Zhu Y., Yang G., Wang Z., Wang J., Chen M.

2017 - Frequency-Dependent Multi-Well Cardiotoxicity Screening Enabled by Optogenetic Stimulation

Icon CE  CardioExcyte 96 publication in International Journal of Molecular Sciences

Authors:
Rehnelt S., Malan D., Juhasz K., Wolters B., Doerr L., Beckler M., Kettenhofen R., Bohlen H., Bruegmann T., Sasse P.

2017 - Combined Impedance and Extracellular Field Potential Recordings from Human Stem Cell-Derived Cardiomyocytes 

Icon CE  CardioExcyte 96 book chapter in Stem Cell-Derived Models in Toxicology (2017)

Authors: 
Obergrussberger A., Thomas U., Stölzle-Feix S., Becker N., Juhasz K, Doerr L., Beckler M., George M., Fertig N.

2017 - An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities

Icon CE  CardioExcyte 96 publication in Toxicology and Applied Pharmacology (2017)

Authors: 
Koci B., Luerman G., Duenbostell A., Kettenhofen R., Bohlen H., Coyle L., Knight B., Ku W., Volberg W., Woska Jr. J.R., Brown M.P.

2016 - Safety pharmacology studies using EFP and impedance

Icon CE  CardioExcyte 96 publication in Journal of Pharmacological and Toxicological Methods (2016)

Authors:
Obergrussberger A., Juhasz K., Thomas U., Stölzle-Feix S., Becker N., Dörr L., Beckler M., Bot C., George M., Fertig N.

2016 - Identification of Drug-Drug Interactions In Vitro: A Case Study Evaluating the Effects of Sofosbuvir and Amiodarone on hiPSC-Derived Cardiomyocytes

Icon CE  CardioExcyte 96 publication in Toxicological Sciences (2016)

Authors:
Millard DC, Strock CJ, Carlson CB, Aoyama N, Juhasz K, Goetze TA, Stoelzle-Feix S, Becker N, Fertig N, January CT, Anson BD, Ross JD.

2015 - Novel screening techniques for ion channel targeting drugs

icon pl  Patchliner,   icon sp96   SyncroPatch 384PE and   Icon CE   CardioExcyte 96 publication in Channels (2015)

Authors: 
Obergrussberger A., Stölzle-Feix S., Becker N., Brüggemann A., Fertig N., Möller C.

2015 - New Easy-to-Use Hybrid System for Extracellular Potential and Impedance Recordings.

Icon CE  CardioExcyte 96 publication in Journal of Laboratory Automation (2015)

Authors: 
Doerr L., Thomas U., Guinot D.R., Bot C.T., Stoelzle-Feix S., Beckler M., George M., Fertig N.

ポスター

2018 - Combining electrophysiology and contractility recordings for more complete assessment of hiPSC-CMs

icon sp96   SyncroPatch 384PE,   icon pl   Patchliner and   Icon CardioExcyte 96 simpel RGB   CardioExcyte 96 poster, Europhysiology Meeting 2018  logo pdf   (1.4 MB)

2018 - A Sensor Based Technique for Pharmacological Safety Testing of Cardiac Transport Proteins NCX, NaKATPase and Respiratory Chain Complexes

Icon CE   CardioExcyte 96 and   Icon 96SE   SUFE²R 96SE poster, SPS 2018  logo pdf   (1.7 MB)

2018 - Assessment of Drug Effects on Cardiomyocyte Function: Comprehensive In Vitro Proarrhythmia Assay (CiPA) Results

Icon CE   CardioExcyte 96 poster, SOT Meeting 2018  logo pdf   (1.8 MB)

2018 - Optogenetic technologies enable high throughput ion channel drug discovery and toxicity screening

icon sp96   SyncroPatch 384PE and   Icon CE   CardioExcyte 96 poster, Biophysics Annual Meeting 2018  logo pdf   (1.3 MB)

2018 - Investigations into idiosyncratic drug-induced hepatotoxicity and chronic proliferation of cancer cells using a label-free method

Icon CE   CardioExcyte 96 poster, Biophysics Annual Meeting 2018  logo pdf   (1.3 MB)

2016 - Next level toxicity screening: From single channel to overall cell behavior

Icon Orbit Mini   Orbit mini,   Icon CE   CardioExcyte 96 and   icon sp96   SyncroPatch 384PE poster, Meeting of the French Society of Toxinology (SFET) 2015  logo pdf   (0.9 MB)

2015 - Complementary automated patch clamp, extracellular field potential and impedance recordings of iPSCs: safety screening tool box for the future

icon pl   Patchliner and   Icon CE   CardioExcyte 96 and   icon sp96   SyncroPatch 384PE poster,   SPS 2015   logo pdf   (2.7 MB)

プレゼンテーション

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok