• Patchliner

    最高の実験柔軟性を誇るオートパッチ
  • Patchliner

    チップの自社内製造と厳格なQC
  • Patchliner

    10年以上のアッセイ系構築/サポート実績
  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner

    マニュアルパッチの優位性を全て継承

2009 - High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1

icon pl  Patchliner publication in Molecular Pharmacology (2009)

Authors: 
Lewis L.M., Bhave G., Chauder B.A., Banerjee S., Lornsen K.A., Redha R., Fallen K., Lindsley C.W., Weaver C.D., Denton J.S.

Journal: 
Mol. Pharmacol. (2009) 76(5):1094-1103


Abstract: 

The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K+ (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies).

You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.