• Patchliner

  • Patchliner

  • Patchliner

  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner


2018 - Evaluation of possible proarrhythmic potency: comparison of the effect of dofetilide, cisapride, sotalol, terfenadine and verapamil on hERG and native IKr currents and on cardiac action potential

icon pl   Patchliner publication in Toxicological Sciences (2018)

Orvos P., Kohajda Z., Szlovák J., Gazdag P., Árpádffy-Lovas T., Tóth D., Geramipour A., Tálosi L., Jost N., Varró A., Virág L.

Toxicological Sciences (2018) 41:77, DOI: 10.1093/toxsci/kfy299


The proarrhythmic potency of drugs is usually attributed to the IKr current block. During safety pharmacology testing analysis of IKr in cardiomyocytes was replaced by hERG test using automated patch-clamp systems in stable transfected cell lines. Aim of the present study was to compare the effect of proarrhythmic compounds on hERG and IKr currents and on cardiac action potential.

The hERG current was measured by using both automated and manual patch-clamp methods on HEK293 cells. The native ion currents (IKr, INaL, ICaL) were recorded from rabbit ventricular myocytes by manual patch-clamp technique. Action potentials in rabbit ventricular muscle and undiseased human donor hearts were studied by conventional microelectrode technique.

Dofetilide, cisapride, sotalol, terfenadine and verapamil blocked hERG channels at 37 °C with an IC50 of 7 nM, 18 nM, 343 μM, 165 nM and 214 nM, respectively. Using manual patch-clamp, the IC50 values of sotalol and terfenadine were 78 µM and 31 nM, respectively. The IC50 values calculated from IKr measurements at 37 °C were 13 nM, 26 nM, 52 μM, 54 nM and 268 nM, respectively. Cisapride, dofetilide and sotalol excessively lengthened, terfenadine and verapamil did not influence the action potential duration. Terfenadine significantly inhibited INaL and moderately ICaL, verapamil blocked only ICaL.

Automated hERG assays may over/underestimate proarrhythmic risk. Manual patch-clamp has substantially higher sensitivity to certain drugs. Action potential studies are also required to analyze complex multichannel effects. Therefore, manual patch-clamp and action potential experiments should be a part of preclinical safety tests.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.