• Patchliner

    最高の実験柔軟性を誇るオートパッチ
  • Patchliner

    チップの自社内製造と厳格なQC
  • Patchliner

    10年以上のアッセイ系構築/サポート実績
  • Dynamite8

    Automated Dynamic Clamp
  • Patchliner

    マニュアルパッチの優位性を全て継承

2021 - Dynamic Clamp in Electrophysiological Studies on Stem Cell–Derived Cardiomyocytes—Why and How?

icon pl  Patchliner Review Article in Journal of Cardiovascular Pharmacology (2021)

Authors:
Verkerk A.O., Wilders R.

Journal:

Journal of Cardiovascular Pharmacology (2021) doi: 10.1097/FJC.0000000000000955


Abstract: 

Human pluripotent stem cell–derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of “synthetic” inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential(“dynamic clamp”). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show “adult-like” action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology.
These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software.In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.


Download here.

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.