• SURFE²R N1

    簡便なオールインワン装置, アカデミックの教育ツールに最適
  • SURFE²R N1

    ラベルフリーでトランスポーターのファンクショナルHTSアッセイ系を遂に実現
  • SURFE²R N1

    パッチクランプ法を超えるシグナル増幅率
  • SURFE²R N1

    市場唯一のSSM-電気生理学システム
  • SURFE²R N1

    トランスポーター解析のターンキーシステム

2009 - Measuring Ion Channels on Solid Supported Membranes

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Biophysical Journal (2009)

Authors:
Schulz P., Dueck B., Mourot A., Hatahet L., Fendler K.

Journal:
Biophysical Journal (2009) 97(1):388–396


Abstract:

Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied. Transient currents representing ion channel transport activity are recorded via capacitive coupling. We demonstrate the application of the technique to liposomes reconstituted with the peptide cation channel gramicidin, vesicles from native tissue containing the nicotinic acetylcholine receptor, and membranes from a recombinant cell line expressing the ionotropic P2X2 receptor. It is shown that stable ion gradients, both inside as well as outside directed, can be applied and currents are recorded with an excellent signal/noise ratio. For the nicotinic acetylcholine receptor and the P2X2 receptor excellent assay quality factors of Z′ = 0.55 and Z′ = 0.67, respectively, are obtained. This technique opens up new possibilities in cases where conventional electrophysiology fails like the functional characterization of ion channels from intracellular compartments. It also allows for robust fully automatic assays for drug screening.


Download here

Back

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.