• Vesicle Prep Pro

    有機溶媒フリーで巨大単層ベシクル(GUV)を自動調製可能な市場初のシステム
  • Vesicle Prep Pro

    均一サイズのリポソームを自動調製 - 多様なアプリケーション

2018 - A synthetic enzyme built from DNA flips 10e7 lipids per second in biological membranes

icon vpp   Vesicle Prep Pro publication in the Nature Communications (2018)

Authors:
Ohmann A, Li C-Y, Maffeo C, Al Nahas K, Baumann K.N, Göpfrich K, Yoo J, Keyser U.F, & Aksimentiev A.

Journal:
Nature Communications (2018) 9: Article Number: 2426


Abstract:

Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane’s inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine.


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies).

You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.