• Vesicle Prep Pro

    有機溶媒フリーで巨大単層ベシクル(GUV)を自動調製可能な市場初のシステム
  • Vesicle Prep Pro

    均一サイズのリポソームを自動調製 - 多様なアプリケーション

2018 - Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage

icon vpp   Vesicle Prep Pro publication in eLife (2018)

Authors:
Manni M.M., Tiberti M.L., Pagnotta S., Barelli H., Gautier R., Antonny B.

Journal:
eLife (2018) 7:e34394


Abstract:

Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions.


Download here

Back

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.