• Vesicle Prep Pro

    有機溶媒フリーで巨大単層ベシクル(GUV)を自動調製可能な市場初のシステム
  • Vesicle Prep Pro

    均一サイズのリポソームを自動調製 - 多様なアプリケーション

2019 - Soluble cyanobacterial carotenoprotein as a robust antioxidant nanocarrier and delivery module

 icon vpp   Vesicle Prep Pro Pre-publication in BioRxiv (2019)

Authors:
Maksimov E.G., Zamaraev A.V., Parshina E.Y., Slonimskiy Y.B., Slastnikova T.A., Abdrakhmanov A.A., Babaev P.A., Efimova, S.S., Ostroumova O.S., Stepanov A.V., Ryabova, A.V., Friedrich T., Sluchanko N.N.

Pre-Publication:
BioRxiv (2019) doi: https://doi.org/10.1101/823880


Abstract:

To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena (termed CTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet-purple protein samples amenable to lyophilization and long-term storage. We characterize spectroscopic properties of the pigment-protein complexes and thermodynamics of liposome-protein carotenoid transfer and demonstrate the highly efficient delivery of echinenone form CTDH into liposomes. Most importantly, we show carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species. The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.

Significance statement: Carotenoids are excellent natural antioxidants but their delivery to vulnerable cells is challenging due to their hydrophobic nature and susceptibility to degradation. Thus, systems securing antioxidant stability and facilitating targeted delivery are of great interest for the design of medical agents. In this work, we have demonstrated that soluble cyanobacterial carotenoprotein can deliver echinenone into membranes of liposomes and mammalian cells with almost 70 % efficiency, which alleviates the induced oxidative stress. Our findings warrant the robustness of the protein-based carotenoid delivery for studies of carotenoid activities and effects on cell models.

 


Download here

Back

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.