Read more in the paper here.
Search on our resource library
Filter your search
Proteins self-assemble to function in living cells. They may execute essential tasks in the form of monomers, complexes, or supramolecular cages via oligomerization, achieving a sophisticated balance between structural topology and functional dynamics. The modularity and programmability make DNA origami unique in mimicking these key features. Here, we demonstrate three-dimensional reconfigurable DNA origami pincers (DOPs) that multitask on giant unilamellar vesicles (GUVs). By programmably adjusting their pinching angle, the DOPs can dynamically control the degree of GUV remodeling. When oligomerized on the GUV to form origami cages, the DOP units interact with one another and undergo reorganization, resulting in the capture, compartmentalization, and detachment of lipid fragments. This oligomerization process is accompanied with membrane disruptions, enabling the passage of cargo across the membrane. We envisage that interfacing synthetic cells with engineered, multifunctional DNA nanostructures may help to confer customized cellular properties, unleashing the potential of both fields.
Duchenne muscular dystrophy is a genetic x-linked neuromuscular disorder with no cure. It is due to heterogeneous mutations in the dystrophin gene. Those differences increase the hurdles to finding a universal therapy; the only available therapy is corticosteroids which delay pathology progression without correcting the primary defect, the absence of dystrophin. Since the heterogeneity of the mutations is responsible for different clinical phenotypes and challenges the already complex therapeutic scenario, it is of the utmost importance to characterize the differences underlying the most common mutations. Phenotype-genotype correlations have never been investigated at patient-derived muscle precursors level, which may represent a simplified system to advance in personalized therapy. We used two dystrophic immortalized satellite cell lines (granted from the biobank Myoline), AB1022 (HDMD1) with a stop codon mutation at exon 59 and AB1098 (HDMD2) with deletion of 48-52 exon. We also used a third immortalized cell line from a healthy control (HWT). Preliminary results showed a remarkable difference in the Oxygen Consumption Rate between HDMD2 and HDMD1 cells, assessed via mitostress assays. We observed a greater and significant reduction of all OCR parameters (basal respiration, ATP turnover/oligomycin-sensitive respiration, and maximal respiration) in HDMD1 during differentiation at 48 hours, 96 hours, and 17 days, compared to HDMD2, hence suggesting that the respiratory defect is strongly exacerbated by the differentiation process. Moreover, a first electrophysiological assessment indicates differences in calcium currents at myoblast level between the two cell lines recorded via automated patch-clamp (Patchliner). Molecular biology experiments are ongoing to assess variance in dystrophin mRNA quantification, myogenic cascade, and players involved in the mitochondrial defects. Overall, this characterization will shed light on the genotype-phenotype correlation at the cellular level, thus helping to identify molecular mechanisms underlying patients-specific mutations and new druggable targets.
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
The phase transition from the ripple gel phase to the interdigitated gel phase of bilayers of phosphatidylcholines (PCs) with two saturated long-chain fatty acids under high pressure was investigated by pressure-scanning microscopy, fluorometry, and dynamic light scattering (DLS) measurements. Microscopic observation for giant
vesicles (GVs) of distearoyl-PC (DSPC) under high pressure showed that spherical GVs transforms significantly into warped and distorted spherical ones instantaneously at the pressure-induced interdigitation. The fluorescence intensities of amphiphilic probe Prodan and hydrophobic probe Laurdan in the dipalmitoyl-PC (DPPC) bilayer steeply decreased and increased, respectively, at the interdigitation, suggesting that the conformational change of the polar head group of DPPC molecule in the bilayer transiently occurred at the interdigitation. Further, it was found from the high-pressure DLS measurements that the size of the vesicle particles of the DPPC and DSPC transiently increases near the interdigitation pressure, whereas the chemically induced interdigitationby adding ethanol to the DSPC bilayer membrane under atmospheric pressure produce no such change in the particle size. Taking account of the critical packing parameter of the PC molecule, the above experimental results
would lead us to the conclusion that the pressure-induced interdigitation is attributable to the increase in repulsive interaction between the polar head groups of the PC molecules resulting from the orientational change of the head group from a parallel alignment to a perpendicular one with respect to the bilayer surface by applying
pressure, namely the transient state: it occurs when the repulsive interaction exceeds a threshold value for the balance between the repulsive interaction and the attractive interaction among the hydrophobic acyl chains.
DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium’s life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs’ MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects. Recently, there has been a renewed interest in the development of new antifungal drugs based on polyenes, particularly due to the emergence of highly dangerous pathogenic strains of fungi, such as Candida auris, and the increased incidence of mucormycosis. Considerable understanding has been established regarding the structure–biological activity relationships of polyene antifungals. Yet, no previous studies have examined the effect of introducing quaternized fragments into their molecular structure. In this study, we present a series of amides of amphotericin B, nystatin, and natamycin bearing a quaternized group in the side chain, and discuss their biological properties: antifungal activity, cytotoxicity, and effects on lipid bilayers that mimic fungal and mammalian cell membranes. Our research findings suggest that the nature of the introduced quaternized residue plays a more significant role than merely the introduction of a constant positive charge. Among the tested polyenes, derivatives 4b, 5b, and 6b, which contain a fragment of N-methyl-4-(aminomethyl)pyridinium in their structure, are particularly noteworthy due to their biological activity.
Cellular homeostasis requires sustained provision of metabolic energy in the form of ATP and electrochemical ion gradients. Primary and secondary active transporters are prominent consumers of cellular energy, and couple ATP hydrolysis and ion gradient dissipation, respectively, to translocation of molecules across biological membranes. Active transport is essential for the translocation of most charged and/or large hydrophilic molecules, both for nutrient uptake into and waste export from living cells. Endeavours to build synthetic cells crucially depend on simulating real cell behaviour by supplying stable and sustained energy sources and deploying them for membrane transport. Here, we provide synthetic cells with long-lasting metabolic energy supply in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway from Lactococcus lactis we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution of the pathway with the Escherichia coli transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, involving electrogenic substrate/product exchange and substrate decarboxylation, paving the way for the development of more complex synthetic systems.
Background
The conventional “whole-cell patch-clamp” recording technique is widely used to measure the resting membrane potential (VM) and to dissect the underlying membrane ionic conductances in isolated vascular endothelial cells.
New method
Herein, we assessed whether the automated patch-clamp (APC) technology, which replaces the traditional patch-pipette with a planar substrate to permit researchers lacking formal training in electrophysiology to generate large amounts of data in a relatively short time, can be used to characterize the bioelectrical activity of vascular endothelial cells. We assessed whether the Port-a-Patch planar patch-clamp system, which is regarded as the smallest electrophysiological rig available on the market, can be used to measure the VM and resting membrane currents in the human cerebrovascular endothelial cell line, hCMEC/D3.
Comparison with existing methods
We demonstrated that the Port-a-Patch planar patch-clamp system provides the same values of the resting VM as those provided by the conventional patch-clamp technique. Furthermore, the APC technology provides preliminary data demonstrating that the resting VM of hCMEC/D3 cells is primarily contributed by Cl- and Na+, as demonstrated with the patch-clamp technique for many other endothelial cell types.
Conclusions
The Port-a-Patch planar patch-clamp system can be successfully used to measure the resting VM and the underlying membrane ionic conductances in hCMEC/D3 cells. We envisage that this easy-to-use APC system could also be extremely useful for the investigation of the membrane currents that can be activated by chemical, thermal, optical, and mechanical stimuli in this cell line as well as in other types of isolated vascular endothelial cells.
Background
L-type calcium channels (LCCs) are multi-protein macro-molecular ion channel complexes that are involved in several critical functions in cardiac, skeletal, neuronal, smooth muscle, and endocrine cells. Like other ion channels, LCCs can be selectively over-expressed in a host cell line and studied using voltage-clamp patch-clamp experiments. However, L-type calcium current (ICaL) recordings commonly exhibit a reduction in current magnitude over time, commonly termed ‘rundown’. Previous studies have shown the effect of phosphorylation on rundown, here we provide evidence that accumulation of Ca2+ inside the cell also contributes towards ICaL rundown.
Methods
We generated experimental conditions that should promote the accumulation of sub-membrane Ca2+ in a CHO expression system, by increasing calcium import or decreasing export. These interventions took the form of: a decrease in inter-pulse duration between sweeps, block of the sodium-calcium exchanger, and increased temperature.
Results
On average, we found that current reduced to 63% of its initial value within 325 seconds. This reduction of current with time was found to follow two main patterns: linear or saturating decay. Additionally, current magnitude in some cells increased before stabilising or decaying.
Conclusions
This study shows that the rundown of ICaL in patch-clamp experiments can be reduced by modifying the experimental conditions, and implies that reduced accumulation of Ca2+ inside the cell membrane reduces calcium-dependent inactivation of ICaL.
Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect.
We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin’s effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multi electrode array measurements.
Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient.
BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A’s therapeutic effects are necessary.
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell–GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.
High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations.
As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening.
Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.
Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.
The immaturity of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a major limitation for their use in drug screening to identify pro-arrhythmogenic or cardiotoxic molecules, thus hindering their potential role in guiding personalised drug selection for patients. Here, we demonstrate an approach that combines lipid-enriched maturation medium, nanopatterning of culture surfaces and electrostimulation to generate iPSC-CMs with an advanced electrophysiological, structural and metabolic phenotype. Through a systematic, stepwise parallel testing of the three stimuli, electrostimulation emerged as the pivotal factor to enhance mitochondrial development and to improve the electrophysiological properties of iPSC-CMs. The combined approach brought a substantial modification in their current composition by increasing INa, Ito, IK1 and IKr but decreasing ICa−L, resulting in a significant change in their sensitivity to cardioactive drugs. Transcriptome analysis revealed that activation of HMCES and TFAM targets played a role in mitochondrial development, whereas the downregulation of MAPK/PI3K signalling pathways and SRF targets were associated with polyploidy of iPSC-CMs. Taken together, our study provides mechanistic insights into the maturation of iPSC-CMs with a more adult-like drug response.
Bacterial membrane porins facilitate the translocation of small molecules while restricting large molecules, and this mechanism remains elusive at the molecular level. Here, we investigate the selective uptake of large cyclic sugars across an unusual passive membrane transporter CymA, comprising a charged zone and a constricting N terminus segment. Using a combination of electrical recordings, protein mutagenesis and molecular dynamics simulations, we establish substrate translocation across CymA governed by the electrostatic pore properties and conformational dynamics of the constriction segment. Notably, we show that the variation in pH of the environment resulted in reversible modulation of the substrate binding site in the pore, thereby regulating charge-selective transport of cationic, anionic and neutral cyclic sugars. The quantitative kinetics of cyclic sugar translocation across CymA obtained in electrical recordings at different pHs are comparable with molecular dynamics simulations that revealed transport pathway, energetics and favorable affinity sites in the pore for substrate binding. We further define the molecular basis of cyclic sugar translocation and establish that the constriction segment is flexible and can reside inside or outside the pore, regulating substrate translocation distinct from the ligand-gated transport mechanism. Our study contributes novel insights into energy-independent large molecular membrane transport for targeted drug design strategies.
Background: Prostate cancer and non-small cell lung cancer (NSCLC) present significant challenges in the development of effective therapeutic strategies. Hormone therapies for prostate cancer target androgen receptors and prostate-specific antigen markers. However, treatment options for prostatic small-cell neuroendocrine carcinoma are limited. NSCLC, on the other hand, is primarily treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors but exhibits resistance. This study explored a novel therapeutic approach by investigating the potential anticancer properties of vitekwangin B, a natural compound derived from Vitex trifolia.
Methods: Vitekwangin B was chromatographically isolated from the fruits of V. trifolia. ANO1 protein levels in prostate cancer and NSCLC cells were verified and evaluated again after vitekwangin B treatment.
Results: Vitekwangin B did not inhibit anoctamin1 (ANO1) channel function but significantly reduced ANO1 protein levels. These results demonstrate that vitekwangin B effectively inhibited cancer cell viability and induced apoptosis in prostate cancer and NSCLC cells. Moreover, it exhibited minimal toxicity to liver cells and did not affect hERG channel activity, making it a promising candidate for further development as an anticancer drug.
Conclusion: Vitekwangin B may offer a new direction for cancer therapy by targeting ANO1 protein, potentially improving treatment outcomes in patients with prostate cancer and NSCLC. Further research is needed to explore its full potential and overcome existing drug resistance challenges.
Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 μg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug–drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood–brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.
Aerolysin is a bacterial toxin that forms transmembrane pores at the host plasma membrane and has a narrow internal diameter and great stability. These assets make it a highly promising nanopore for detecting biopolymers such as nucleic acids and peptides. Although much is known about aerolysin from a microbiological and structural perspective, its membrane association and pore-formation mechanism are not yet fully understood. Here, we used angle-resolved second harmonic scattering (AR-SHS) and single-channel current measurements to investigate how wild-type (wt) aerolysin and its mutants interact with liposomes in aqueous solutions at femtomolar concentrations. Our AR-SHS experiments were sensitive enough to detect changes in the electrostatic properties of membrane-bound aerolysin, which were induced by variations in pH levels. We reported for the first time the membrane binding affinity of aerolysin at different stages of the pore formation mechanism: while wt aerolysin has a binding affinity as high as 20 fM, the quasi-pore and the prepore states show gradually decreasing membrane affinities, incomplete insertion, and a pore opening signature. Moreover, we quantitatively characterized the membrane affinity of mutants relevant for applications to nanopore sensing. Our study provides a label-free method for efficiently screening biological pores suitable for conducting molecular sensing and sequencing measurements as well as for probing pore-forming processes.
The antiarrhythmic and cardiac electrophysiological effects of SZV-2649 that contains a 2,6-diiodophenoxy moiety but lacks the benzofuran ring system present in amiodarone, were studied in mammalian cell line, rat and dog cardiac preparations. SZV-2649 exerted antiarrhythmic effects against coronary artery occlusion/reperfusion induced ventricular arrhythmias in rats and in acetylcholine- and burst stimulation induced atrial fibrillation in dogs. SZV-2649 inhibited hERG and GIRK currents in HEK cells (IC50: 342 and 529 nM, respectively). In canine ventricular myocytes, SZV-2649 (10 µM) decreased the densities of IKr, and Ito outward and INaL and ICaL inward currents. The compound (2.5–10 µM) elicited Class IB type Vmax reducing and Class III type action potential duration prolonging effects in dog right ventricular muscle preparations. In canine atrial muscle, SZV-2629 (2.5–10 µM) moderately prolonged action potential duration and this effect was greatly augmented in preparations pretreated with 1 µM carbachol. In conclusion, SZV-2649, has antiarrhythmic effects based on its multiple ion channel blocking properties. Since its chemical structure substantially differs from that of amiodarone, it is expected that SZV-2649 would exhibit fewer adverse effects than the currently used most effective multichannel inhibitor drug amiodarone and may be a promising molecule for further development.
Glaucoma, a blinding eye disease with optic neuropathy, is usually associated with elevated intraocular pressure (IOP). The currently available pharmacological and surgical treatments for glaucoma have significant limitations and side effects, which include systemic reactions to medications, patient non-compliance, eye infections, surgical device failure, and damage to the eye. Here, we present Sensor-Actuator-Modulator (SAM), an engineered double mutant version of the bacterial stretch-activated mechanosensitive channel of large conductance (MscL) that directly senses tension in the membrane lipid bilayer of cells and in response, transiently opens its large nonspecific pore to release cytoplasmic fluid. The heterologously expressed mechanosensitive SAM channel acts as a tension-activated pressure release valve in trabeculocytes. In the trabecular meshwork (TM), SAM is activated by membrane stretch caused by elevated IOP. We have identified several SAM variants that are activated at physiologically relevant pressures. Using this barogenetic technology, we have demonstrated that SAM is functional in cultured TM cells, and successfully transduced in vivo in TM cells by use of AAV2/8. Further, it is effective in enhancing aqueous humor outflow facility leading to lowering the IOP in a mouse model of ocular hypertension.
Background and Objective
Assessment of drug cardiotoxicity is critical in the development of new compounds and modeling of drug-binding dynamics to hERG can improve early cardiotoxicity assessment. We previously developed a methodology to generate Markovian models reproducing preferential state-dependent binding properties, trapping dynamics and the onset of IKr block using simple voltage clamp protocols. Here, we test this methodology with real IKr blockers and investigate the impact of drug dynamics on action potential prolongation.
Methods
Experiments were performed on HEK cells stably transfected with hERG and using the Nanion SyncroPatch 384i. Three protocols, P-80, P0 and P 40, were applied to obtain the experimental data from the drugs and the Markovian models were generated using our pipeline. The corresponding static models were also generated and a modified version of the O´Hara-Rudy action potential model was used to simulate the action potential duration.
Results
The experimental Hill plots and the onset of IKr block of ten compounds were obtained using our voltage clamp protocols and the models generated successfully mimicked these experimental data, unlike the CiPA dynamic models. Marked differences in APD prolongation were observed when drug effects were simulated using the dynamic models and the static models.
Conclusions
These new dynamic models of ten well-known IKr blockers constitute a validation of our methodology to model dynamic drug–hERG channel interactions and highlight the importance of state-dependent binding, trapping dynamics and the time-course of IKr block to assess drug effects even at the steady-state.
Aerolysin-like proteins are a family of β-pore-forming toxins which are widely present in all kingdoms of life. Recently, this family of proteins is gaining attention because of their biotechnological application as nanopore sensors for sensing and sequencing of biomolecules. Here, we explore the possibilities of using the knowledge of the sequence and structure of proteins to screen and explore new potential nanopore candidates. However, in spite of the conserved structural fold, the sequence identity in this family is very low. This complicates their sequence alignment, hindering the understanding of their pore structure and properties, therefore limiting further biotechnological applications. In an attempt to further understand the properties of aerolysin-like pores, we analyzed the pore structure of three family members, Clostridium perfringens epsilon toxin (ETX), Laetiporus sulphureus lectin (LSL) and Bacillus thuringiensis parasporin-2, comparing it to aerolysin. Their structure and sensing capabilities for ssDNA were first assessed by in silico methods. Moreover, ETX was characterized experimentally in planar lipid membranes for the detection of biomolecules. We found that ETX can form three distinct pore conformations, each presenting a specific open pore current, and only one of them being able to translocate ssDNA. When the ssDNA translocate through ETX, the depth of current blockage is higher compared to aerolysin which indicates a higher sensitivity for molecular sensing. Our findings open a new venue for improving and diversifying nanopore capabilities for molecular sensing.
Pufferfish is one of the most poisonous marine organisms, responsible for numerous poisoning incidents and some human fatalities due to its capability to accumulate potent neurotoxins such as tetrodotoxins (TTXs) and paralytic shellfish toxins (PSTs). In this study, tissue extracts (muscle, skin, liver, intestinal tract and gonads) obtained from sixteen pufferfish specimens of the Lagocephalus lagocephalus and Sphoeroides pachygaster species, collected along the Spanish Mediterranean coast, were analysed for the presence of voltage-gated sodium channel (also known as Nav channel) blockers using cell-based assay (CBA) and automated patch clamp (APC). No toxicity was observed in any of the S. pachygaster specimens, but toxicity was detected in the liver of most L. lagocephalus specimens. Instrumental analysis of these specimens, as well as in one Lagocephalus sceleratus specimen, by high-performance liquid chromatography coupled to fluorescence detection (HPLC-FLD) was performed, which confirmed the presence of PSTs only in L. lagocephalus specimens. This analysis reported the presence of saxitoxin (STX) and decarbamoylsaxitoxin (dcSTX) in all positive samples, being dcSTX the major analogue. These results demonstrate the ability of this species to accumulate PSTs, being the first report of the presence of PSTs in Mediterranean L. lagocephalus specimens. Furthermore, the presence of high PSTs contents in all five tested tissues of one L. lagocephalus specimen pointed the risk that the presence of this toxic fish in the Mediterranean Sea may represent for seafood safety and human health in case of accidental consumption.
Biomarkers are present in various metabolism processes, demanding precise and meticulous analysis at the single-molecule level for accurate clinical diagnosis. Given the need for high sensitivity, biological nanopore have been applied for single biomarker sensing. However, the detection of low-volume biomarkers poses challenges due to their low concentrations in dilute buffer solutions, as well as difficulty in parallel detection. Here, a droplet nanopore technique is developed for low-volume and high-throughput single biomarker detection at the sub-microliter scale, which shows a 2000-fold volume reduction compared to conventional setups. To prove the concept, this nanopore sensing platform not only enables multichannel recording but also significantly lowers the detection limit for various types of biomarkers such as angiotensin II, to 42 pg. This advancement enables direct biomarker detection at the picogram level. Such a leap forward in detection capability positions this nanopore sensing platform as a promising candidate for point-of-care testing of biomarker at single-molecule level, while substantially minimizing the need for sample dilution.
Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aim to investigate the intracellular buffering of calcium and its potential arrhythmogenic role in persAF.
Methods:
Results:
Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and AF susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in AF management.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) recapitulate numerous disease and drug response phenotypes, but cell immaturity may limit their accuracy and fidelity as a model system. Cell culture medium modification is a common method for enhancing maturation, yet prior studies have used complex media with little understanding of individual component contribution, which may compromise long-term hiPSC-CM viability. Here, we developed high-throughput methods to measure hiPSC-CM maturation, determined factors that enhanced viability, and then systematically assessed the contribution of individual maturation medium components. We developed a medium that is compatible with extended culture. We discovered that hiPSC-CM maturation can be sub-specified into electrophysiological/EC coupling, metabolism, and gene expression and that induction of these attributes is largely independent. In this work, we establish a defined baseline for future studies of cardiomyocyte maturation. Furthermore, we provide a selection of medium formulae, optimized for distinct applications and priorities, that promote measurable attributes of maturation.
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5′,8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Functional investigation of genetic variants found in long QT syndrome can provide evidence needed to confirm the genetic diagnosis and establish the cause of the condition. We performed functional assessment to determine the Z-score, using a clinically calibrated automated patch clamp assay, for two missense KCNH2 variants found in 2 families that have been diagnosed with long QT syndrome. These variants are currently classified as variant of uncertain significance in ClinVar. The Z-scores for homozygous and heterozygous NM_000238.4:c.1819A>T p.(Ile607Phe) from family 1 were –5.16 and –3.97, respectively, and for heterozygous NM_000238.4:c.1832A>G p.(Tyr611Cys) from family 2 was –6.63. The Z11 scores for these variants are consistent with severe loss-of-function phenotypes. We have established the genetic cause of the long QT syndrome in these two families by providing validated functional evidence that supports the pathogenicity of p.(Ile607Phe) and p.(Tyr611Cys). Clinical diagnosis of long QT syndrome has been very successful in providing adequate clinical management for patients. However, functional assessment of variants found in these patients by using variant-specific Z-scores can further enhance the current clinical management of patients with long QT syndrome through shared decision-making based on validated experimental evidence.
Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant’s plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.
Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6–87.0 % for concentration 128 μg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.
Background. Glioblastoma, a lethal high-grade glioma, has not seen improvements in clinical outcomes in nearly 30 years. Ion channels are increasingly associated with tumorigenesis, and there are hundreds of brain-penetrant drugs that inhibit ion channels, representing an untapped therapeutic resource. The aim of this exploratory drug study was to screen an ion channel drug library against patient-derived glioblastoma cells to identify new treatments for brain cancer.
Methods. Seventy-two ion channel inhibitors were screened in patient-derived glioblastoma cells, and cell viability was determined using the ViaLight Assay. Cell cycle and apoptosis analysis were determined with flow cytometry using PI and Annexin V staining, respectively. Protein and phosphoprotein expression was determined
using mass spectrometry and analyzed using gene set enrichment analysis. Kaplan-Meier survival analyses were performed using intracranial xenograft models of GBM6 and WK1 cells.
Results. The voltage-gated sodium channel modulator, DPI-201-106, was revealed to reduce glioblastoma cell viability in vitro by inducing cell cycle arrest and apoptosis. Phosphoproteomics indicated that DPI-201-106 may impact DNA damage response (DDR) pathways. Combination treatment of DPI-201-106 with the CHK1 inhibitor prexasertib or the PARP inhibitor niraparib demonstrated synergistic effects in multiple patient-derived glioblastoma cells both in vitro and in intracranial xenograft mouse models, extending survival of glioblastoma-bearing mice.
Conclusions. DPI-201-106 enhances the efficacy of DDR inhibitors to reduce glioblastoma growth. As these drugs have already been clinically tested in humans, repurposing DPI-201-106 in novel combinatorial approaches will allow for rapid translation into the clinic.
Electrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 μm-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases.
Lysosomes have crucial roles in regulating eukaryotic metabolism and cell growth by acting as signalling platforms to sense and respond to changes in nutrient and energy availability1. LYCHOS (GPR155) is a lysosomal transmembrane protein that functions as a cholesterol sensor, facilitating the cholesterol-dependent activation of the master protein kinase mechanistic target of rapamycin complex 1 (mTORC1)2. However, the structural basis of LYCHOS assembly and activity remains unclear. Here we determine several high-resolution cryo-electron microscopy structures of human LYCHOS, revealing a homodimeric transmembrane assembly of a transporter-like domain fused to a G-protein-coupled receptor (GPCR) domain. The class B2-like GPCR domain is captured in the apo state and packs against the surface of the transporter-like domain, providing an unusual example of a GPCR as a domain in a larger transmembrane assembly. Cholesterol sensing is mediated by a conserved cholesterol-binding motif, positioned between the GPCR and transporter domains. We reveal that the LYCHOS transporter-like domain is an orthologue of the plant PIN-FORMED (PIN) auxin transporter family, and has greater structural similarity to plant auxin transporters than to known human transporters. Activity assays support a model in which the LYCHOS transporter and GPCR domains coordinate to sense cholesterol and regulate mTORC1 activation.
Per- and polyfluoroalkyl carboxylic acids (PFCA) are of great concern due to their ubiquitous presence in the environment. Despite a severe shortage of authentic standards, compared to the rapid increase of possible structures identified, it remains difficult to quantify a mixture of PFCA without references. Herein, a standard-free single-molecule electrochemical sensing method was developed for the first time by establishing a linear correlation between current blockades and the volumes of PFCA simulated by molecular dynamics. A nearly 100% accuracy was realized for the simultaneous determination of 13 pristine or H- / Cl-substituted PFCA, using frequency-modulated multi-feature classification. Shortlisting the 21 high-priority features reduced the required number of training data by 7.6 folds, and almost 80% quantification reliability was maintained even with interference of 100 times concentration. Moreover, the detection limit of trifluoroacetic acid (an ultrashort-chain PFCA) went down to 57 ng·L-1, comparable to the state-of-the-art performance.
The mitochondrial adenosine 5′-diphosphate (ADP)/adenosine 5′-triphosphate (ATP) carrier imports ADP into the mitochondrion and exports ATP to the cell. Here, we demonstrate that 3.3 positive charges are translocated with the negatively charged substrate in each transport step. They can be assigned to three positively charged residues of the central substrate-binding site and two asparagine/arginine pairs. In this way, the membrane potential stimulates not only the ATP4− export step, as a net −0.7 charge is transported, but also the ADP3− import step, as a net +0.3 charge is transported with the electric field. These positive charge movements also inhibit the import of ATP and export of ADP in the presence of a membrane potential, allowing these nucleotides to be maintained at high concentrations in the cytosol and mitochondrial matrix to drive the hydrolysis and synthesis of ATP, respectively. Thus, this is the mechanism by which the membrane potential drives adenine nucleotide exchange with high directional fluxes to fuel the cellular processes.
The interconnection between ageing, cancer development, and cellular growth suggests common origins despite distinct outward processes. The accumulation of cellular damage is widely acknowledged as a primary cause of ageing, potentially leading to abnormal cellular
advantages (aberrant properties of cells, enabling them to bypass normal growth controls) and cancer. Uncontrolled cellular overgrowth is implicated in age-related pathologies like atherosclerosis and inflammation. Impedance analysis of mammalian cells grown on planar film electrodes provides a label-free, non-invasive and unbiased observation of cellular properties addressing the biological response to putative senescence inducers, drugs, toxins or stressors in general. Being label-free, automation and continuous monitoring of barrier function are among the most significant advantages offered by electrical techniques in comparison to macromolecular solute permeability studies.
The label-free AtlaZ impedance recording system enables acute and chronic assessment of cellular toxicity as well as senescence in a continuous fashion from living cells under physiological temperatures and without the confounding effects of dyes that may affect cell function. The system uses 96-well plates with 96 parallel sensors offering a time resolution of down to 1 s for impedance measurements, thus allowing investigation of fast effects like GPCR related morphology changes. A frequency spectrum can be recorded ranging from 100 Hz – 100 kHz.
In general, cell adhesion and proliferation assays such as immune-cell -mediated killing of cancer cells can be successfully performed.
Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors.
The human neuronal nicotinic acetylcholine receptor α7 (nAChR) is an important target implicated in diseases like Alzheimer’s or Parkinson’s, as well as a validated target for drug discovery. For α7 nAChR model systems, correct folding and ion influx functions are essential. Two chaperones, resistance to inhibitors of cholinesterase 3 (RIC3) and novel nAChR regulator (NACHO), enhance the assembly and function of α7 nAChR. This study investigates the consequence of NACHO absence on α7 nAChR expression and function. Therefore, the sequences of human α7 nAChR and human RIC3 were transduced in Chinese hamster ovary (CHO) cells. Protein expression and function of α7 nAChR were confirmed by Western blot and voltage clamp, respectively. Cellular viability was assessed by cell proliferation and lactate dehydrogenase assays. Intracellular and extracellular expression were determined by in/on-cell Western, compared with another nAChR subtype by novel cluster fluorescence-linked immunosorbent assay, and N-glycosylation efficiency was assessed by glycosylation digest. The transgene CHO cell line showed expected protein expression and function for α7 nAChR and cell viability was barely influenced by overexpression. While intracellular levels of α7 nAChR were as anticipated, plasma membrane insertion was low. The glycosylation digest revealed no appreciable N-glycosylation product. This study demonstrates a stable and functional cell line expressing α7 nAChR, whose protein expression, function, and viability are not affected by the absence of NACHO. The reduced plasma membrane insertion of α7 nAChR, combined with incorrect matured N-glycosylation at the Golgi apparatus, suggests a loss of recognition signal for lectin sorting.
Using engineered HEK293A cells expressing recombinant NaV1.5 protein, plasma from 50 BrS patients and 50 controls was screened for anti-NaV1.5 autoantibodies via western blot, with specificity confirmed by immunoprecipitation and immunofluorescence. The impact of these autoantibodies on sodium current density and their pathophysiological effects were assessed in cellular models and through plasma injection in wild-type mice.
Anti-NaV1.5 autoantibodies were detected in 90% of BrS patients vs. 6% of controls, yielding a diagnostic area under the curve of .92, with 94% specificity and 90% sensitivity. These findings were consistent across varying patient demographics and independent of SCN5A mutation status. Electrophysiological studies demonstrated a significant reduction specifically in sodium current density. Notably, mice injected with BrS plasma showed Brugada-like ECG abnormalities, supporting the pathogenic role of these autoantibodies.
The study demonstrates the presence of anti-NaV1.5 autoantibodies in the majority of BrS patients, suggesting an immunopathogenic component of the syndrome beyond genetic predispositions. These autoantibodies, which could serve as additional diagnostic markers, also prompt reconsideration of the underlying mechanisms of BrS, as evidenced by their role in inducing the ECG signature of the syndrome in wild-type mice. These findings encourage a more comprehensive diagnostic approach and point to new avenues for therapeutic research.
Natural fruits contain a large variety of cis-diols. However, due to the lack of a high-resolution sensor that can simultaneously identify all cis-diols without a need of complex sample pretreatment, direct and rapid analysis of fruits in a hand-held device has never been previously reported. Nanopore, a versatile single molecule sensor, can be specially engineered to perform this task. A hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore modified with a sole phenylboronic acid (PBA) adapter is prepared. This engineered MspA accurately recognizes 1,2-diphenols, alditols, α-hydroxy acids and saccharides in prune, grape, lemon, different varieties of kiwifruits and commercial juice products. Assisted with a custom machine learning program, an accuracy of 99.3% is reported and the sample pretreatment is significantly simplified. Enantiomers such as DL-malic acids can also be directly identified, enabling sensing of synthetic food additives. Though demonstrated with fruits, these results suggest wide applications of nanopore in food and drug administration uses.
The clustering of L-type calcium channels in cardiac myocytes presents an important mechanism for functional regulation of calcium signaling. Here we applied targeted super-resolution imaging techniques for the study of atrial-specific CaV1.3 channel clusters in human iPSC-derived atrial cardiomyocytes (hiPSC-aCM). We thereby clarified cluster localization, dimensions, architecture, and dynamics, which were largely unexplored previously. Live-cell STimulated Emission Depletion (STED) imaging identified that cell surface-localized clusters contained 9 channel molecules within 120 nm diameter on average. DNA Points Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) optimized for molecular mapping revealed an irregular arrangement of channels with significant spacing. Single Particle Tracking (SPT) further evidenced that clustered channels do not associate into rigidly packed structures (oligomers or lattices), but rather co-diffuse in confined and stationary membrane nanodomains. Immunofluorescence showed consistent cell-surface colocalization with Ryanodine Receptor type 2 and Junctophilin-2 forming stable calcium release units, similar to dyadic junctions containing CaV1.2 in ventricular cardiomyocytes. Lastly, novel genetic constructs for live-cell imaging showed that the cytosolic C-terminal tail of CaV1.3 by itself is sufficient for cluster formation. In conclusion, a novel strategy for LTCC clustering studies in atrial cells was established, suitable for a wide range of super-resolution imaging techniques. Based on live-cell STED, DNA-PAINT and SPT data, we propose that CaV1.3 channel clusters consist of mobile individual channels inside defined membrane nanodomains.
In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.
The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of “cellrhythmia” (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 μM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase–substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Findings indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally, three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs.
Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups—recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals—revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation’s role in the symptoms of PASC-CVS.
The heart relies on various defense mechanisms, including metabolic plasticity, to maintain its normal structure and function under high-altitude hypoxia. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ), sensitizes insulin, which in turn regulates blood glucose levels. However, its preventive effects against hypoxia-induced cardiac dysfunction at high altitudes have not been reported. In this study, pioglitazone effectively prevented cardiac dysfunction in hypoxic mice for 4 weeks, independent of its effects on insulin sensitivity. In vitro experiments demonstrated that pioglitazone enhanced the contractility of primary cardiomyocytes and reduced the risk of QT interval prolongation under hypoxic conditions. Additionally, pioglitazone promoted cardiac glucose metabolic reprogramming by increasing glycolytic capacity; enhancing glucose oxidation, electron transfer, and oxidative phosphorylation processes; and reducing mitochondrial reactive ROS production, which ultimately maintained mitochondrial membrane potential and ATP production in cardiomyocytes under hypoxic conditions. Notably, as a PPARγ agonist, pioglitazone promoted hypoxia-inducible factor 1α (HIF-1α) expression in hypoxic myocardium. Moreover, KC7F2, a HIF-1α inhibitor, disrupted the reprogramming of cardiac glucose metabolism and reduced cardiac function in pioglitazone-treated mice under hypoxic conditions. In conclusion, pioglitazone effectively prevented high-altitude hypoxia-induced cardiac dysfunction by reprogramming cardiac glucose metabolism.
Introduction
Heart disease is the most prevalent cause of morbidity and mortality in people living with diabetes. Diabetes increases the risk of heart disease two-fold, due largely to risks associated with ischaemic injuries such as myocardial infarction (MI). This study develops preclinical co-morbidity models to study mechanisms of ischaemia sensitivity in diabetes.
Methods & Results
Conclusion
Taken together, these novel pre-clinical models provide new opportunities to study disease mechanisms of ischaemia and diabetes and identify glycaemic variability as a major risk factor for myocardial injury in diabetes.
Background
As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca2+ release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic with RyR1 are unknown.
Methods
RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was measured by Fura-2 Ca2+ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using molecular dynamics (MD) simulation.
Results
Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and inhibited activator-induced Ca2+ release from human skeletal myotube SR. Several putative propofol binding sites on RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 μM and 1.4 μM in the V4828 pocket in open and closed RyR1, respectively.
Conclusions
Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations, consistent with the hypothesis that propofol partially mitigates malignant hyperthermia by inhibition of induced Ca2+ flux through RyR1.
Telomeres, TTAGGGn DNA repeat sequences located at the ends of eukaryotic chromosomes, play a pivotal role in aging and are targets of DNA damage response. Although we and others have demonstrated presence of short telomeres in genetic cardiomyopathic and heart failure cardiomyocytes, little is known about the role of telomere lengths in cardiomyocyte. Here, we demonstrate that in heart failure patient cardiomyocytes, telomeres are shortened compared to healthy controls. We generated isogenic human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) with short telomeres (sTL-CMs) and normal telomeres (nTL-CMs) as model. Compared to nTL-CMs, short telomeres result in cardiac dysfunction and expression of senescent markers. Using Hi-C and RNASeq, we observe that short telomeres induced TAD insulation decrease near telomeric ends and this correlated with a transcription upregulation in sTL-CMs. FOXC1, a key transcription factor involved in early cardiogenesis, was upregulated in sTL-CMs and its protein levels were negatively correlated with telomere lengths in heart failure patients. Overexpression of FOXC1 induced hiPSC-CM aging, mitochondrial and contractile dysfunction; knockdown of FOXC1 rescued these phenotypes. Overall, the work presented demonstrate that increased chromatin accessibility due to telomere shortening resulted in the induction of FOXC1-dependent expression network responsible for contractile dysfunction and myocardial senescence.
Objective. SCN2A encodes the voltage-gated sodium (Na+) channel α subunit NaV1.2, which is important for the generation and forward and back propagation of action potentials in neurons. Genetic variants in SCN2A are associated with a spectrum of neurodevelopmental disorders. However, the mechanisms whereby variation in SCN2A leads to disease remains incompletely understood, and the full spectrum of SCN2A-related disorders may not be fully delineated.
Methods. Here, we identified seven de novo heterozygous variants in SCN2A in eight individuals with developmental and epileptic encephalopathy (DEE) accompanied by prominent malformation of cortical development (MCD). We characterized the electrophysiological properties of Na+ currents in human embryonic kidney (HEK) cells transfected with the adult (A) or neonatal (N) isoform of wild-type (WT) and variant NaV1.2 using manual and automated whole-cell voltage clamp recording.
Results. The neonatal isoforms of all SCN2A variants studied exhibit gain of function (GoF) with a large depolarized shift in steady-state inactivation, creating a markedly enhanced window current common across all four variants tested. Computational modeling demonstrated that expression of the NaV1.2-p.Met1770Leu-N variant in a developing neocortical pyramidal neuron results in hyperexcitability.
Significance. These results support expansion of the clinical spectrum of SCN2A-related disorders and the association of genetic variation in SCN2A with MCD, which suggests previously undescribed roles for SCN2A in fetal brain development.
Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell–cell fusion events to establish the maternal–fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid β-sheet or ‘clamp’ with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.li
Cells from different organs in the body experience a range of mechanical and osmotic pressures that change in various diseases, including neurological, cardiovascular, ophthalmological, and renal diseases. Here, we demonstrate the use of an engineered Sensor-Actuator-Modulator (SAM) of microbial origin derived from a mechanosensitive channel of large conductance (MscL) for sensing external mechanical stress and modulating activities of mammalian cells. SAM is reliably expressed in the mammalian cell membrane and acts as a tension-activated pressure release valve. Further, the activities of heterologously expressed SAM in mammalian cells could be modulated by osmotic pressure. A comparison of the mechanosensitive activities of SAM-variants from different microbial origins shows differential inward current and dye uptake in response to mechanical stress exerted by hypo-osmotic shock. The use of SAM channels as mechanical stress-activated modulators in mammalian cells could provide new therapeutic approaches for treating disorders related to mechanical or osmotic pressure.
Recent experimental studies have shed light on the intriguing possibility that ion channels exhibit cooperative behaviour. However, a comprehensive understanding of such cooperativity remains elusive, primarily due to limitations in measuring separately the response of each channel. Rather, only the superimposed channel response can be observed, challenging existing data analysis methods. To address this gap, we propose IDC (Idealisation, Discretisation, and Cooperativity inference), a robust statistical data analysis methodology that requires only voltage-clamp current recordings of an ensemble of ion channels. The framework of IDC enables us to integrate recent advancements in idealisation techniques and coupled Markov models. Further, in the cooperativity inference phase of IDC, we introduce a minimum distance estimator and establish its statistical guarantee in the form of asymptotic consistency. We demonstrate the effectiveness and robustness of IDC through extensive simulation studies. As an application, we investigate gramicidin D channels. Our findings reveal that these channels act independently, even at varying applied voltages during voltage-clamp experiments. An implementation of IDC is available from GitLab.
All new drugs must go through preclinical screening tests to determine their proarrhythmic potential. While these assays effectively filter out dangerous drugs, they are too
conservative, often misclassifying safe compounds as proarrhythmic. In this study, we attempt to address this shortcoming with a novel, medium-throughput drug-screening approach: we use an automated patch-clamp system to acquire optimized voltage clamp (VC) and action potential (AP) data from human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at several drug concentrations (baseline, 3×, 10× and 20× the effective free plasma concentrations). With our novel method, we show correlations between INa block and upstroke slowing after treatment with flecainide or quinine. Additionally, after quinine treatment, we identify significant reductions in current during voltage steps designed to isolate If and IKs. However, we do not detect any IKr block by either drug, and upon further investigation, do not see any IKr present in the iPSC-CMs when prepared for automated patch experiments (i.e. in suspension) – this is in contrast to similar experiments we have conducted with these cells using the manual patch setup. In this study, we: (1) present a proof-of-concept demonstration of a single-cell medium-throughput drug study, and (2) characterize the non-canonical electrophysiology of iPSC-CMs when prepared for experiments in a medium-throughput setting.
Hsp70 chaperones are central components of the cellular network that ensure the structural quality of proteins. Despite their crucial roles in processes as diverse as the prevention of protein aggregation and protein translocation into organelles, their molecular mechanism of action has remained a hotly debated issue. Due to a lack of suitable methods, no experimental data has directly proven any of the models that have been proposed (Power Stroke, Brownian Ratchet, and Entropic Pulling). Recently, nanopores have emerged as a powerful tool to analyze the function of motor enzymes, as well as protein-protein interactions. Here, we used an in vitro single-molecule nanopore to mimic in vivo translocation of proteins, and to investigate the molecular mechanism of Hsp70. Our experiments demonstrate that Hsp70s forcefully extract polypeptide substrates that are trapped inside the pore. The forces they exert are strong at the molecular level, being equivalent to 46 pN over distances of 1 nm, and depend on the size of Hsp70. These findings provide unambiguous evidence supporting the Entropic Pulling mechanism of action of Hsp70s, thus solving a long-standing debate, and proposing a potentially universal principle governing diverse cellular processes. In addition, these results emphasize the utility of biological nanopores for studying protein function at the single-molecule level.
A milestone in optical imaging of mechanical forces in cells has been the development of the family of flipper fluorescent probes able to report membrane tension noninvasively in living cells through their fluorescence lifetime. The specifically designed Flipper-CF3 probe with an engineered inherent blinking mechanism was recently introduced for super-resolution fluorescence microscopy of lipid ordered membranes but was too dim to be detected in lipid disordered membranes at the single-molecule level (García-Calvo, J. J. Am. Chem. Soc. 2020, 142(28), 12034–12038). We show here that the original and commercially available probe Flipper-TR is compatible with single-molecule based super-resolution imaging and resolves both liquid ordered and liquid disordered membranes of giant unilamellar vesicles below the diffraction limit. Single probe molecules were additionally tracked in lipid bilayers, enabling to distinguish membranes of varying composition from the diffusion coefficient of the probe. Differences in brightness between Flipper-CF3 and Flipper-TR originate in their steady-state absorption and fluorescence properties. The general compatibility of the Flipper-TR scaffold with single-molecule detection is further shown in super-resolution experiments with targetable Flipper-TR derivatives.
Channel forming proteins often contain recognition pattern or stereo specific selection filter. This ability of the channel confinement inspired us for application towards single molecule sensing. To bypass possible difficulties in purification, misfolding and possible channel gating of biological nanopores, here we show an In situ strategy via single molecule chemical modification of a heptameric protein to build a stereo and regiospecific heteromeric nanopore (hetero-nanopore) with a subunit stoichometric ratio of 3:4. Single-molecule experiments and all-atom molecule dynamic (MD) simulations reveal that the produced hetero-nanopore is indeed featured with an asymmetric stereo- and regio defined organization. In a proof-of-concept single-molecule experiment, the hetero-nanopore exhibited nearly 100% accuracy for label-free discrimination of four peptide stereoisomers with the structural and chiral differences of single amino acid in the mixture. We anticipate to customize multiple hetero-nanopores for single-molecule sensing.
Human feline leukemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are members of the major facilitator superfamily. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN, and Fowler syndrome. Earlier studies concluded that FLVCR1 may function as a putative heme exporter, while FLVCR2 was suggested to act as a heme importer, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across human plasma membranes, utilizing a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unraveled the coordination chemistry underlying their substrate interactions. Within the binding pocket of both transporters, we identify fully conserved tryptophan and tyrosine residues holding a central role in the formation of cation-π interactions, essential for choline and ethanolamine selectivity. Our findings not only clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhancing our comprehension of disease-associated mutations that interfere with these vital processes, but also shed light on the conformational dynamics of these MFS-type proteins during the transport cycle.
The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the proton-coupled peptide transporter, PepT2 from Rattus norvegicus, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of beta-lactam antibiotic recognition and the important role of protonation in drug binding and transport.
The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the mammalian proton-coupled peptide transporter, PepT2, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical
assays, establish the mechanism of antibiotic recognition and the important role of protonation in drug binding and transport.
Voltage-gated Nav1.5 channels are central to the generation and propagation of cardiac action potentials. Aberrations in their function are associated with a wide spectrum of cardiac diseases including arrhythmias and heart failure. Despite decades of progress in Nav1.5 biology, the lack of structural insights into intracellular regions has hampered our understanding of its gating mechanisms. Here we present three cryo-EM structures of human Nav1.5 in previously unanticipated open states, revealing sequential conformational changes in gating charges of the voltage-sensing domains (VSDs) and several intracellular regions. Despite the channel being in the open state, these structures show the IFM motif repositioned in the receptor site but not dislodged. In particular, our structural findings highlight a dynamic C-terminal domain (CTD) and III-IV linker interaction, which regulates the conformation of VSDs and pore opening. Electrophysiological studies confirm that disrupting this interaction results in the fast inactivation of Nav1.5. Together, our structure-function studies establish a foundation for understanding the gating mechanisms of Nav1.5 and the mechanisms underlying CTD-related channelopathies.
Intracellular potassium (K+) homeostasis is fundamental to cell viability. In addition to channels, K+ levels are maintained by various ion transporters. One major family is the proton-driven K+ efflux transporters, which in gram-negative bacteria is important for detoxification and in plants is critical for efficient photosynthesis and growth. Despite their importance, the structure and molecular basis for K+-selectivity is poorly understood. Here, we report ~3.1 Å resolution cryo-EM structures of the Escherichia coli glutathione (GSH)-gated K+ efflux transporter KefC in complex with AMP, AMP/GSH and an ion-binding variant. KefC forms a homodimer similar to the inward-facing conformation of Na+/H+ antiporter NapA. By structural assignment of a coordinated K+ ion, MD simulations, and SSM-based electrophysiology, we demonstrate how ion-binding in KefC is adapted for binding a dehydrated K+ ion. KefC harbors C-terminal regulator of K+ conductance (RCK) domains, as present in some bacterial K+-ion channels. The domain-swapped helices in the RCK domains bind AMP and GSH and they inhibit transport by directly interacting with the ion-transporter module. Taken together, we propose that KefC is activated by detachment of the RCK domains and that ion selectivity exploits the biophysical properties likewise adapted by K+-ion-channels.
Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.
Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein
desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues
(EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncations (DSPtv) and a gene-edited homozygous deletion
cell line (DSP-/-). At baseline, DSP-/- EHTs displayed a transcriptomic signature of innate immune activation which was mirrored by cytokine release. Importantly, DSP-/- EHTs were
hypersensitive to Toll-like receptor (TLR) stimulation demonstrating more contractile dysfunction compared to isogenic controls. Relative to DSP-/- EHTs, heterozygous DSPtv EHTs had less functional impairment. DSPtv EHTs displayed heightened sensitivity to TLR stimulation, and when subjected to strain, DSPtv EHTs developed functional deficits indicating reduced
contractile reserve compared to healthy control. Colchicine or NFκB inhibitors improved strain-induced force deficits in DSPtv EHTs. Genomic correction of DSP p.R1951X using adenine
base editing reduced inflammatory biomarker release from EHTs. Thus, EHTs replicate electrical and contractile phenotypes seen in human myocarditis implicating cytokine release as
a key part of the myogenic susceptibility to inflammation. This heightened innate immune activation and sensitivity is a target for clinical intervention.
Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel β-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell’s membrane potential.
GLUT9/SLC2A9 is a urate transporter and takes a fundamental role in the maintenance of normal serum urate levels. GLUT9 is the sole transporter of reabsorbed urate from renal epithelial cells to blood, thus making it an ideal pharmacological target for the development of urate-lowering drugs. None of the three currently available assays for studying GLUT9 pharmacological inhibition can support a high throughput drug discovery screening campaign. In this manuscript we present two novel assay technologies which can be used in a drug discovery screening cascade for GLUT9: a GLUT9 membrane potential assay for primary screening; and a solid-supported membrane (SSM)-based supported electrophysiological assay for secondary screening.
Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.
The growth of antibiotic resistance to antifungal drugs contributes to the search for new ways to enhance their effectiveness and reduce toxicity. The undeniable advantage of polyene macrolide antibiotic amphotericin B (AmB) which ensures low pathogen resistance is its mechanism of action related to the formation of transmembrane pores in target lipid membranes. Here, we investigated the effects of plant flavones, chrysin, wogonin, baicalein, apigenin, scutellarein, luteolin, morin and fisetin on the pore-forming activity of AmB in the sterol-enriched membranes by electrophysiological assays. Сhrysin, wogonin, baicalein, apigenin, scutellarein, and luteolin were shown to decrease the AmB pore-forming activity in the bilayers composed of palmitoyloleylphosphocholine independently of their sterol composition. Morin and fisetin led to the increase and decrease in the AmB pore-forming activity in the ergosterol- and cholesterol-containing bilayers respectively. Differential scanning microcalorimetry of the gel-to-liquid crystalline phase transition of membrane forming lipids, molecular dynamics simulations, and absorbance spectroscopy revealed the possibility of direct interactions between AmB and some flavones in the water and/or in the lipid bilayer. The influence of these interactions on the antibiotic partitioning between aqueous solution and membrane and/or its transition between different states in the bilayer was discussed.
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8’s functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.
Iron storage disease is associated with cardiovascular manifestations, including various forms of cardiac arrhythmias of unknown origin. In this study, cardiac arrhythmias associated with iron overload were investigated in human iPSC-derived cardiomyocytes (hiPSC-CM) and hiPSC-derived sinus node-like pacemaker cells. Among other effects, iron overload leads to an increase in the plasma membrane-anchored protease TMPRSS6. TMPRSS6 cleaves the auxiliary subunit KCNE1 N-terminally and thus modulates the function of both the IKs (KCNQ1/KCNE1 current) and the If (HCN4/KCNE1) ion channels. Furthermore, TMPRSS6 induces a reduction of electric field potential (EFP) count and increased duration in hiPSC-derived ventricular-like cells and in hiPSC-derived pacemaker-like cells. In accordance with these in vitro generated results, TMPRSS6-mediated interactions show pro-arrhythmic effects in silico. Therefore, the TMPRSS6 - KCNE1-KCNQ1 and TMPRSS6 - KCNE1-HCN4 cascades may represent new clinically relevant pro-arrhythmic mechanisms in iron overload diseases.
Tetrodotoxin (TTX) is a potent marine neurotoxin, responsible for numerous poisoning incidents and some human fatalities. To date, more than 30 TTX analogues have been identified, but their individual toxicities and roles in poisoning remain largely unknown. In this work, the toxicity equivalency factors (TEFs) of five TTX analogues were determined by assessing the blockade of voltage-gated sodium channels in Neuro-2a cells using automated patch clamp (APC). All TTX analogues were less toxic than TTX. The derived TEFs were applied to the individual TTX analogues concentrations measured in pufferfish samples, using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). A comparison of these results with those obtained from APC analysis demonstrated that TEFs can be effectively used to translate LC–MS/MS analytical data into meaningful toxicological information. This is the first study to utilize APC device for the toxicological assessment of TTX analogues, highlighting its potential as a bioanalytical tool for seafood safety management and human health protection.
Developmental causes of the most common arrhythmia, atrial fibrillation (AF), are poorly defined, with compensation potentially masking arrhythmic risk. Here, we delete 9 amino acids (Δ9) within a conserved domain of the giant protein titin’s A-band in zebrafish and human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). We find that ttnaΔ9/Δ9 zebrafish embryos’ cardiac morphology is perturbed and accompanied by reduced functional output, but ventricular function recovers within days. Despite normal ventricular function, ttnaΔ9/Δ9 adults exhibit AF and atrial myopathy, which are recapitulated in TTNΔ9/Δ9-hiPSC-aCMs. Additionally, action potential is shortened and slow delayed rectifier potassium current (IKs) is increased due to aberrant atrial natriuretic peptide (ANP) levels. Strikingly, suppression of IKs in both models prevents AF and improves atrial contractility. Thus, a small internal deletion in titin causes developmental abnormalities that increase the risk of AF via ion channel remodeling, with implications for patients who harbor disease-causing variants in sarcomeric proteins.
Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs. The resulting transporters expressed in nanodiscs were incorporated into proteoliposomes and assayed in the presence of different substrates using the surface electrogenic event reader. As a proof of concept, we validated this workflow to express and characterize five diverse transporters: the drug/H+-coupled antiporters EmrE and SugE, the lactose permease LacY, the Na+/H+ antiporter NhaA from Escherichia coli, and the mitochondrial carrier AAC2 from Saccharomyces cerevisiae. For all transporters kinetic parameters, such as KM, IMAX, and pH dependency, were evaluated. This robust and expedite workflow (e.g., can be executed within only five workdays) offers a convenient direct functional assessment of transporter protein activity and has the ability to facilitate applications of transporters in medical and biotechnological research.
Triplet–triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment on TTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet–triplet energy transfer, to a greater extent than in solution. This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex are modeled in the membrane and confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. Modeling also reliably predicted the diffusion coefficient for the sensitizer which matches closely with the experimental values from fluorescence correlation spectroscopy. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membrane compositions, including a phase separation membrane. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC within a biomembrane and that the intensity of the TTA-UC output can be tuned in liposomal nanoparticles by modifying the phase and fluidity of the liposome. These new insights will aid in the design of liposomal TTA-UC systems for biomedical applications.
Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a “tonic block” mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.
Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling. In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine at mM concentration acts as a slow substrate of GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. Intriguingly, when betaine is present at low concentration (0.01-3 mM) with GABA (at concentration <K0.5), it blocks the GABA reuptake. This GAT1 modulation occurs through the temporal inhibition of the transporter, i.e., the prolonged occupancy by betaine impedes the rapid transition of the transporter to the inward conformation. The temporal inhibition results in a crucial regulatory mechanism contributing to the maintenance of GABA homeostasis, preserving neurons from excitotoxicity.
The search for drugs that modulate NMDA receptors has been very active in the latest decades since they play a pivotal role in neuronal death and in several neurological conditions, including stroke, traumatic brain injury, and neurodegenerative diseases. Activating the receptor evokes an entry of calcium into the neuron, thus leading to a rapid depolarization that can be measured using electrophysiological methods or by calcium imaging. Although several attempts have been made to develop high-throughput screening assays based on electrophysiological patch-clamp or imaging methods, these solutions amply rely on costly or proprietary equipment and are not suitable for independent or small laboratories that want to test a few dozens of compounds acting on NMDA receptors. Here, we describe an easy and cost-effective method that delivers reliable results using equipment that is normally accessible to any biology or pharmacology laboratory and that can be adapted to different instruments, like fluorescence microscopes or fluorescence plate-readers.
Cell cultures are the easiest way to provide a biological substrate that behaves at least similarly to neurons in a living organism. Here, we show how to obtain primary cultures of cerebellar granule cells that are a suitable biological substrate to measure the activity of compounds on NMDA receptors using the calcium-sensitive indicator Fura-2.
Introduction
Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing.
Areas covered
Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery.
Expert opinion
It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in ‘classical’ hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin “variants” of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species.
Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving a membrane protein YeeE (TsuA) in Escherichia coli was characterized. YeeE-like proteins are conserved in some bacteria, archaea, and eukaryotes. However, the precise function of YeeE, along with its potential partner protein in the thiosulfate ion uptake pathway, remained unclear. Here, we assessed selective thiosulfate transport via Spirochaeta thermophila YeeE in vitro and characterized E. coli YeeD (TsuB) as an adjacent and essential protein for YeeE-mediated thiosulfate uptake in vivo. We further showed that S. thermophila YeeD possesses thiosulfate decomposition activity and that a conserved cysteine in YeeD was modified to several forms in the presence of thiosulfate. Finally, the crystal structures of S. thermophila YeeE-YeeD fusion proteins at 3.34-Å and 2.60-Å resolutions revealed their interactions. The association was evaluated by a binding assay using purified S. thermophila YeeE and YeeD. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.
Transmembrane protein 175 (TMEM175) is an endolysosomal cation channel, which has attracted much attention recently from academics and the pharmaceutical industry alike since human mutations in TMEM175 were found to be associated with the development of Parkinson's disease (PD). Thus, gain-of-function mutations were identified, which reduce and loss-of-function mutations, which increase the risk of developing PD. After having been characterized as an endolysosomal potassium channel initially, soon after TMEM175 was claimed to act as a proton channel. In fact, recent evidence suggests that depending on the conditions, TMEM175 can act as either a potassium or proton channel, without acting as an antiporter or exchanger. A recent work has now identified amino acid H57 to be directly involved in gating, increasing proton conductance of the channel while leaving the potassium conductance unaffected. We review here the current knowledge of TMEM175 function, pharmacology, physiology, and pathophysiology. We discuss the potential of this ion channel as a novel drug target for the treatment of neurodegenerative diseases such as PD, and we discuss the discovery of H57 as proton sensor.
Differences in the lipid composition of prokaryotic and eukaryotic cell membranes are well understood and can be exploited to produce novel antimicrobials. However, what is less well recognised is that alteration in the phospholipid composition of the cell membrane is also one of the first phenotypic changes when a cell becomes cancerous. In addition, changes in phospholipid cell membrane composition are a known cause of drug resistance in both microbial disease and cancer. Here we present a series of chiral, amino acid appended supramolecular self-associating amphiphiles that suggest membrane active technologies can be used to simultaneously produce novel drugs in the fight against two of the greatest global health threats facing us today, antimicrobial resistant infections and cancer diseases. We demonstrate the antimicrobial and anticancer efficacy of this membrane active amphiphile technology against susceptible and resistant Staphylococcus aureus and ovarian cancer cells. We hypothesise a mode of action, building on a previous body of evidence, through a combination of vesicle, NMR spectroscopy and patch clamp experiments. We also provide evidence that supports the potential for this class of compound to be developed as pharmaceutical agents against these diseases through in vitro drug metabolism and pharmacokinetics experiments alongside in vivo Galleria mellonella toxicity experiments.
Light-gated ion channels from protists (channelrhodopsins or ChRs) are optogenetic tools widely used for controlling neurons and cardiomyocytes. Multiplex optogenetic applications require spectrally separated molecules that must be found in nature, as they are difficult to engineer without disrupting channel function. Scanning numerous sequence databases, we identified three robust naturally blue-shifted ChRs from ancyromonads. They form a separate branch on the phylogenetic tree and contain residue motifs characteristic of anion ChRs (ACRs). However, only two conduct chloride, whereas the close Nutomonas longa homolog (peak absorption at ~440 nm) generates inward cation currents in mammalian cells under physiological conditions, significantly exceeding those by previously known tools. Measurements of transient absorption changes and pH titration of purified Ancyromonas sigmoides ACR (AnsACR) combined with mutant analysis revealed the roles of the residues in the photoactive site. Both ancyromonad ACRs allowed optogenetic silencing of mouse cortical neurons in brain slices. AnsACR expression in the cholinergic neurons enabled photoinhibition of pharyngeal muscle contraction in live worms. AnsACR could be activated by near-infrared two-photon illumination, which is required to control specific neurons in thick tissue. Our results improved the mechanistic understanding of light-gated channel function and expanded the optogenetic toolkit.
Background: Brugada Syndrome (BrS) is an inherited arrhythmia disorder that causes an elevated risk of sudden cardiac death. Approximately 20% of patients with BrS have rare variants in SCN5A, which encodes the cardiac sodium channel NaV1.5. Genetic workup of BrS is often complicated by SCN5A variants of uncertain significance (VUS) and/or incomplete penetrance. Methods: We analyzed all 252 missense and in-frame insertion/deletion SCN5A variants from a previously published large cohort of BrS cases (n=3,335 patients) using a calibrated high-throughput automated patch clamp (APC) assay. Variant functional Z-scores were assigned evidence levels ranging from BS3_moderate (normal function) to PS3_strong (loss-of-function), as defined by American College of Medical Genetics and Genomics criteria. Functional evidence was combined with population frequency, hot-spot, case counts, protein length changes, and in silico predictions. Odds ratios of BrS case-control enrichment and penetrance for BrS were calculated from variant frequencies in the BrS cohort and in gnomAD. Results: Most variants (146/252) were functionally abnormal (Z ≤ −2), with 100 having severe loss-of-function (Z ≤ −4). Functional evidence enabled the reclassification of 110 of 225 VUS; 104 to likely pathogenic and 6 to likely benign. SCN5A variants with loss-of-function were mainly localized to the transmembrane domains, especially the regions comprising the central pore. SCN5A variant penetrance was proportional to the severity of loss-of-function; variants with Z ≤ −6 had penetrance of 24.5% (15.9 − 37.7% CI) and an odds ratio of 501 for BrS. Conclusions: This cohort-scale APC dataset stratifies SCN5A variants found in BrS patients into normal function ″bystander″ variants that have a low risk for BrS and loss-of-function variants that have a high risk for BrS. Functional data can be integrated with other criteria to reclassify a substantial fraction of VUS. The dataset helps clarify the SCN5A-BrS relationship and will improve the diagnosis and clinical management of BrS probands and their families.
During drug development, candidate compounds are extensively tested for proar-rhythmic risk and in particular risk of Torsade de Pointes (TdP), as indicated by prolongation of the QT interval. Drugs that inhibit the rapid delayed rectifier K+ current (IKr) can prolong the action potential duration (APD) and thereby the QT interval, and so are routinely rejected. However, simultaneous inhibition of the L-type Ca2+ current (ICaL) can mitigate the effect of IKrinhibition, so that including both effects can improve test specificity. Mathematical models of the action potential (AP) can be used to predict the APD prolongation resulting from a given level of IKr and ICaL inhibition, but for use in safety-testing their predictive capabilities should first be carefully verified. We present the first systematic comparison between experimental drug-induced APD and predictions by AP models. New experimental data were obtained ex vivo for APD response to IKr and/or ICaL inhibition by applying 9 compounds at different concentrations to adult human ventricular trabeculae at physiological temperature. Compounds with similar effects on IKr and ICaL exhibited less APD prolongation compared to selective IKr inhibitors. We then integrated in vitro IC50 patch-clamp data for IKr and ICaL inhibition by the tested compounds into simulations with AP models. Models were assessed against the ex vivo data on their ability to recapitulate drug-induced APD changes observed experimentally. None of the tested AP models reproduced the APD changes observed experimentally across all combinations and degrees of IKr and/or ICaL inhibition: they matched the data either for selective IKr inhibitors or for compounds with comparable effects on IKr and ICaL. This work introduces a new benchmarking framework to assess the predictivity of current and future AP models for APD response to IKr and/or ICaL inhibition. This is an essential primary step towards an in silico framework that integrates in vitro data for translational clinical cardiac safety.
Polycystins (PKD2, PKD2L1) are voltage-gated and Ca2+-modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined. Contributing to this knowledge gap is their resistance to drug screening campaigns, which are hindered by these channels unique subcellular trafficking to organelles such as the primary cilium. PKD2L1 is the only member of the polycystin family to form constitutively active ion channels on the plasma membrane when overexpressed. We leverage this feature to carry out high-throughput electrophysiology and identify potent antagonists with divergent chemical core structures. In-silico docking analysis and mutagenesis define their receptor sites within the pore vestibule of functioning channels. Results highlight striking similarities between the molecular pharmacology of PKD2L1 and voltage-gated sodium channels, including an open-state accessible lateral fenestration receptor within the pore, and a mechanism of inhibition that stabilizes the inactivated state. Outcomes establish the suitability of our approach to expand our chemical knowledge of polycystins and delineates novel receptor moieties for the development of channel-specific antagonists in TRP channel research.
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content. EVs are known to possess ion channels and transporters in their membrane but neither the function nor the role of these channels in EVs is known. In this study, we discover a functional calcium-activated large-conductance potassium channel (BKCa) in the membrane of EVs. Furthermore, we establish that BKCa is essential for the structural and functional integrity of EVs. Together, these findings establish the critical role of ion channels such as BKCa in functioning as gatekeepers and maintaining EV-mediated signaling.
Membrane transporters are essential for numerous biological processes by controlling the movement of ions and molecules across cell membranes. However, dissecting their molecular dynamics in complex cellular environments presents significant challenges. Reconstitution of membrane transporters in model systems offers a powerful solution. In this study, we focused on the reconstitution conditions suitable for the P3 ATPase Arabidopsis thaliana H+-ATPase isoform 2 and compatible with various giant unilamellar vesicle generation techniques. Among the methods evaluated for GUV formation, including electroformation, gel-assisted formation, and charge-mediated fusion, only the gel-assisted approach successfully generated AHA2-containing giant unilamellar vesicles while preserving the pump activity. Our findings underscore the importance of carefully managing the reconstitution conditions, including the presence of ions, and selecting the appropriate lipid composition to enhance the stability and activity of AHA2 in proteoliposomes. Addressing these factors is essential for the successful formation and functional analysis of AHA2 and other P-type ATPases in experimental settings.
Heart disease is the leading cause of morbidity and mortality in individuals with diabetes, due largely to risks associated with ischaemic injuries such as myocardial infarction (MI). We use human population genetic data to demonstrate that current biomarkers of hyperglycaemia do not account for risk of post-MI mortality in diabetes patients. This study therefore systematically evaluates glycaemic stress underpinning cardiovascular risk in diabetes. Using in vivo and in vitro models, we demonstrate that glycaemic variability rather than hyperglycaemia alone is a dominant risk factor for heart muscle dysfunction and myocardial injury sensitivity in diabetes. These findings provide new preclinical models for mechanistic and drug discovery studies and inform strategies for managing cardiovascular outcomes in patients with diabetes.
Purpose: The major cardiac voltage-gated sodium channel NaV 1.5 (INa) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure. However, its active components have not been fully elucidated. This study focused on identifying the active inhibitor of INa in WXKL and exploring their mode of action in electrophysiological conduction.
Methods: A chemical fraction library was constructed from an aqueous extract of WXKL and screened using an automated patch-clamping system in cells stably expressing the NaV 1.5 gene SCN5A. Candidate fractions with INa-inhibition activity were analyzed by HPLC-ESI-IT-TOF-MS and GC-MS to identify the ingredients. NaV 1.5 blocker molecules identified by single-cell electrocardiogram were tested in hiPSC-derived cardiomyocytes. We evaluated the SCN5A inhibitory potential of Wenxin Keli effective monomer employing molecular docking and molecular dynamics simulation approaches.
Results: A primary screen of the WXKL chemical library identified five fractions that significantly inhibited the NaV 1.5 channel, with one of them rich in poly-saturated fatty acids. Molecular structural characterization revealed the presence of lauric acid, myristic acid, palmitic acid, and stearic acid in the active subfraction. Electrophysiological characterization demonstrated lauric acid (LA) as the most effective monomer for INa-inhibition with an IC50 at 27.40 ± 12.78 μM. LA shifted the steady-state inactivation of INa to more negative potentials and decreased the amplitude of extracellular field potential in hiPSC-derived cardiomyocytes. We demonstrate for the first time that naturally poly-saturated fatty acid, lauric acid, as a potential novel INa blocker. Molecular docking and molecular dynamics simulation suggested that LA binds to the NaV 1.5 protein, with a significant binding affinity forming interactions with functionally essential residues and blocks the inward flow of Na+. Mechanistically, lauric acid acts on the fast inactivation of NaV 1.5 alter electrophysiology conduction of hiPSC-derived cardiomyocytes and contribute to the antiarrhythmic effect of WXKL.
Conclusion: Lauric acid is a potent blocker for sodium channel NaV 1.5 and alleviates arrhythmia via inhibiting INa.
Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm. These poly(C9) pores remain stable for up to 30 min without indications of gating, flickering, or clogging across a range of transmembrane voltages (−150 to +150 mV) and ionic strengths (50 to 1000 mM). At physiologic pH, the ring-shaped distribution of negative and positive surface charges in the lumen of the pore enables capture of analyte proteins by electro-osmotic flow and leads to residence times of analyte proteins whose most probable values can exceed 300 μs. We used poly(C9) nanopores to determine the volume and shape of unlabeled folded proteins with molecular weights between 9 and 230 kDa with unprecedented accuracy in the context of resistive pulse recordings. Finally, poly(C9) pores made it possible to distinguish between the open and closed conformations of adenylate kinase based on differences in current modulations within resistive pulses and the corresponding differences in approximations of their shape. Thus, poly(C9) nanopores enable highly sensitive and accurate characterization of a wide range of natively folded proteins on a single molecule level.
Lysosomes are essential for cellular homeostasis and their dysfunction is linked to a wide range of diseases. Given the immediate medical relevance, there is a current need for high throughput electrophysiology on lysosomes. Oria Bioscience have pioneered a novel approach for lysosomal isolation resulting in large batches of ready-to-use “LYSO-Preps” of high purity. We have successfully characterized “LYSO-Preps” overexpressing TRPML1 channels through pharmacology of activators, inhibitors and intraluminal pH sensitivity using the SyncroPatch 384, the SURFE2R N1 and the SURFE2R 96SE.
Regulator of cell death-1 (RCD-1) governs the heteroallelic expression of RCD-1-1 and RCD-1-2, a pair of fungal gasdermin (GSDM)-like proteins, which prevent cytoplasmic mixing during allorecognition and safeguard against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (e.g., senescence plasmids) by effecting a form of cytolytic cell death. However, the underlying mechanisms by which RCD-1 acts on the cell membrane remain elusive. Here, we demonstrate that RCD-1 binds acidic lipid membranes, forms pores, and induces membrane bending. Using atomic force microscopy (AFM) and AlphaFold, we show that RCD-1-1 and RCD-1-2 form heterodimers that further self-assemble into ~14.5 nm-wide transmembrane pores (~10 heterodimers). Moreover, through AFM force spectroscopy and micropipette aspiration, we reveal that RCD-1 proteins bend membranes with low bending moduli. This combined action of pore formation and membrane deformation may constitute a conserved mechanism within the broader GSDM family.
Natural peptides from animal venoms effectively modulate ion channel activity. While photoswitches regulate small compound pharmacology, their application to natural peptides rich in disulfide bridges and active on ion channels is novel due to larger pharmacophores. We initiated a pilot study integrating azobenzene photoswitches into charybdotoxin (ChTx), known for blocking potassium channels. Two click-chemistry-compatible azobenzene were synthesized differing in length and amide orientation (Az1 & Az2). Az1 was grafted onto ChTx at various amino acid positions using L-azidohomoalanine mutation. ChTx monomers outperformed dimers, particularly with azobenzene at position 14, by exhibiting optimal photoswitching activity. In the cis configuration, Az1 altered ChTx's pharmacophore, reducing potassium channel blockage, while conversely Az2 increased ChTx potency. This study pioneers photoswitch application to complex peptides, leveraging structure-activity relationships. Successful integration depends on precise azobenzene positioning and chemical grafting guided by SAR insights. This advancement underscores the adaptability of photoswitch technology to intricate peptide structures, offering new avenues for pharmacological modulation.
Mycobacterium tuberculosis (Mtb) evades host defense by hijacking and rupturing the phagosome. ESAT-6, a secreted virulence protein of Mtb, is known to be critical for phagosome rupture. However, the mechanism of ESAT-6-mediated disruption of the phagosomal membrane remains unknown. Using in vitro reconstitution, live-cell imaging, and numerical simulations, we discover that ESAT-6 polymerization forces remodeling and vesiculation of the phagosome-like compartment both in vitro and in vivo. Shallow insertion of ESAT-6 leads to tubular and bud-like deformations on the membrane facilitated by a reduction in membrane tension. Growing fibrils generate both radial and tangential forces causing local remodeling and shape transition of
the membrane into buds. The ESAT-6-bound tensed membrane undergoes local changes in membrane curvature and lipid phase separation that assist the subsequent fission. Overall, the findings provide mechanistic insights into the long-standing question of phagosome disruption by Mtb for its escape.
FLEXcyte 96 revolutioniert traditionelle Methoden zur Untersuchung der Herzkontraktilität, indem es eine moderne Hochdurchsatz-Technologie bietet. Die flexiblen Substrate der FLEXcyte-Platten schaffen eine in vivo-ähnliche Umgebung. Unter diesen physiologischen Bedingungen gezüchtete, aus Stammzellen abgeleitete Herzmuskelzellen zeigen verbesserte funktionelle Eigenschaften welche man sich in der modernen Forschung zunutze machen kann.
Structural information on channelrhodopsins’ mechanism of light-gated ion conductance is scarce, limiting its engineering as optogenetic tools. Here, we use single-particle cryo-electron microscopy of peptidisc-incorporated protein samples to determine the structures of the slow-cycling mutant C110A of kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) in the dark and upon laser flash excitation. Upon photoisomerization of the retinal chromophore, the retinylidene Schiff base NH-bond reorients from the extracellular to the cytoplasmic side. This switch triggers a series of side chain reorientations and merges intramolecular cavities into a transmembrane K+ conduction pathway. Molecular dynamics simulations confirm K+ flux through the illuminated state but not through the resting state. The overall displacement between the closed and the open structure is small, involving mainly side chain rearrangements. Asp105 and Asp116 play a key role in K+ conductance. Structure-guided mutagenesis and patch-clamp analysis reveal the roles of the pathway-forming residues in channel gating and selectivity.
Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. The bacterial channel DeCLIC constitutes a provocative model system for structure, function, and dynamics in this family, including a modulatory N-terminal domain (NTD). Previous closed structures of DeCLIC support a rationale for its inhibition by calcium; however, properties of its open state remain unclear. Here we used cryogenic electron microscopy under acidic conditions to determine a previously unreported conformation of DeCLIC with an expanded pore. This structure was relatively stable and permeable in simulations, and agreed with the average low-pH solution structure by small-angle neutron scattering. In the absence of calcium, an alternative closed class exhibited dynamic rearrangements in the NTD. We propose that our expanded-pore structure corresponds to a functional open state of DeCLIC, while calcium-site and NTD dynamics drive channel closure, providing a detailed template for modulatory mechanisms in the larger channel family.
The nicotinic acetylcholine receptor (nAChR) is a member of the ligand-gated ion channel superfamily which includes GABAA , 5HT3 , NMDA and glycine receptors. It is a cation permeable ion channel activated by the neurotransmitter acetylcholine and the natural alkaloid, nicotine. Neuronal nAChR are pentameric and functional channels are formed from a repertoire of nine a (a2 to a10) and three β subunits (β2 to β4). Most nAChR exist as heteromers with the stoichiometry 2a to 3β, however some a subunits function as homomers, these being a7 or a9 (for reviews see Refs. 1 & 2). nAChR have been proposed to play a role in many neurological disorders such as Alzheimer’s disease, Parkinson’s, schizophrenia and depression. nAChR a7 are widely distributed in the mammalian brain including in the cerebral cortex, hippocampus, basal ganglia and cerebellum. There is evidence that nAChR a7 play a role in cognition and could be a potential therapeutic target in cognitive disorders such as Alzheimer’s disease or schizophrenia.
In the ongoing regulation changes, many institutions are still conducting preclinical or toxicity tests in animal cells or models, with inconsistent results due to interspecies differences. Therefore, developing a new toxicity study model to replace the use of animals in the non-clinical study is of the utmost urgency.
Human induced pluripotent stem cells (hiPSCs) are increasingly used in biomedical research for disease modeling and drug discovery. The use of stem cells for research reduces the need for animals, as well as having the added advantages of being human in origin and available in relatively high abundance. One of the challenges in the use of hiPSCs is the requirement to culture the neurons for long time periods to achieve maturity. This can pose a potential challenge when combining hiPSC-derived neurons with techniques such as automated patch clamp (APC) which require cells in suspension for the experiments. When cells are cultured for longer (4 weeks or more) this can result in lower success rates for cell capture, and therefore, overall success rate for completed experiments. bit.bio uses opti-ox (optimised inducible overexpression) technology for cell programming. With this technology, genetic programs in human stem cells can be faithfully executed, leading to precise and consistent programming of the population into a chosen cell identity at a commercial scale.
Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play crucial roles in various cellular processes, including cell growth and proliferation, differentiation, migration
or metabolism. They function by binding extracellular ligands, which triggers receptor dimerization and activation of their intracellular tyrosine kinase domains. This initiates downstream
signaling cascades that regulate key cellular functions (Figure 1). RTKs are highly relevant targets within drug discovery because they are frequently dysregulated in cancer and other diseases. Many successful targeted therapies inhibit RTKs (e.g. imatinib, erlotinib), showing that the receptors provide opportunities for developing selective inhibitors.
This Application Note demonstrates the in vitro characterization of GPCR pharmacology, covering agonist and antagonist mode of action, dose-response relationships, and the involvement of signal transduction cascades. Experimentally, cells expressing H1R or Y4R are cultured on planar gold-film electrodes integrated into standard cell culture dishes.
We have developed a method that allows fluoride-free, physiological solutions to be used with good success rates. We demonstrate this using the cardiac ion channels hERG expressed in HEK293 cells (SB Drug Discovery) and NaV1.5 expressed in CHO cells (Charles River).
Traditional drug development for ion channels has predominantly focused on small molecules. While effective, this approach often encounters challenges, particularly with selectivity and safety. Biologics, including toxins and venom-derived peptides, have emerged as a promising alternative to address these limitations. Animal toxins have long been invaluable in ion channel research, offering insights into their structure, function, and gating mechanisms. Venoms are now recognized as a rich resource for innovative research tools and therapeutic leads. Peptide-based drugs, derived from these venoms, have gained attention for their unique advantages, such as larger interaction surfaces that confer greater specificity and selectivity compared to small molecules.
Stem cell-derived neurons have become important tools in neuroscience research and a number of hiPSC- derived neuronal types are currently available on the market. Culture conditions are critical for maturation of hiPSC-derived neurons and it was discovered early on that commonly used culture media, e.g. DMEM-basal, Neurobasal or serum, while promoting neuronal survival, could actually impair neurophysiological functions. In order to promote maturation of neurons, they can be co-cultured with astrocytes. In collaboration with the Fraunhofer Institute for Biomedical Engineering (IBMT) we explored co-culture of hiPSC-derived neurons (EBiSC-NEUR1) and astrocytes (ScienCell, #1800) by comparing the electrophysiological properties of the neurons using the SyncroPatch 384.
On this episode of the podcast we spoke with Katie and Nathan about their work (specifically around developing a method to provide a fast, easy, general method for measuring transport stoichiometry via solid supported membrane electrophysiology) which will facilitate future mechanistic and functional studies of ion-coupled transporters. You can read the full publication titled: A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport here.
Katie's Lab uses NMR as a primary technique to monitor protein structure and dynamics, taking advantage of the extensive resources available through NMRFAM. By comparing NMR data with biochemical and functional assays, insight into the mechanisms of secondary active transport, multidrug recognition, ion channel gating and ion selectivity is gained.
Nathan is presentlt a Postdoctoral Researchers at Tezcan Lab - UCSD (University of California San Diego,) Department of Chemistry and Biochemistry.
In this edition of the podcast - we speak to Kerstin Göpfrich Ph.D. who is currently attempting how to construct a cell with a bottom up approach and exploring how life could be different with DNA origami.
In this edition of the podcast - we spoke to Postdoctoral Research Fellow Nasreen Choudhury about her research of Alziehmer's disease and the role that ion channels play. Nasreen completed her PhD at the Indian Institute of Science where she published a paper about TREK1 channel, read it here. Nasreen went on to working at the University of Leicester where she published her investigation into Kv3 channels.
When Nasreen finishes her postdoctoral stint at Rush University Medical Center, she plans to switch to an industry role where she can work with automated patch clamp platforms
On this episode of the podcast we spoke with Shashank Pant (University of Illinois, Urbana-Champaign). We talked about how he started his journey as a researcher and how his curiosity of the scientific process continues to serve as a motivation to publish in high impact journals such as Nature (where he was recently part of an internationally collaboration with with Renae Ryan's Lab, University of Sydney).
Here they looked at Glutamate, specifically providing insight into the mechanism by which glutamate transporters support their dual function
In this edition of the podcast - we speak to Tron Shen and his unique experiences working in an academic lab (Hinz Lab). Listen to his unique story, which encompases a stop in the world of finance.
Bacterial and mammalian NaV channels provide insights into the molecular basis of channel gating and will facilitate organism-specific drug discovery.
Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.
The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.
Prenatal exposure to perfluorooctane sulfonate (PFOS) is associated with adverse health effects, including congenital heart disease, yet the underlying mechanisms remain elusive. Herein, we aimed to evaluate the embryotoxicity of PFOS using C57BL/6 J mice to characterize fetal heart defects after PFOS exposure, with the induction of human embryonic stem cells (hESC) into cardiomyocytes (CMs) as a model of early-stage heart development. We also performed DNA methylation analysis to clarify potential underlying mechanisms and identify targets of PFOS. Our results revealed that PFOS caused septal defects and excessive ventricular trabeculation cardiomyopathy at 5 mg/kg/day in embryonic mice and inhibited the proliferation and pluripotency of ESCs at concentrations >20 μM. Moreover, it decreased the beating rate and the population of CMs during cardiac differentiation. Decreases were observed in the abundances of NPPA+ trabecular and HEY2+ compact CMs. Additionally, DNA methyl transferases and ten-eleven translocation (TET) dioxygenases were regulated dynamically by PFOS, with TETs inhibitor treatment inducing significant decreases similar as PFOS. 850 K DNA methylation analysis combined with expression analysis revealed several potential targets of PFOS, including SORBS2, FHOD1, SLIT2, SLIT3, ADCY9, and HDAC9. In conclusion, PFOS may reprogram DNA methylation, especially demethylation, to induce cardiac toxicity, causing ventricular defects in vivo and abnormal cardiac differentiation in vitro.
Hepatotoxicity and drug-induced liver injury (DILI) are leading reasons for drug failure to market, leading to approximately 18% of market withdrawals of drugs in the last decade.
Additionally, only half of drugs with a potential to induce hepatotoxicity are actually identified during preclinical animal studies. This highlights the importance of generating more
advanced cell-based models and experimental strategies to enhance the predictivity of these assays. Current existing in vitro models employed to predict DILI mostly focus on
hepatocytes, though primary hepatocytes do not maintain their phenotype. iCell® Hepatocytes 2.0 (FUJIFILM Cellular Dynamics, FCDI) are human iPSC-derived cells with a
wide variety of basic and functional characteristics which make them amenable to applications such as compound mediated ADME-T and DILI toxicity. In addition to displaying
characteristic hepatocyte morphology, (i.e., polygonal shape, polynucleation and formation of bile canalicular channels), these cells also express liver cell markers, including albumin,
A1AT, and HNF4a, and exhibit basic and induced P450 functions, as observed in primary human hepatocytes. iCell® Hepatocytes 2.0 maintain morphology, marker expression,
and metabolic function in culture over a longer time frame compared to primary human hepatocytes, rendering these cells useful for investigations of acute and chronic DILI responses in a 2D culture system using impedance. Combining these cells with the planar gold-film electrodes on the impedance systems reveal alterations in confluency, cell contact (morphological shape) and conductivity of adherent cells, thereby providing a measure of toxicity. Dose-dependent harmful effects of drugs could be evaluated over time in a functional 2D cell-based model without the need for 3D spheroid formation.
Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.
Intracellular ion channels are known to play an essential role in various signaling pathways for health and disease, considering that over 80% of transport processes occur inside
the cells. Among the variety of organellar channels and transporters the proton leak channel transmembrane protein 175 (TMEM175) and the lysosomal two-pore channel (TPC) have received increasing attention in the field given their potential roles in connecting lysosomal homeostasis with pathophysiological conditions such as Parkinson’s disease and cancer. Consequently, the interest to explore intracellular ion channels as therapeutic targets has grown tremendously indicating a need for high-throughput electrophysiology including patch clamp. There has been some progress in alternative approaches such as solid supported membrane electrophysiology (SSME using the SURFE2R 96SE) recently, however, until now, HTS patch clamp has lacked the possibility to collect data from native lysosomes.
Corneal wound healing in mice subsequent to an alkali burn results in dysregulated inflammation and opacification. Transient receptor potential vanilloid subtype 1 (TRPV1) channel activation in all tissue layers by endogenous ligands contributes to this sight compromising outcome since in TRPV1 knockout mice wound healing results instead in tissue transparency restoration. However, it is not known if primary human stromal fibroblasts exhibit such expression even though functional TRPV1 expression is evident in an immortalized human corneal epithelial cell line. In primary human corneal fibroblasts (HCF), TRPV1 gene expression and localization were identified based on the results of quantitative RT-PCR and immunocytochemistry, respectively. Western blot analysis identified a 100 kD protein corresponding to TRPV1 protein expression in a positive control. Single-cell fluorescence imaging detected in fura2-AM loaded cells Ca(2+) transients that rose 1.8-fold above the baseline induced by a selective TRPV1 agonist, capsaicin (CAP), which were blocked by a TRPV1 antagonist, capsazepine (CPZ) or exposure to a Ca(2+) free medium. The whole-cell mode of the planar patch-clamp technique identified TRPV1-induced currents that rose 1.76-fold between -60 and +130 mV. CAP-induced time dependent changes in the phosphorylation status of mitogen activated protein kinase (MAPK) signaling mediators that led to a 2.5-fold increase in IL-6 release after 24 h. This rise did not occur either in TRPV1 siRNA gene silenced cells or during exposure to SB203580 (10 μM), a selective p38 MAPK inhibitor. Taken together, identification of functional TRPV1 expression in HCF suggests that in vivo its activation by injury contributes to corneal opacification and inflammation during wound healing. These undesirable effects may result in part from increases in IL-6 expression mediated by p-p38 MAPK signaling.
Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1(-/-) mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC-MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein-protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1-JNK1 signaling. WIN reduced TRPV1-induced Ca(2+) transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through protein-protein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, G(i/o) contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events.
Differences in transient receptor potential (TRP) and cannabinoid receptor type 1 (CB1) expression levels can serve as prognostic factors for retinoblastoma (RB) tumor progression. We hypothesized in RB tissue that such differences are also indicators of whether or not they are sensitive to etoposide. Accordingly, we compared in malignant etoposide-sensitive and etoposide-resistant WERI-Rb1 cells TRPV1, TRPM8 and TRPA1 subtype and CB1 gene expression pattern levels and accompanying functional activity using quantitative real-time RT-PCR, immunohistochemistry, immunofluorescence microscopy, calcium imaging as well as patch-clamp technology. Gene expression patterns were evaluated in enucleated human RB tissues (n = 4). Both etoposide-resistant and etoposide-sensitive WERI-Rb1 cells expressed all of the aforementioned channels based on responses to known activators and thermal challenges. However, TRPA1 was absent in the etoposide-resistant counterpart. Even though both types of RB cells express TRPV1 as well as TRPM8 and CB1, the capsaicin (50 μM) (CAP)-induced Ca(2+) rise caused by TRPV1 activation was prompt and transient only in etoposide-resistant RB cells (n = 8). In this cell type, the inability of CB1 activation (10 μM WIN) to suppress Ca(2+) responses to CAP (50 μM; n = 4) may be attributable to the absence of TRPA1 gene expression. Therefore, using genetic approaches to upregulate TRPA1 expression could provide a means to induce etoposide sensitivity and suppress RB cell tumorigenesis.
3-Iodothyronamine (T1AM), an endogenous thyroid hormone (TH) metabolite, induces numerous responses including a spontaneously reversible body temperature decline. As such an effect is associated in the eye with increases in basal tear flow and thermosensitive transient receptor potential melastatin 8 (TRPM8) channel activation, we determined in human conjunctival epithelial cells (IOBA-NHC) if T1AM also acts as a cooling agent to directly affect TRPM8 activation at a constant temperature. RT-PCR and quantitative real-time PCR (qPCR) along with immunocytochemistry probed for TRPM8 gene and protein expression whereas functional activity was evaluated by comparing the effects of T1AM with those of TRPM8 mediators on intracellular Ca2 + ([Ca2 +]i) and whole-cell currents. TRPM8 gene and protein expression was evident and icilin (20 μM), a TRPM8 agonist, increased Ca2 + influx as well as whole-cell currents whereas BCTC (10 μM), a TRPM8 antagonist, suppressed these effects. Similarly, either temperature lowering below 23 °C or T1AM (1 μM) induced Ca2 + transients that were blocked by this antagonist. TRPM8 activation by both 1 µM T1AM and 20 μM icilin prevented capsaicin (CAP) (20 μM) from inducing increases in Ca2 + influx through TRP vanilloid 1 (TRPV1) activation, whereas BCTC did not block this response. CAP (20 μM) induced a 2.5-fold increase in IL-6 release whereas during exposure to 20 μM capsazepine this rise was completely blocked. Similarly, T1AM (1 μM) prevented this response. Taken together, T1AM like icilin is a cooling agent since they both directly elicit TRPM8 activation at a constant temperature. Moreover, there is an inverse association between changes in TRPM8 and TRPV1 activity since these cooling agents blocked both CAP-induced TRPV1 activation and downstream rises in IL-6 release.
The solute carrier 17 (SLC17) family contains anion transporters that accumulate neurotransmitters in secretory vesicles, remove carboxylated monosaccharides from lysosomes, or extrude organic anions from the kidneys and the liver. We combined experimental and computational approaches to describe the transport mechanisms of a model bacterial protein, the D-galactonate transporter DgoT, at atomic resolution. We found that protonation of D46 and E133 precedes galactonate binding and that substrate binding induces closure of the extracellular gate, with the conserved R47 coupling substrate binding to transmembrane helix movement. After isomerization to an inward-facing conformation, deprotonation of E133 and subsequent proton trans-fer from D46 to E133 opens the intracellular gate and permits galactonate dissociation. After release of the second proton, apo DgoT returns to the outward-facing conformation. Our results provide a framework to understand how various SLC17 transport functions with distinct transport stoichiometries can be attained through subtle variations in proton and substrate binding/unbinding.
Chalcones are naturally produced by many plants, and constitute precursors for the synthesis of flavons and flavanons. They were shown to possess antibacterial, antifungal, anti-cancer, and anti- inflammatory properties. The goal of the study was to assess the suitability of three synthetic methoxychalcones as potential anticancer agents. In a panel of colon cancer cell lines they were demonstrated to be cytotoxic, proapoptotic, causing cell cycle arrest, and increasing intracellular level of reactive oxygen species. Anticancer activity of the compounds was not diminished in the presence of stool extract containing microbial enzymes that could change the structure of chalcones. Moreover, methoxychalcones interacted strongly with model phosphatidylcholine membranes as detected by differential scanning calorimetry. Metohoxychalcones particularly affected the properties of lipid domains in giant unilamellar liposomes formed from raft-mimicking lipid composition. This may be of importance since many molecular targets for therapy of metastatic colon cancer are raft-associated receptors (e.g., receptor tyrosine kinases). The importance of membrane perturbing potency of methoxychalcones for their biological activity was additionally corroborated by the results obtained by molecular modelling.
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Background: Long QT syndrome (LQTS) is a lethal arrhythmia condition, frequently caused by rare loss-of-function variants in the cardiac potassium channel encoded by KCNH2. Variant-based risk stratification is complicated by heterogenous clinical data, incomplete penetrance, and low-throughput functional data. Objective: To test the utility of variant-specific features, including high-throughput functional data, to predict cardiac events among KCNH2 variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 missense variants in KCNH2 and recorded potassium current densities for 506 KCNH2 variants. Next, we deeply phenotyped 1150 KCNH2 missense variant patients, including ECG features, cardiac event history (528 total cardiac events), and mortality. We then assessed variant functional, in silico, structural, and LQTS penetrance data to stratify event-free survival for cardiac events in the study cohort. Results: Traditional risk factors of QT interval adjusted for heart rate (Hazard Ratio 1.09 [1.07-1.12]) and sex (HR 0.60 [0.47-0.76]) were most significant for predicting events; however, variant-specific current density (HR 0.44 [0.26-0.70]) and estimates of LQTS penetrance (HR 1.93; [1.13-3.39]) were independently predictive of severe cardiac events when controlling for patient-specific features. Conclusion: We show that high-throughput functional data, and other variant-specific features, meaningfully contribute to both diagnosis and prognosis of a clinically actionable monogenic disease.
Left ventricular noncompaction cardiomyopathy (LVNC) is a cardiovascular disease characterized by arrhythmia and heart failure. In this study, LVNC myocardial samples were collected from patients who underwent heart transplantation and were analyzed using exome sequencing. Approximately half of the LVNC patients carried SCN5A variants, which are associated with clinical symptoms of ventricular tachycardia. To investigate the electrophysiological functions of these SCN5A variants and the underlying mechanism by which they increase arrhythmia susceptibility in LVNC patients, functional evaluations were conducted in CHO–K1 cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using patch-clamp or microelectrode array (MEA) techniques. These findings demonstrated that these SCN5A mutants exhibited gain-of-function properties, leading to increased channel activation and enhanced fast inactivation in CHO–K1 cells. Additionally, these mutants enhanced the excitability and contractility of the cardiomyocyte population in hESC-CMs models. All SCN5A variants induced fibrillation-like arrhythmia and increased the heart rate in cardiomyocytes. However, the administration of Lidocaine, an antiarrhythmic drug that acts on sodium ion channels, was able to rescue or alleviate fibrillation-like arrhythmias and secondary beat phenomenon. Based on these findings, it is speculated that SCN5A variants may contribute to susceptibility to arrhythmia in LVNC patients. Furthermore, the construction of cardiomyocyte models with SCN5A variants and their application in drug screening may facilitate the development of precise therapies for arrhythmia in the future.
Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Dynamically gating cargo transport like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large dynamically-gated lumen. It can switch between expanded and contracted states without changing its stable triangular shape, whereby specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrated the large lumen up to 539 nm2, the stable architectures, and the high shape retention. Single channel current recordings and fluorescence influx studies demonstrated the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.
Endothelial microvascular dysfunction affects multi-organ pathologic processes that contribute to increased vascular tone and is at the base of impaired metabolic and cardiovascular diseases. The vascular dilation impaired by nitric oxide (NO) deficiency in such dysfunctional endothelium is often balanced by endothelial-derived hyperpolarizing factors (EDHFs), which play a critical role in managing vascular tone. Our latest research has uncovered a new group of lactone oxylipins produced in the polyunsaturated fatty acids (PUFAs) CYP450 epoxygenase pathway, significantly affecting vascular dilation. The lactone oxylipin, derived from arachidonic acid (5,6-diHET lactone, AA-L), has been previously shown to facilitate vasodilation dependent on the endothelium in isolated human microvessels. The administration of the lactone oxylipin derived from eicosapentaenoic acid (5,6-diHETE lactone, EPA-L) to hypertensive rats demonstrated a significant decrease in blood pressure and improvement in the relaxation of microvessels. However, the molecular signaling processes that underlie these observations were not fully understood. The current study delineates the molecular pathways through which EPA-L promotes endothelium-dependent vascular dilation. In microvessels from hypertensive individuals, it was found that EPA-L mediates endothelium-dependent vasodilation while the signaling pathway was not dependent on NO. In vitro studies on human endothelial cells showed that the hyperpolarization mediated by EPA-L relies on G-protein-coupled receptor (GPR)-phospholipase C (PLC)-IP3 signaling that further activates calcium-dependent potassium flux. The pathway was confirmed using a range of inhibitors and cells overexpressing GPR40, where a specific antagonist reduced the calcium levels and outward currents induced by EPA-L. The downstream AKT and endothelial NO synthase (eNOS) phosphorylations were non-significant. These findings show that the GPR-PLC-IP3 pathway is a key mediator in the EPA-L-triggered vasodilation of arterioles. Therefore, EPA-L is identified as a significant lactone-based PUFA metabolite that contributes to endothelial and vascular health.
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol–1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide new avenues for disease modelling, drug discovery and cell therapy. However, structural and functional immaturity of these cells, poses a great challenge. Therefore, there is a highly unmet need for hiPSC-CMs with a mature phenotype. Recently, it has been reported that triiodothyronine (T3) and dexamethasone (Dex) play significant roles in hiPSCCMs maturation, by promoting the structural T-tubule development, enhancing the electrophysiological maturation and improving calcium handling ability.
Aerolysin is a bacterial pore-forming toxin able to form transmembrane pores at the host plasma membrane of narrow internal diameter and great stability. These assets make it a highly promising nanopore for the detection of biopolymers such as nucleic acids and
peptides. While much is known about aerolysin from a microbiological and structural side, its membrane association and pore-formation mechanism are not yet fully disclosed. Here, we studied the interaction of femtomolar concentrations of aerolysin and its mutants with
liposomes in aqueous solution using angle-resolved second harmonic scattering (AR-SHS), in combination with single-channel current measurements. The measurements were so sensitive to detect electrostatic changes on the membrane-bound aerolysin induced by pH
variation induced by the changes in the hydration shell of aerolysin. We reported for the first time the membrane binding affinity of aerolysin at different stages of the pore formation mechanism: while wt aerolysin has a binding affinity as high as 20 fM, the quasi-pore state
and the prepore state show gradually decreasing membrane affinities, incomplete insertion and pore opening signature. Moreover, we quantitatively characterized the membrane affinity of mutants relevant for applications to nanopore sensing. This approach opens new
possibilities to efficiently screen biological pores suitable for conducting molecular sensing and sequencing measurements, as well as to probe pore forming processes.
Background: The rapid delayed rectifier potassium current (IKr) is important for cardiac repolarization and is most often involved in drug-induced arrhythmias. However, accurately measuring this current can be challenging in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes because of its small current density. Interestingly, the ion channel conducting IKr, hERG channel, is not only permeable to K+ ions but also to Cs+ ions when present in equimolar concentrations inside and outside of the cell.
Methods: In this study, IhERG was measured from Chinese hamster ovary (CHO)-hERG cells and hiPSC-CM using either Cs+ or K+ as the charge carrier. Equimolar Cs+ has been used in the literature in manual patch-clamp experiments, and here, we apply this approach using automated patch-clamp systems. Four different (pre)clinical drugs were tested to compare their effects on Cs+- and K+-based currents.
Results: Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. Comparison of Cs+- and K+-mediated currents upon application of dofetilide, desipramine, moxifloxacin, or LUF7244 revealed many similarities in inhibition or activation properties of the drugs studied. Using equimolar Cs+ solutions gave rise to approximately ten-fold larger hERG conductances. In hiPSC-CM, the Cs+-based conductance is larger compared to the known K+-based conductance, and the Cs+ hERG conductance can be inhibited similarly to the K+-based conductance.
Conclusion: Using equimolar Cs+ instead of K+ for IhERG measurements in an automated patch-clamp system gives rise to a new method by which, for example, quick scans can be performed on effects of drugs on hERG currents. This application is specifically relevant when such experiments are performed using cells which express small IKr current densities in combination with small membrane capacitances.
Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response (UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed, RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1, and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect in relevant models to CF and that this is due to the modulation of genes involved in the disease.
A number of Intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic abundant heat soluble (CAHS) proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. Here we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 show enhanced tolerance to hyperosmotic stress under non-fermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such a dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represents a general biophysical solution for stress tolerance across the domains of life.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia treatable with antiarrhythmic drugs; however, patient responses remain highly variable. Human induced pluripotent stem cell–derived atrial cardiomyocytes (iPSC-aCMs) are useful for discovering precision therapeutics, but current platforms yield phenotypically immature cells and are not easily scalable for high-throughput screening. Here, primary adult atrial, but not ventricular, fibroblasts induced greater functional iPSC-aCM maturation, partly through connexin-40 and ephrin-B1 signaling. We developed a protein patterning process within multiwell plates to engineer patterned iPSC-aCM and atrial fibroblast coculture (PC) that significantly enhanced iPSC-aCM structural, electrical, contractile, and metabolic maturation for 6+ weeks compared to conventional mono-/coculture. PC displayed greater sensitivity for detecting drug efficacy than monoculture and enabled the modeling and pharmacological or gene editing treatment of an AF-like electrophysiological phenotype due to a mutated sodium channel. Overall, PC is useful for elucidating cell signaling in the atria, drug screening, and modeling AF.
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
In this study, we have designed, synthesized and tested three series of novel dihydropteridone derivatives possessing isoindolin-1-one or isoindoline moieties as potent inhibitors of PLK1/BRD4. Remarkably, most of the compounds showed preferable inhibitory activity against PLK1 and BRD4. Compound SC10 exhibited excellent inhibitory activity with IC50 values of 0.3 nM and 60.8 nM against PLK1 and BRD4, respectively. Meanwhile, it demonstrated significant anti-proliferative activities against three tumor-derived cell lines (MDA-MB-231 IC50 = 17.3 nM, MDA-MB-361 IC50 = 8.4 nM, and MV4-11 IC50 = 5.4 nM). Moreover, SC10 exhibited moderate rat liver microsomal stability (CLint = 21.3 µL·min-1·mg-1), acceptable pharmacokinetic profile (AUC0-t = 657 ng·h·mL-1, oral bioavailability of 21.4%) in Sprague-Dawley rats, reduced hERG toxicity, acceptable PPB and CYP450 inhibition. Further research indicated that SC10 could induce MV4-11 cell arrest at the S phase and apoptosis in a dose-dependent manner. This investigation provided us with an initial point for developing novel anticancer agents as dual inhibitors of PLK1 and BRD4.
The human Peptide Transporter 1 (hPepT1) is known for its broad substrate specificity and its ability to transport (pro-)drugs. Here, we present an in-depth comprehensive study of hPepT1 and its interactions with various substrates via solid supported membrane-based electrophysiology (SSME). Using hPepT1-containing vesicles, we could not identify any peptide induced pre-steady-state currents, indicating that the recorded peak currents reflect steady-state transport. Electrogenic co-transport of H+/glycylglycine (GlyGly) was observed across a pH range of 5.0 to 9.0. The pH dependence is described by a bell-shaped activity curve and two pK values. KM and relative Vmax values of various canonical and non-canonical peptide substrates were contextualized with current mechanistic understandings of hPepT1. Finally, specific inhibition was observed for various inhibitors in a high throughput format, and IC50 values are reported. Taken together, these findings contribute to promoting the design and analysis of pharmacologically relevant substances.
Proteins traverse the eukaryotic secretory pathway via membrane trafficking between organelles. The COPII coat mediates the anterograde transport of newly synthesised proteins from the endoplasmic reticulum, engaging cargoes with wide ranges of sizes and biophysical properties. The native architecture of the COPII coat and the cargo-dependent regulation of its assembly remain poorly understood. Here, we have reconstituted COPII-coated membrane carriers using purified S. cerevisiae proteins and cell-derived microsomes as a native membrane source. Using cryo-electron tomography with subtomogram averaging, we demonstrate that the COPII coat binds cargo and forms largely spherical vesicles from native membranes. We reveal the architecture of the inner and outer coat layers and shed light on how spherical carriers are formed. Our results provide novel insights into the architecture and regulation of the COPII coat and challenge our current understanding of how membrane curvature is generated.
As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in the type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, exposure to triggering drugs such as the
halogenated volatile anesthetics biases RyR1 to an open state, resulting in uncontrolled Ca2+ release, sarcomere tension and heat production. Restoration of Ca2+ into the SR also consumes ATP, generating a further untenable metabolic load. When anesthetizing patients with known MH mutations, the non-triggering intravenous general anesthetic propofol is commonly substituted for triggering anesthetics. Evidence of direct binding of anesthetic agents to RyR1 or its binding partners is scant, and the atomic-level interactions of propofol with RyR1 are entirely unknown. Here, we show that propofol decreases RyR1 opening in heavy SR vesicles and planar lipid bilayers, and that it inhibits activator-induced Ca2+ release from SR in human skeletal muscle. In addition to confirming direct binding, photoaffinity labeling using m-azipropofol (AziPm) revealed several putative propofol binding sites on RyR1. Prediction of binding affinity by molecular dynamics simulation suggests that propofol binds at least one of these sites at clinical concentrations. These findings invite the hypothesis that in addition to propofol not triggering MH, it may also be protective against MH by inhibiting induced Ca2+ flux through RyR1.
Inhibition of activated factor XI reduces thrombogenesis while maintaining physiological hemostasis, with the expectation of reduced bleeding risk compared with standard of care in the clinical setting. Asundexian (BAY 2433334), an activated factor XI inhibitor, is in clinical development for the prevention of thromboembolic events. The effect of asundexian and its plasma metabolite M10 on cardiac repolarization and potential interactions with the hNav1.5 sodium, hCav1.2 calcium, and human ether-à-go-go-related gene (hERG) potassium channels was investigated in vitro. Additionally, asundexian effects on cardiac parameters and electrocardiogram were examined in telemetered beagle dogs. A randomized, placebo-controlled, 4-way crossover, thorough QT study in healthy adults evaluated the influence of 50 and 150 mg of asundexian on the corrected QT interval, including 400 mg of moxifloxacin as positive control. Across all studies, asundexian and M10 were not associated with any effects on cardiac repolarization. The largest in vitro effects of asundexian (approximately 20% inhibition) were seen for hCav1.2 and hERG. Throughout the thorough QT study, the upper limits of the one-sided 95% confidence interval of placebo-corrected mean changes from baseline in Fridericia corrected QT for 50 and 150 mg of asundexian were below Δ = 10 milliseconds. Asundexian demonstrated favorable safety and tolerability profiles.
Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.
Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis. SLC9C1 activation is further regulated by cAMP, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH–sAC–cAMP signalling pathway in metazoa, required for sperm motility and fertilization. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration—the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.
KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as keystone of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies reveal pore “turret arch” bonding as a KCNQ structural novelty and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space.
Significance Statement NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.
PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.
BODIPY and BODIPY-derived systems are widely applied as fluorophores and as probes for viscosity detection in solvents and biological media. Their orientational and rotational dynamics in biological media are thus of vital mechanistic importance and extensively investigated. In this contribution, polarization-resolved confocal microscopy is used to determine the orientation of an amphiphilic BODIPY-cholesterol derivative in homogeneous giant unilamellar vesicles (GUV) made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The BODIPY-moiety of the molecule is placed near the polar headgroups, and the cholesterol moiety is embedded in the membrane along the acyl chain of the lipids. The rotational relaxation of fluorophore is conventionally investigated by time-resolved emission anisotropy (TEA); and this method is also used here. However, TEA depends on the emission of the fluorophore and may not be useful to probe rotational dynamics of the non-emissive triplet states. Thus, we employ femtosecond transient absorption anisotropy (TAA), that relies on the absorption of the molecule to complement the studies of the amphiphilic BODIPY in DCM and GUV. The photoinduced anisotropy of the BODIPY molecule in DCM decays tri-exponentially, the decay components (sub-5 ps, 43 ps and 440 ps) of anisotropy are associated with the non-spherical shape of the BODIPY molecule. However, the anisotropy decay in homogenous GUVs follows a biexponential decay; which arises from the wobbling-in-a-cone motion of the non-spherical molecule in the high viscous lipid bilayer media. The observations for the BODIPY-chol molecule in the GUV environment by TAA will extend to the investigation of non-emissive molecules in cellular environment since GUV structure and size resembles the membrane of a biological cell.
The antimicrobial peptide Smp24, originally derived from the venom of Scorpio maurus palmatus, is a promising candidate for further drug development. However, before doing so, greater insight into the mechanism of action is needed to construct a reliable structure–activity relationship. The aim of this study was to specifically investigate the critical early stages of peptide-induced membrane disruption. Single-channel current traces were obtained via planar patch-clamp electrophysiology, with multiple types of pore-forming events observed, unlike those expected from the traditional, more rigid mechanistic models. To better understand the molecular-level structures of the peptide-pore assemblies underlying these observed conductance events, molecular dynamics simulations were used to investigate the peptide structure and orientation both before and during pore formation. The transition of the peptides to transmembrane-like states within disordered toroidal pores occurred due to a peptide-induced bilayer-leaflet asymmetry, explaining why pore stabilization does not always follow pore nucleation in the experimental observations. To fully grasp the structure–activity relationship of antimicrobial peptides, a more nuanced view of the complex and dynamic mechanistic behaviour must be adopted
Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.
The ureolytic bacterium Sporosarcina pasteurii is commonly used for Microbial Induced Calcium Carbonate Precipitation (MICP). This process has a variety of applications in the fields of construction, geotechnical engineering, and environmental remediation. However, the factors influencing urease activity of S. pasteurii during cultivation are not yet fully understood. Even though there is debate over whether higher urease activity is in fact beneficial for MICP applications, knowledge about urease production can help provide ureolytic biomass more cost- effectively, reducing overall production costs. This study revisits the effect of various cultivation conditions on growth and urease activity by using an automated high-throughput microbioreactor system combined with a novel system for high-throughput urease activity quantification. This experimental set-up allows for unprecedented data density and enables new insights into urease production of S. pasteurii. Several factors were tested, including oxygen limitation, the feeding of urea, choice of ammonium salt, the proportion of ammonium salt in the medium, and lowering the pH during cultivation; none of these had a notable impact on urease production. Only the addition of a broad spectrum of nutrients through regular feeding with highly concentrated yeast extract and glucose led to a 70 % increased specific urease activity compared to a batch culture. These results can improve the understanding of the regulatory mechanisms governing urease expression in S. pasteurii during cultivation, and allow to adapt the cultivation process accordingly. Additionally, the new system for automated high-throughput enzyme activity determination presented in this study could be applied to optimize bioprocesses involving other ion producing enzymes.
Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide’s inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.
We develop a simple model of ionic current through neuronal membranes as a function of membrane potential and extracellular ion concentration. The model combines a simplified Poisson–Nernst–Planck (PNP) model of ion transport through individual ion channels with channel activation functions calibrated from ad hoc in-house experimental data. The simplified PNP model is validated against bacterial gramicidin A ion channel data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and exhibits remarkable agreement with the experimentally measured current–voltage curves for the differentiated human neural cells. All relevant data and code related to the ion flow models are available at Werneck et al. (2023)
Fusion of biological membranes is fundamental in various physiological events. The fusion process involves several intermediate stages with energy barriers that are tightly dependent on the mechanical and physical properties of the system, one of which is membrane tension. As previously established, the late stages of fusion, including hemifusion diaphragm and pore expansions, are favored by membrane tension. However, a current understanding of how the energy barrier of earlier fusion stages is affected by membrane tension is lacking. Here, we apply a newly developed experimental approach combining micropipette-aspirated giant unilamellar vesicles and optically trapped membrane-coated beads, revealing that membrane tension inhibits lipid mixing. We show that lipid mixing is 6 times slower under a tension of 0.12 mN/m compared with tension-free membranes. Furthermore, using continuum elastic theory, we calculate the dependence of the hemifusion stalk formation energy on membrane tension and intermembrane distance and find the increase in the corresponding energy barrier to be 1.6 kBT in our setting, which can explain the increase in lipid mixing time delay. Finally, we show that tension can be a significant factor in the stalk energy if the pre-fusion intermembrane distance is on the order of several nanometers, while for membranes that are tightly docked, tension has a negligible effect.
Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This
study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (r) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QIxp. QI and r values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters
Some antimicrobial peptides (AMPs) have potent bactericidal activity and are being considered as potential alternatives to classical antibiotics. In response to an infection, such AMPs are often produced in animals alongside other peptides with low or no perceivable antimicrobial activity, whose role is unclear. Here we show that six AMPs from the Winter Flounder (WF) act in synergy against a range of bacterial pathogens and provide mechanistic insights into how this increases the cooperativity of the dose-dependent bactericidal activity and potency that enable therapy. Only two WF AMPs have potent antimicrobial activity when used alone but we find a series of two-way combinations, involving peptides which otherwise have low or no activity, yield potent antimicrobial activity. Weakly active WF AMPs modulate the membrane interactions of the more potent WF AMPs and enable therapy in a model of Acinetobacter baumannii burn wound infection. The observed synergy and emergent behaviour may explain the evolutionary benefits of producing a family of related peptides and are attractive properties to consider when developing AMPs towards clinical applications.
Human genetic studies have revealed rare missense and protein-truncating variants in GRIN2A, encoding for the GluN2A subunit of the NMDA receptors, that confer significant risk for schizophrenia (SCZ). Mutations in GRIN2A are also associated with epilepsy and developmental delay/intellectual disability (DD/ID). However, it remains enigmatic how alterations to the same protein can result in diverse clinical phenotypes. Here, we performed functional characterization of human GluN1/GluN2A heteromeric NMDA receptors that contain SCZ-linked GluN2A variants, and compared them to NMDA receptors with GluN2A variants associated with epilepsy or DD/ID. Our findings demonstrate that SCZ-associated GRIN2A variants were predominantly loss-of-function (LoF), whereas epilepsy and DD/ID-associated variants resulted in both gain- and loss-of-function phenotypes. We additionally show that M653I and S809R, LoF GRIN2A variants associated with DD/ID, exert a dominant-negative effect when co-expressed with a wild-type GluN2A, whereas E58Ter and Y698C, SCZ-linked LoF variants, and A727T, an epilepsy-linked LoF variant, do not. These data offer a potential mechanism by which SCZ/epilepsy and DD/ID-linked variants can cause different effects on receptor function and therefore result in divergent pathological outcomes.
Background: Familial hemiplegic migraine is a severe autosomal dominant subtype of migraine with aura characterized by transient motor weakness during attacks. Previously identified genes CACNA1A, ATP1A2, SCN1A and PRRT2 account for less than 20% of cases with hemiplegic migraine referred for genetic diagnosis.
Objectives and Methods: To identify a novel gene, we conducted a whole-genome linkage analysis combined with mini-exome sequencing in a four-generation pedigree with hemiplegic migraine. A candidate ion channel gene was analyzed for mutations in six other affected pedigrees comprising at least three available affected members, and in a large panel of unrelated probands with hemiplegic migraine referred for molecular diagnosis, all without mutations in the known genes. The functional consequences of the identified variants were determined.
Results: In the discovery pedigree, we identified a heterozygous missense mutation (c.4438A>G, p.Lys1480Glu) in the neuronal voltage-gated sodium channel gene SCN2A, which cosegregated with the hemiplegic migraine phenotype. We detected another mutation (c.769T>A, p.Phe257Ile) cosegregating with hemiplegic migraine in a second family, in which two members also had infantile seizures. A third variant (c.3955C>G, p.Arg1319Gly) was found in a sporadic hemiplegic migraine case. All three SCN2A variants were absent in the genome aggregation database gnomAD. Heterologous expression in HEK293T cells coupled with automated patch clamp recording demonstrated abnormal voltage-dependent and kinetic properties of all three SCN2A variants.
Conclusions:Dysfunction of the neuronal sodium channel SCN2A can be associated with familial and sporadic hemiplegic migraine. Our finding expands the genetic landscape for migraine and contributes to the diverse genotype-phenotype spectrum associated with SCN2A.
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.
Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving membrane protein YeeE (TsuA) was characterized. However, the precise function of YeeE and a putative cofactor in the
thiosulfate ion uptake pathway remained unclear. Here, we assessed selective thiosulfate transport via YeeE in vitro and characterized YeeD (TsuB) as an adjacent and essential cofactor for YeeE-mediated thiosulfate uptake in vivo. We further showed that YeeD possesses thiosulfate decomposition activity
and that a conserved cysteine in YeeD was modified in several forms in the presence of thiosulfate. Finally, the crystal structure of a YeeE-YeeD fusion protein at 2.6-Å resolution revealed their interactions. The association was evaluated by a binding assay using purified proteins. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.
A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition.
Brugada Syndrome (BrS) is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in the cardiac sodium channel gene, SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging and ∼79% of SCN5A missense variants in ClinVar are currently classified as Variants of Uncertain Significance (VUS). An in vitro SCN5A-BrS automated patch clamp assay was generated for high-throughput functional studies of NaV1.5. The assay was independently studied at two separate research sites – Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute – revealing strong correlations, including peak INa density (R2=0.86). The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. The assay accurately distinguished benign controls (24/25) from pathogenic controls (23/24). Odds of Pathogenicity values derived from the experimental results yielded 0.042 for normal function (BS3 criterion) and 24.0 for abnormal function (PS3 criterion), resulting in up to strong evidence for both ACMG criteria. The calibrated assay was then used to study SCN5A VUS observed in four families with BrS and other arrhythmia phenotypes associated with SCN5A loss-of-function. The assay revealed loss-of-function for three of four variants, enabling reclassification to likely pathogenic. This validated APC assay provides clinical-grade functional evidence for the reclassification of current VUS and will aid future SCN5A-BrS variant classification.
Transmembrane β-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane β-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded β-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (∼0.5 nm pore diameter) to 430 pS (∼1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand β-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.
Long-term exposure to cancer-related therapeutics has been linked to alterations of cardiac function in patients. The Stem Cell Working Group as part of the Health and Environmental
Science Institute (HESI) currently endeavors to gain further insight into chronic cardiotoxicity. The objective of the HESI study is to optimize non-clinical safety assessment strategies
of chronic cardiotoxicity by testing prolonged exposure of compounds on different cell-based assay systems using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), by investigating e.g. contractility or contractile force
Peptide/Histidine Transporter PHT1 (SLC15A4) is expressed in lysosomal membranes of immune cells where it plays an important role in metabolic and inflammatory signaling. PHT1 is an H+-coupled/histidine symporter that can transport a broad range of oligopeptides, including a variety of bacterial-derived peptides. Moreover, it enables the scaffolding of various metabolic signaling molecules and interacts with key regulatory elements of the immune response. Therefore, it is not surprising that PHT1 is associated with the development of autoimmune diseases, such as systemic lupus erythematosus (SLE). Unfortunately, the pharmacological development of PHT1 has been hampered by the lack of appropriate transport assays. With the aim to address this shortcoming, a novel transport assay based on solid supported membrane-based electrophysiology (SSME) is presented. Key findings of the present SSME studies include the first recordings of electrophysiological properties, a pH dependence analysis, an assessment of PHT1 substrate selectivity, as well as the transport kinetics of the identified substrates. In contrast to previous works, PHT1 is studied its native lysosomal environment. Moreover, observed substrate selectivity is validated by molecular docking. Overall, this new SSME-based assay is expected to contribute to unlock the pharmacological potential of PHT1 and to deepen the understanding of its functional properties.
Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain and other neurotoxic symptoms in vertebrates. Here we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.
Variants in the GABRB gene, which encodes the β subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the β+/α− interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.
Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic α3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9–PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
Stem cell–derived neurons provide a novel and unique model for studying human drug targets in their physiologically relevant environment of terminally differentiated, postmitotic cells. It has been increasingly recognized that associated proteins modulate the physiology and pharmacology of neuronal proteins. Therefore, assays that investigate neuronal toxicity, drug effects, or basic cellular functions of neurons can mostly benefit from the development of human neurons derived from induced pluripotent stem cells (hiPSC-neurons). In 2011, Fujifilm Cellular Dynamics International (CDI) announced the commercial launch of human iCell® Neurons for use in neuroscience drug discovery, neurotoxicity screens, and other health research. This was the first commercially available iPSC-derived neuronal type available3. It was a mixture of GABAergic and glutamatergic post-mitotic neurons which rapidly regenerate post-thaw. Over the years, Fujifilm Cellular Dynamics International has developed a range of hiPSC-neurons with either healthy or diseased models. These can be used to study a number of different neurodegenerative diseases including Alzheimer’s Disease, one of the leading causes on death in the United States5.
The KV7 channels are a family of voltage-gated potassium ion channels with five members (KV7.1 - 7.5) encoded by the KCNQ1-5 genes1. The channels exist as tetramers, with each subunit containing six transmembrane domains with cytoplasmic N- and C-termini. The long intracellular terminus is essential for tetramerization as well as interaction with critical regulators such as PIP2, calmodulin, protein kinase C and ankyrin G2. KV7-mediated currents are voltage activated, slowly activating and non-inactivating and are involved in repolarization of the cell membrane potential, thereby controlling cell excitability. KV7.1 channels are primarily expressed in cardiac cells whereas KV7.2, KV7.3 and KV7.5 are widely distributed in neuronal and primary sensory cells2. KV7.2/7.3 heteromeric channels primarily underlie the neuronal M-current (IKM)which plays a crucial role in repolarizing neuronal membrane potential after a depolarizing input which limits repetitive firing and is, therefore, a key mechanism in spike frequency adaptation.
In non-small cell lung cancer (NSCLC) treatment, targeted therapies benefit only a subset of NSCLC, while radiotherapy responses are not durable and toxicity limits therapy. We find that a GABA(A) receptor activator, AM-101, impairs viability and clonogenicity of NSCLC primary and brain metastatic cells. Employing an ex vivo ‘chip’, AM-101 is as efficacious as the chemotherapeutic docetaxel, which is used with radiotherapy for advanced-stage NSCLC. In vivo, AM-101 potentiates radiation, including conferring a survival benefit to mice bearing NSCLC intracranial tumors. GABA(A) receptor activation stimulates a selective-autophagic response via multimerization of GABA(A) Receptor-Associated Protein (GABARAP), stabilization of mitochondrial receptor Nix, and utilization of ubiquitin-binding protein p62. A targeted-peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP-Nix multimerization axis triggering autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity.
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
In this application note, InnoVitro GmbH and Axol Biosciences Limited show that distinct pharmacological effects can be observed between axoCellsTM atrial and ventricular hiPSC-derived cardiomyocytes when using the FLEXcyte 96 platform to assess contractility, providing a powerful tool to perform in vitro drug screening and disease modelling on subtype-specific hiPSC-derived cardiomyocytes.
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
The human muscle-type nicotinic acetylcholine receptor α12β1δε (nAChR) is a complex transmembrane receptor needed for drug screening for disorders like congenital myasthenic syndromes and multiple pterygium syndrome. Until today, most models are still using the nAChR from Torpedo californica electric ray. A simple reproducible cellular system expressing functional human muscle-type nAChR is still missing. This study addressed this issue and further tested the hypothesis that different chaperones, both biological and chemical, and posttranslational modification supporting substances as well as hypothermic incubation are able to increase the nAChR yield. Therefore, Gibson cloning was used to generate transfer plasmids carrying the sequence of nAChR or chosen biological chaperones to support the nAChR folding in the cellular host. Viral transduction was used for stable integration of these transgenes in Chinese hamster ovary cells (CHO). Proteins were detected with Western blot, in-cell and on-cell Western, and the function of the receptor with voltage clamp analysis. We show that the internalization of nAChR into plasma membranes was sufficient for detection and function. Additional transgenic overexpression of biological chaperones did result in a reduced nAChR expression. Chemical chaperones, posttranslational modification supporting substances, and hypothermic conditions are well-suited supporting applications to increase the protein levels of different subunits. This study presents a stable and functional cell line that expresses human muscle-type nAChR and yields can be further increased using the chemical chaperone nicotine without affecting cell viability. The simplified access to this model system should enable numerous applications beyond drug development.
Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson’s disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 μM and 6.159 μM, respectively. K-ATP channel blockers glibenclamide (50 μM) or 5-hydroxydecanoate (5-HD, 250 μM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg−1·d−1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 μM) than glibenclamide (KD = 24.32 μM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.
Most of what is known concerning the luminal passage of materials through nanopores arises from electrical measurements. Whether nanopores are biological, solid-state, synthetic, hybrid, glass-capillary-based, or protein ion channels in cells and tissues, characteristic signatures embedded in the flow of ionic current are foundational to understanding functional behavior. In contrast, this work describes passage through a nanopore that occurs without producing an electrical signature. We refer to the phenomenon as “silent translocation.” By definition, silent translocations are invisible to the standard tools of electrophysiology and fundamentally require a simultaneous ancillary measurement technique for positive identification. As a result, this phenomenon has been largely unexplored in the literature. Here, we report on a derivative of Cyanine 5 (sCy5a) that passes through the α-hemolysin (αHL) nanopore silently. Simultaneously acquired single-molecule fluorescence and single-channel electrical recordings from bilayers formed over a closed microcavity demonstrate that translocation does indeed take place, albeit infrequently. We report observations of silent translocation as a function of time, dye concentration, and nanopore population in the bilayer. Lastly, measurement of the translocation rate as a function of applied potential permits estimation of an effective energy barrier for transport through the pore as well as the effective charge on the dye, all in the absence of an information-containing electrical signature.
Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, are associated with neurodevelopmental disorders including epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by the use of a neonatal-expressed alternatively spliced isoform of NaV1.6 (NaV1.6N), and engineered mutations to render the channel tetrodotoxin (TTX) resistant. In this study, we investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents that differed significantly in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Optogenetic control of cells is a key life sciences method and promises novel therapies. Here we report on ChReef, an improved variant of the channelrhodopsin ChRmine, enabling efficient (nano-Joule) and sustained optogenetic stimulation of excitable cells. ChReef offers minimal photocurrent desensitization, a unitary conductance of 80 fS and closing kinetics of 30 ms, which together enable reliable optogenetic control of cardiac and nervous systems at low light levels with good temporal fidelity. We demonstrate efficient and reliable red-light pacing and depolarization block of ChReef-expressing cardiomyocyte clusters. ChReef-expression in the optic nerve restores visual function in blind mice with light sources as weak as an iPad screen. ChReef enables stimulation of the auditory nerve at up to 50-100 Hz with good temporal precision and low pulse energy threshold (170 nJ) close that of electrical stimulation (50 nJ). Thus, ChReef outperforms ChRmine and bears great potential for life sciences and clinical application.
Fungal pathogens can cause life-threatening infections, yet current antifungals are inadequate at treating many of these, highlighting the importance of novel drug discovery. Here, we report hit compound L14, a novel 8-hydroxyquinoline derivative with potent and broad-spectrum antifungal activity. In vitro experiments exhibited that L14 had better activity and lower cytotoxicity than that of clioquinol and showed synergy in combination with fluconazole (FLC). In a Candida albicans-infected murine model, L14 at 2 mg/kg showed better in vivo efficacy than clioquinol at reducing fungal burden and extending the survival of C. albicans-infected mice. In addition, L14 alone or in combination with FLC had significant inhibitory activity against hypha and biofilm formation. Overall, our data indicated that 8-hydroxyquinoline derivative L14 has favorable pharmacokinetics and acceptable safety profiles and could be further investigated as a promising antifungal hit compound.
In order to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development1. Optimizing baseline function of human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) is essential for their effective application in models of cardiac toxicity and disease2. Here, hiPSC-CMs were cultured on flexible substrates using the FLEXcyte 96 system. The promaturation environment enables observation of inotropic and chronotropic compound effects, which are typically hard to detect with 2D monolayers on overly stiff substrates3. For example, the beta-adrenergic agonist isoprenaline, or isoproterenol, is well known for its positive inotropic effects on the human heart, although common hiPSC-CM in vitro assays fail to display this physiological response by this compound.
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one “hit” against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Amphipathic arginine-rich peptide, A2-17, exhibits moderate perturbation of lipid membranes and the highest cell penetration among its structural isomers. We investigated the direct cell-membrane penetration mechanism of the A2-17 peptide while focusing on structural flexibility. We designed conformationally constrained versions of A2-17, stapled (StpA2-17) and stitched (StchA2-17), whose α-helical conformations were stabilized by chemical crosslinking. Circular dichroism confirmed that StpA2-17 and StchA2-17 had higher α-helix content than A2-17 in aqueous solution. Upon liposome binding, only A2-17 exhibited a coil-to-helix transition. Confocal microscopy revealed that A2-17 had higher cell penetration efficiency than StpA2-17, whereas StchA2-17 remained on the cell membrane without cell penetration. Although the tryptophan fluorescence analysis suggested that A2-17 and its analogs had similar membrane-insertion positions between the interface and hydrophobic core, StchA2-17 exhibited a higher membrane affinity than A2-17 or StpA2-17. Atomic force microscopy demonstrated that A2-17 reduced the mechanical rigidity of liposomes to a greater extent than StpA2-17 and StchA2-17. Finally, electrophysiological analysis showed that A2-17 induced a higher charge influx through transient pores in a planer lipid bilayer than StpA2-17 and StchA2-17. These findings indicate that structural flexibility, which enables diverse conformations of A2-17, leads to a membrane perturbation mode that contributes to cell membrane penetration.
70 kDa heat shock protein Hsp70 (also termed HSP70A1A) is the major stress-inducible member of the HSP70 chaperone family, which is present on the plasma membranes of various tumor cells, but not on the membranes of the corresponding normal cells. The exact mechanisms of Hsp70 anchoring in the membrane and its membrane-related functions are still under debate, since the protein does not contain consensus signal sequence responsible for translocation from the cytosol to the lipid bilayer. The present study was focused on the analysis of the interaction of recombinant human Hsp70 with the model phospholipid membranes. We have confirmed that Hsp70 has strong specificity toward membranes composed of negatively charged phosphatidylserine (PS), compared to neutral phosphatidylcholine membranes. Using differential scanning calorimetry, we have shown for the first time that Hsp70 affects the thermotropic behavior of saturated PS and leads to the interdigitation that controls membrane thickness and rigidity. Hsp70-PS interaction depended on the lipid phase state; the protein stabilized ordered domains enriched with high-melting PS, increasing their area, probably due to formation of quasi-interdigitated phase. Moreover, the ability of Hsp70 to form ion-permeable pores in PS membranes may also be determined by the bilayer thickness. These observations contribute to a better understanding of Hsp70-PS interaction and biological functions of membrane-bound Hsp70 in cancer cells.
Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl−) as compared to bromide-(Br−), fluoride-(F−), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 μM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl− channel.
Mammalian neuronal tetrameric ionotropic glutamate receptors (iGluRs) are thought to have originally arisen from the fusion of a bacterial substrate binding protein (SBP) with an inverted potassium channel. This hypothesis is based on structural and sequential similarities between the ligand binding and channel domains of iGluR subunits with SBPs and potassium channels. Ligand binding occurs at the interface between two lobed domains in both ligand binding domains (LBDs) and leads to closure of the shell-like structure, which is considered to be a key element in the transition from ligand recognition to ion channel gating in iGluRs. Here we report the functional coupling of the ectoine-binding protein EhuB to the channel pore of the GluR0 receptor. Fusion of an unmodified EhuB-binding protein to the transmembrane domain of GluR0 did not result in activation of the channel pore. Only by stabilizing the inserted EhuB-binding domain with a dimerization interface the resulting chimera was activated by ectoine, resembling the activation properties of other iGluRs. These results demonstrate the functional compatibility of SBPs to the gate of the channel pore of an iGluR and highlight the role of LBD dimerization in the functional evolution of iGluRs. Based on the high specificity and affinity of SBPs for an incredible variety of substrates, our results demonstrate the competence of SBP/ion channel chimeras for the development of new Biosensors for specific recognition of analytes by functionally linking a bacterial binding protein to the channel pore of an iGluR.
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels.
Results
We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP.
Conclusions
We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.
The toxin AaH-II, from the scorpion Androctonus australis Hector venom, is a 64 amino acid peptide that targets voltage-gated Na+ channels (VGNCs) and slows their inactivation. While at macroscopic cellular level AaH-II prolongs the action potential (AP), a functional analysis of the effect of the toxin in the axon initial segment (AIS), where VGNCs are highly expressed, was never performed so far. Here, we report an original analysis of the effect of AaH-II on the AP generation in the AIS of neocortical layer-5 pyramidal neurons from mouse brain slices. After determining that AaH-II does not discriminate between Nav1.2 and Nav1.6, i.e. between the two VGNC isoforms expressed in this neuron, we established that 7 nM was the smallest toxin concentration producing a minimal detectable deformation of the somatic AP after local delivery of the toxin. Using membrane potential imaging, we found that, at this minimal concentration, AaH-II substantially widened the AP in the AIS. Using ultrafast Na+ imaging, we found that local application of 7 nM AaH-II caused a large increase in the slower component of the Na+ influx in the AIS. Finally, using ultrafast Ca2+ imaging, we observed that 7 nM AaH-II produces a spurious slow Ca2+ influx via Ca2+-permeable VGNCs. Molecules targeting VGNCs, including peptides, are proposed as potential therapeutic tools. Thus, the present analysis in the AIS can be considered a general proof-of-principle on how high-resolution imaging techniques can disclose drug effects that cannot be observed when tested at the macroscopic level.
The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.
The persistent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants accentuates the great demand for developing effective therapeutic agents. Here, we report the development of an orally bioavailable SARS-CoV-2 3C-like protease (3CLpro) inhibitor, namely simnotrelvir, and its preclinical evaluation, which lay the foundation for clinical trials studies as well as the conditional approval of simnotrelvir in combination with ritonavir for the treatment of COVID-19. The structure-based optimization of boceprevir, an approved HCV protease inhibitor, leads to identification of simnotrelvir that covalently inhibits SARS-CoV-2 3CLpro with an enthalpy-driven thermodynamic binding signature. Multiple enzymatic assays reveal that simnotrelvir is a potent pan-CoV 3CLpro inhibitor but has high selectivity. It effectively blocks replications of SARS-CoV-2 variants in cell-based assays and exhibits good pharmacokinetic and safety profiles in male and female rats and monkeys, leading to robust oral efficacy in a male mouse model of SARS-CoV-2 Delta infection in which it not only significantly reduces lung viral loads but also eliminates the virus from brains. The discovery of simnotrelvir thereby highlights the utility of structure-based development of marked protease inhibitors for providing a small molecule therapeutic effectively combatting human coronaviruses.
Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.
Technologies capable of assessing cellular metabolites with high precision and temporal resolution are currently limited. Recent developments in the field of nanopore sensor sallow the non-stochastic quantification of metabolites, where a nanopore is acting as an electrical transducer for selective substrate binding proteins (SBPs). Here we show that incorporation of the pore-forming toxin Cytolysin A (ClyA) into the plasma membrane of Chinese hamster ovary cells (CHO-K1) results in the appearance of single-channel conductance amenable to multiplexed automated patch-clamp (APC) electrophysiology. In CHO-K1 cells, SBPs modify the ionic current flowing though ClyA nanopores, thus demonstrating its potential for metabolite sensing of living cells. Moreover, we developed a graphical user interface for the analysis of the complex signals resulting from multiplexed APC recordings. This system lays the foundation to bridge the gap between recent advances in the nanopore field (e.g., proteomic and transcriptomic) and potential cellular applications.
In the quest to produce artificial cells, one key challenge that remains to besolved is the recreation of a complex cellular membrane. Among the existingmodels, giant unilamellar vesicles (GUVs) are particularly interesting due totheir intrinsic compartmentalisation ability and their resemblance in size andshape to eukaryotic cells. Many techniques have been developed to produceGUVs all having inherent advantages and disadvantages. Here, the authorsshow that fluorinated silica nanoparticles (FNPs) used to form Pickeringemulsions in a fluorinated oil can destabilise lipid nanosystems to templatethe formation of GUVs. This technique enables GUV production across abroad spectrum of buffer conditions, while preventing the leakage of theencapsulated components into the oil phase. Furthermore, a simplecentrifugation process is sufficient for the release of the emulsion-trappedGUVs, bypassing the need to use emulsion-destabilising chemicals. Withfluorescent FNPs and transmission electron microscopy, the authors confirmthat FNPs are efficiently removed, producing contaminant-free GUVs. Furtherexperiments assessing the lateral diffusion of lipids and unilamellarity of theGUVs demonstrate that they are comparable to GUVs produced viaelectroformation. Finally, the ability of incorporating transmembrane proteinsis demonstrated, highlighting the potential of this method for the productionof GUVs for artificial cell applications.
A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We show that the membrane translocating loop of α-hemolysin can be engineered to translocate functional peptides up to 52 amino acids across lipid membranes. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures capable of signal transduction.
The US Food and Drug Administration has approved a number of chimeric antigen receptor (CAR) T-cell therapies. Due to the nature of CAR T cells as “living drugs”, they display a unique toxicity profile. As CAR T-cell therapy is extending towards multiple diseases and being broadly employed in hematology and oncology, being able to reliably predict treatment efficacy and a quantification of responses are of high relevance. Furthermore, for continued breakthroughs, novel CAR designs are needed. This includes different antigenbinding domains such as antigen-ligand binding partners and variable lymphocyte receptors (1). Now, after amazing advances for treating blook cancers, CAR T cell therapy is showing promise for solid tumors.
In general, identifying T cells that kill cancer cells in vivo is critical to the development of successful cell therapies. The label-free AtlaZ immune cell killing assay can be used to measure rate of killing at Effector:Target (E:T) ratios to predict in vivo activity. In order to gain a deeper understanding of cancer cells, real-time and continuous monitoring is necessary to access kinetic and phenotypic information. Such monitoring captures also unique toxicity profiles of CAR T cells.
Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis. SLC9C1 activation is further regulated by cAMP, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH–sAC–cAMP signalling pathway in metazoa, required for sperm motility and fertilization. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration—the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.
Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases – for example, the parasitic blood fluke infection, schistosomiasis – are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola. This is due to a single amino acid change within the target of PZQ, a transient receptor potential ion channel (TRPMPZQ), in Fasciola species. Here we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and damage to the protective tegument of these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad spectrum activity was manifest as BZQ adopts a pose within the binding pocket of TRPMPZQ dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad spectrum flukicide.
Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.
Background and Purpose
Select neuroactive steroids tune neural activity by modulating excitatory and inhibitory neurotransmission, including the endogenous cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC), which is an N-methyl-d-aspartate (NMDA) receptor positive allosteric modulator (PAM). NMDA receptor PAMs are potentially an effective pharmacotherapeutic strategy to treat conditions associated with NMDA receptor hypofunction.
Experimental Approach
Using in vitro and in vivo electrophysiological recording experiments and behavioural approaches, we evaluated the effect of SAGE-718, a novel neuroactive steroid NMDA receptor PAM currently in clinical development for the treatment of cognitive impairment, on NMDA receptor function and endpoints that are altered by NMDA receptor hypoactivity and assessed its safety profile.
Key Results
SAGE-718 potentiated GluN1/GluN2A-D NMDA receptors with equipotency and increased NMDA receptor excitatory postsynaptic potential (EPSP) amplitude without affecting decay kinetics in striatal medium spiny neurons. SAGE-718 increased the rate of unblock of the NMDA receptor open channel blocker ketamine on GluN1/GluN2A in vitro and accelerated the rate of return on the ketamine-evoked increase in gamma frequency band power, as measured with electroencephalogram (EEG), suggesting that PAM activity is driven by increased channel open probability. SAGE-718 ameliorated deficits due to NMDA receptor hypofunction, including social deficits induced by subchronic administration of phencyclidine, and behavioural and electrophysiological deficits from cholesterol and 24(S)-HC depletion caused by 7-dehydrocholesterol reductase inhibition. Finally, SAGE-718 did not produce epileptiform activity in a seizure model or neurodegeneration following chronic dosing.
Conclusions and Implications
These findings provide strong evidence that SAGE-718 is a neuroactive steroid NMDA receptor PAM with a mechanism that is well suited as a treatment for conditions associated with NMDA receptor hypofunction.
Na+/H+ exchangers (NHE) are found in all cells to regulate intracellular pH, sodium levels and cell volume. The NHE isoform 9 (SLC9A9) fine-tunes endosomal pH, and its activity is linked to glioblastoma, epilepsy, autism spectrum and attention-deficit-hyperactivity disorders. Here, we report cryo-EM structures of horse NHE9 and a cysteine-variant at 3.6 and 3.1 Å resolution, respectively. We show how lysine residues, from a previously unresolved TM2-TM3 β-hairpin loop domain, are positioned above the dimerization interface and interact with the endosomal-specific PI-(3,5)P2 lipid, together with residues located on dimer domain helices. Thermal-shift assays, solid-state membrane (SSM) electrophysiology and MD simulations, corroborates that NHE9 can specifically bind PI-(3,5)P2, and that its addition stabilizes the homodimer and enhances NHE9 activity. We have further determined the cryo-EM structure of E. coli NhaA, confirming the expected coordination of cardiolipin at the dimerization interface, solidifying the concept that Na+/H+ exchanger dimerization and transporter activity can be regulated by specific lipids. Taken together, we propose that the activity of NHE9 is regulated by the PI-(3,5)P2 lipid upon reaching endosomes, which we refer to as an lipid-activation-upon-arrival model.
Background:
Interpreting the clinical significance of putative splice-altering variants outside 2-base pair canonical splice sites remains difficult without functional studies.
Methods:
We developed Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed minigene-based assay, to test variant effects on RNA splicing quantified by high-throughput sequencing. We studied variants in SCN5A, an arrhythmia-associated gene which encodes the major cardiac voltage-gated sodium channel. We used the computational tool SpliceAI to prioritize exonic and intronic candidate splice variants, and ClinVar to select benign and pathogenic control variants. We generated a pool of 284 barcoded minigene plasmids, transfected them into Human Embryonic Kidney (HEK293) cells and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), sequenced the resulting pools of splicing products, and calibrated the assay to the American College of Medical Genetics and Genomics scheme. Variants were interpreted using the calibrated functional data, and experimental data were compared to SpliceAI predictions. We further studied some splice-altering missense variants by cDNA-based automated patch clamping (APC) in HEK cells and assessed splicing and sodium channel function in CRISPR-edited iPSC-CMs.
Results:
ParSE-seq revealed the splicing effect of 224 SCN5A variants in iPSC-CMs and 244 variants in HEK293 cells. The scores between the cell types were highly correlated (R2=0.84). In iPSCs, the assay had concordant scores for 21/22 benign/likely benign and 24/25 pathogenic/likely pathogenic control variants from ClinVar. 43/112 exonic variants and 35/70 intronic variants with determinate scores disrupted splicing. 11 of 42 variants of uncertain significance were reclassified, and 29 of 34 variants with conflicting interpretations were reclassified using the functional data. SpliceAI computational predictions correlated well with experimental data (AUC = 0.96). We identified 20 unique SCN5A missense variants that disrupted splicing, and 2 clinically observed splice-altering missense variants of uncertain significance had normal function when tested with the cDNA-based APC assay. A splice-altering intronic variant detected by ParSE-seq, c.1891–5C>G, also disrupted splicing and sodium current when introduced into iPSC-CMs at the endogenous locus by CRISPR editing.
Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include ‘difficult-to-express’ membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins. Here we demonstrate the applicability of the eukaryotic cell-free systems based on lysates from the mammalian Chinese Hamster Ovary (CHO) and insect Spodoptera frugiperda (Sf21) cells. We demonstrate the efficiency of the systems in the de novo cell-free synthesis of the human cardiac ion channels: ether-a-go-go potassium channel (hERG) KV11.1 and the voltage-gated sodium channel hNaV1.5.
Read more in the publication here.
Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson’s disease. The plant alkaloid “nicotine” was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear.
Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice. We also established a novel humanized neuronal model of α-Syn aggregation and toxicity based on treatment of dopaminergic neurons derived from human induced pluripotent stem cells (iPSC) with α-Syn preformed fibrils (PFF) and applied this model to investigate the effects of nicotine and other compounds and their modes of action.
Results and discussion: Overall, our results showed that nicotine attenuated α-Syn-provoked neuropathology in both models. Moreover, when investigating the role of nicotinic acetylcholine receptor (nAChR) signaling in nicotine’s neuroprotective effects in iPSC-derived dopaminergic neurons, we observed that while α4-specific antagonists reduced the nicotine-induced calcium response, α4 agonists (e.g., AZD1446 and anatabine) mediated similar neuroprotective responses against α-Syn PFF-provoked neurodegeneration. Our results show that nicotine attenuates α-Syn-provoked neuropathology in vivo and in a humanized neuronal model of synucleinopathy and that activation of α4β2 nicotinic receptors might mediate these neuroprotective effects.
Conjugated oligoelectrolytes (COEs) comprise a class of cell-membrane intercalating molecules that serve as effective optical reporters. However, little is known about the photophysical properties of COEs in biological environments such as buffers, cell membranes, and intracellular organelles, which is critical to optimize performance. Herein, how COE self-assembly depends on the dielectric environment (polarity and ion content) is explored based on the representative molecule 6-ring phenylenevinylene (PV) conjugated oligoelectrolyte (COE-S6), and its optical properties within mammalian cells are subsequently studied. Two-photon fluorescence lifetime imaging microscopy (FLIM), confocal laser scanning microscopy, and optical properties in solutions are brought together to obtain information about the location, accumulation, and characteristics of the local surroundings. FLIM imaging lifetime phasor plots, decays, and fluorescence spectra on stained mammalian cells provide evidence of successful COE-S6 internalization via endocytosis. The fluorescence lifetime of COE-S6 is identical when in A549 mammalian cells and in giant unilamellar vesicle model membranes, thereby providing a correlation between living system and artificial constructs.
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.
Proteins from the Small Multidrug Resistance (SMR) family are frequently associated with horizontally transferred multidrug resistance gene arrays found in bacteria from wastewater and the human-adjacent biosphere. Recent studies suggest that a subset of SMR transporters might participate in metabolism of the common pharmaceutical metformin by bacterial consortia. Here, we show that both genomic and plasmid-associated transporters of the SMRGdx functional subtype export byproducts of microbial metformin metabolism, with particularly high export efficiency for guanylurea. We use solid supported membrane electrophysiology to evaluate the transport kinetics for guanylurea and native substrate guanidinium by four representative SMRGdx homologues. Using an internal reference to normalize independent electrophysiology experiments, we show that transport rates are comparable for genomic and plasmid-associated SMRGdx homologues, and using a proteoliposome-based transport assay, we show that 2 proton:1 substrate transport stoichiometry is maintained. Additional characterization of guanidinium and guanylurea export properties focuses on the structurally characterized homologue, Gdx-Clo, for which we examined the pH dependence and thermodynamics of substrate binding and solved an x-ray crystal structure with guanylurea bound. Together, these experiments contribute in two main ways. By providing the first detailed kinetic examination of the structurally characterized SMRGdx homologue Gdx-Clo, they provide a functional framework that will inform future mechanistic studies of this model transport protein. Second, this study casts light on a potential role for SMRGdx transporters in microbial handling of metformin and its microbial metabolic byproducts, providing insight into how native transport physiologies are co-opted to contend with new selective pressures.
As a continuation study, 29 novel triazoles containing benzyloxy phenyl isoxazole side chain were designed and synthesized based on our previous work. The majority of the compounds exhibited high potency in vitro antifungal activities against eight pathogenic fungi. The most active compounds 13, 20 and 27 displayed outstanding antifungal activity with MIC values ranging from <0.008 μg/mL to 1 μg/mL, and showed potent activity against six drug-resistant Candida auris isolates. Growth curve assays further confirmed the high potency of these compounds. Moreover, compounds 13, 20 and 27 showed a potent inhibitory activity on biofilm formation of C. albicans SC5314 and C. neoformans H99. Notably, compound 13 showed no inhibition of human CYP1A2 and low inhibitory activity against CYP2D6 and CYP3A4, suggesting a low risk of drug-drug interactions. With high potency in vitro and in vivo and good safety profiles, compound 13 will be further investigated as a promising candidate.
Members of the nucleobase/ascorbic acid transporter (NAT) gene family are found in all kingdoms of life. In mammals, the concentrative uptake of ascorbic acid (vitamin C) by members of the NAT family is driven by the Na+ gradient, while the uptake of nucleobases in bacteria is powered by the H+ gradient. Here, we report the structure and function of PurTCp, a NAT family member from Colwellia psychrerythraea. The structure of PurTCp was determined to 2.80 Å resolution by X-ray crystallography. PurTCp forms a homodimer, and each protomer has 14 transmembrane segments folded into a transport domain (core domain) and a scaffold domain (gate domain). A purine base is present in the structure and defines the location of the substrate binding site. Functional studies reveal that PurTCp transports purines but not pyrimidines and that purine binding and transport is dependent on the pH. Mutation of a conserved aspartate residue close to the substrate binding site reveals the critical role of this residue in H+-dependent transport of purines. Comparison of the PurTCp structure with transporters of the same structural fold suggests that rigid-body motions of the substrate-binding domain are central for substrate translocation across the membrane.
Voltage-gated sodium channels (Nav) are key players in excitable tissues with the capability to generate and propagate action potentials. Mutations in the genes encoding Navs can lead to severe inherited diseases, and some of these so-called channelopathies show temperature-sensitive phenotypes, for example, paramyotonia congenita, Brugada syndrome, febrile seizure syndromes, and inherited pain syndromes like erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). Nevertheless, most investigations of mutation-induced gating effects have been conducted at room temperature, and thus the role of cooling or warming in channelopathies remains poorly understood. Here, we investigated the temperature sensitivity of four Nav subtypes: Nav1.3, Nav1.5, Nav1.6, and Nav1.7, and two mutations in Nav1.7 causing IEM (Nav1.7/L823R) and PEPD (Nav1.7/I1461T) expressed in cells of the human embryonic kidney cell line using an automated patch clamp system. Our experiments at 15°C, 25°C, and 35°C revealed a shift of the voltage dependence of activation to more hyperpolarized potentials with increasing temperature for all investigated subtypes. Nav1.3 exhibited strongly slowed inactivation kinetics compared with the other subtypes that resulted in enhanced persistent current, especially at 15°C, indicating a possible role in cold-induced hyperexcitability. Impaired fast inactivation of Nav1.7/I1461T was significantly enhanced by a cooling temperature of 15°C. The subtype-specific modulation as well as the intensified mutation-induced gating changes stress the importance to consider temperature as a regulator for channel gating and its impact on cellular excitability as well as disease phenotypes.
Sunitinib (SNT)-induced cardiotoxicity is associated with abnormal calcium regulation caused by phosphoinositide 3 kinase inhibition in the heart. Berberine (BBR) is a natural compound that exhibits cardioprotective effects and regulates calcium homeostasis. We hypothesized that BBR ameliorates SNT-induced cardiotoxicity by normalizing the calcium regulation disorder via serum and glucocorticoid-regulated kinase 1 (SGK1) activation. Mice, neonatal rat cardiomyocytes (NRVMs), and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study the effects of BBR-mediated SGK1 activity on the calcium regulation disorder caused by SNT as well as the underlying mechanism. BBR offered prevention against SNT-induced cardiac systolic dysfunction, QT interval prolongation, and histopathological changes in mice. After the oral administration of SNT, the Ca2+ transient and contraction of cardiomyocytes was significantly inhibited, whereas BBR exhibited an antagonistic effect. In NRVMs, BBR was significantly preventive against the SNT-induced reduction of calcium transient amplitude, prolongation of calcium transient recovery, and decrease in SERCA2a protein expression; however, SGK1 inhibitors resisted the preventive effects of BBR. In hiPSC-CMs, BBR pretreatment significantly prevented SNT from inhibiting the contraction, whereas coincubation with SGK1 inhibitors antagonized the effects of BBR. These findings indicate that BBR attenuates SNT-induced cardiac dysfunction by normalizing the calcium regulation disorder via SGK1 activation.
Read more in the publication here.
Aim
Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored.
Methods
Loss- and gain-of-function approaches were used to investigate the role of MFN2 in cardiac response to HH. In vitro, the function of MFN2 in the contraction of primary neonatal rat cardiomyocytes under hypoxia was examined. Non-targeted metabolomics and mitochondrial respiration analyses, as well as functional experiments were performed to explore underlying molecular mechanisms.
Results
Our data demonstrated that, following 4 weeks of HH, cardiac-specific MFN2 knockout (MFN2 cKO) mice exhibited significantly better cardiac function than control mice. Moreover, restoring the expression of MFN2 clearly inhibited the cardiac response to HH in MFN2 cKO mice. Importantly, MFN2 knockout significantly improved cardiac metabolic reprogramming during HH, resulting in reduced capacity for fatty acid oxidation (FAO) and oxidative phosphorylation, and increased glycolysis and ATP production. In vitro data showed that down-regulation of MFN2 promoted cardiomyocyte contractility under hypoxia. Interestingly, increased FAO through palmitate treatment decreased contractility of cardiomyocyte with MFN2 knockdown under hypoxia. Furthermore, treatment with mdivi-1, an inhibitor of mitochondrial fission, disrupted HH-induced metabolic reprogramming and subsequently promoted cardiac dysfunction in MFN2-knockout hearts.
Conclusion
Our findings provide the first evidence that down-regulation of MFN2 preserves cardiac function in chronic HH by promoting cardiac metabolic reprogramming.
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4′-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement.
Big conductance calcium-activated (BK) channel openers can inhibit pathologically driven neural hyperactivity to control symptoms via hyperpolarizing signals to limit neural excitability. We hypothesized that BK channel openers would be neuroprotective during neuroinflammatory, autoimmune disease. The neurodegenerative disease was induced in a mouse experimental autoimmune encephalomyelitis model with translational value to detect neuroprotection in multiple sclerosis. Following the treatment with the BK channel openers, BMS-204253 and VSN16R, neuroprotection was assessed using subjective and objective clinical outcomes and by quantitating spinal nerve content. Treatment with BMS-204253 and VSN16R did not inhibit the development of relapsing autoimmunity, consistent with minimal channel expression via immune cells, nor did it change leukocyte levels in rodents or humans. However, it inhibited the accumulation of nerve loss and disability as a consequence of autoimmunity. Therefore, in addition to symptom control, BK channel openers have the potential to save nerves from excitotoxic damage and could be useful as either stand-alone neuroprotective agents or as add-ons to current disease-modifying treatments that block relapsing MS but do not have any direct neuroprotective activity.
Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.
Read more in the publication here.
Brevetoxins (PbTx) and brevenal are marine ladder-frame polyethers. PbTx binds to and activates voltage-gated sodium (Nav) channels in native tissues, whereas brevenal antagonizes these actions. However, the effects of PbTx and brevenal on recombinant Nav channel function have not been systematically analyzed. In this study, the PbTx-3 and brevenal modulation of tissue-representative Nav channel subtypes Nav1.2, Nav1.4, Nav1.5, and Nav1.7 were examined using automated patch-clamp. While PbTx-3 and brevenal elicit concentration-dependent and subtype-specific modulatory effects, PbTx-3 is >1000-fold more potent than brevenal. Consistent with effects observed in native tissues, Nav1.2 and Nav1.4 channels were PbTx-3- and brevenal-sensitive, whereas Nav1.5 and Nav1.7 appeared resistant. Interestingly, the incorporation of brevenal in the intracellular solution caused Nav channels to become less sensitive to PbTx-3 actions. Furthermore, we generated a computational model of PbTx-2 bound to the lipid-exposed side of the interface between domains I and IV of Nav1.2. Our results are consistent with competitive antagonism between brevetoxins and brevenal, setting a basis for future mutational analyses of Nav channels’ interaction with brevetoxins and brevenal. Our findings provide valuable insights into the functional modulation of Nav channels by brevetoxins and brevenal, which may have implications for the development of new Nav channel modulators with potential therapeutic applications.
Read more about the publication here.
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Read more in the publication here.
Background
Objective
Methods
Results
Conclusion
Childhood muscle-related cancer rhabdomyosarcoma is a rare disease with a 50-year unmet clinical need for the patients presented with advanced disease. The rarity of ∼350 cases per year in North America generally diminishes the viability of large-scale, pharmaceutical industry driven drug development efforts for rhabdomyosarcoma. In this study, we performed a large-scale screen of 640,000 compounds to identify the dihydropyridine (DHP) class of anti-hypertensives as a priority compound hit. A structure-activity relationship was uncovered with increasing cell growth inhibition as side chain length increases at the ortho and para positions of the parent DHP molecule. Growth inhibition was consistent across n = 21 rhabdomyosarcoma cell line models. Anti-tumor activity in vitro was paralleled by studies in vivo. The unexpected finding was that the action of DHPs appears to be other than on the DHP receptor (i.e., L-type voltage-gated calcium channel). These findings provide the basis of a medicinal chemistry program to develop dihydropyridine derivatives that retain anti-rhabdomyosarcoma activity without anti-hypertensive effects.
The Port-a-Patch is a small and easy-to-use complete patch clamp setup with multiple add-ons available to make sure you get the right configuration for your application.
The immune response against an invading pathogen is generally associated with collateral tissue damage caused by the immune system itself. Consequently, several resilience mechanisms have evolved to attenuate the negative impacts of immune effectors. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes. While being protective against pathogens, AMPs can be cytotoxic to host cells. Little is known of mechanisms that protect host tissues from AMP-induced immunopathology. Here, we reveal that a family of stress-induced proteins, the Turandots, protect Drosophila host tissues from AMPs, increasing resilience to stress. Deletion of several Turandot genes increases fly susceptibility to environmental stresses due to trachea apoptosis and poor oxygen supply. Tracheal cell membranes expose high levels of phosphatidylserine, a negatively charged phospholipid, sensitizing them to the action of AMPs. Turandots are secreted from the fat body upon stress and bind to tracheal cells to protect them against AMPs. In vitro, Turandot A binds to phosphatidylserine on membranes and inhibits the pore-forming activity of Drosophila and human AMPs on eukaryotic cells without affecting their microbicidal activity. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy. This provides a first example of a humoral mechanism used by animals limiting host-encoded AMP collateral damages.
Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced increases in Ca2+ influx or hyperosmotic stress-induced cell volume shrinkage in a human corneal epithelial cell line (HCE-T). Single-cell fluorescence imaging of calcein/AM-loaded cells or fura-2/AM-labeled cells was used to evaluate cell volume changes and intracellular calcium levels, respectively. Planar patch-clamp technique was used to measure whole-cell currents. TRPV1 activation via either capsaicin (20 µmol/L), hyperosmolarity (≈450 mosmol/L) or an increase in ambient bath temperature to 43 °C induced intracellular calcium transients and augmented whole-cell currents, whereas hypertonicity induced cell volume shrinkage. In contrast, either capsazepine (10 µmol/L) or L-carnitine (1–3 mmol/L) reduced all these responses. Taken together, L-carnitine and capsazepine suppress hypertonicity-induced TRPV1 activation by blocking cell volume shrinkage.
AtlaZ accelerates cellular research by enabling the investigation of a large variety of effects in cells over time. It offers label-free and real-time monitoring capabilities. It can simultaneously or independently record data from up to six 96-well plates.
Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.
The numerous different cell types in the human body are greatly specialized and often require a conjunctive action of a population of cells, for example in tissues. Cells are interconnected via cell junctions, multiprotein complexes found in the cell membrane of animal cells, and such cell junctions allow for a mechanical, chemical or electrical transmission of signals. These junctions can be subdivided into (I) tight junctions, (II) anchoring junctions or (III) gap junctions. Defects in cell–cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers (1). The so-called tight junctions form the barrier in endothelial and epithelial cells. Classical transepithelial electrical resistance measurements are performed using microelectrodes, where trans- and para-cellular conductivities can be calculated (2).
Here the cells are grown on a porous filter membrane which is placed between two fluid compartments. Flux of solutes from one compartment to the other must pass the interfacial cell
layer then, and this is determined by the functional properties of the tight junctions.
Cancer remains one of the leading causes of death, with, according to the World Health Organisation (WHO), around 10 million people dying due to the disease in 2020 (1). Chemo and
radio-therapy are still the dominant treatment types, but advancing therapies such as immuno-therapy have emerged as tools to fight against the disease. In general, identifying T cells that kill cancer cells in vivo is critical to the development of successful cell therapies. The label-free AtlaZ immune cell killing assay can be used to measure rate of killing at Effector : Target (E:T) ratios to predict in vivo activity. In order to gain a deeper understanding of cancer cells, real-time and continuous monitoring is necessary to access kinetic and phenotypic information.
The platform used here, AtlaZ, is a quantitative live-cell analysis system and allows for cellular research on cell adhesion and proliferation, cytotoxicity, GPCR, morphology and
barrier function, label-free and in real-time. Recordings can be performed in up to six 96-well plates simultaneously or independently. Electrical impedance spectroscopy (2,3) as
the methodology behind the AtlaZ system, in combination with the throughput of 6 x 96-wells allows for a so far unmet quantity and richness of information which can be gained from cells.
Recently, a review about big data and artificial intelligence was published in “Transfusion Medicine and Hemotherapy,” highlighting the importance and chances of quality control of stored red blood cells (RBCs). RBC quality is decreased over storage time in a donor-dependent manner. Here, we want to emphasize that besides quality control, one has to further think about improving the RBC quality during storage, i.e., addressing storage lesions. A component of the storage lesion is the dissipation of the cation gradients across the RBC membrane, i.e., K+ will leak out of the RBC and Na+ enters the cell. So far, the molecular cause of the cation gradient dissipation remains elusive. To this end, we like to present a hypothesis for the involvement of the transient receptor potential channel of vanilloid type 2 (TRPV2).
Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.
Read more in the publication here.
It is challenging to apply traditional mutational scanning to voltage-gated sodium channels (NaVs) and functionally annotate the large number of coding variants in these genes. Using a cytosine base editor and a pooled viability assay, we screen a library of 368 guide RNAs (gRNAs) tiling NaV1.2 to identify more than 100 gRNAs that change NaV1.2 function. We sequence base edits made by a subset of these gRNAs to confirm specific variants that drive changes in channel function. Electrophysiological characterization of these channel variants validates the screen results and provides functional mechanisms of channel perturbation. Most of the changes caused by these gRNAs are classifiable as loss of function along with two missense mutations that lead to gain of function in NaV1.2 channels. This two-tiered strategy to functionally characterize ion channel protein variants at scale identifies a large set of loss-of-function mutations in NaV1.2.
Stings of certain ant species (Hymenoptera: Formicidae) can cause intense, long-lasting nociception. Here we show that the major contributors to these symptoms are venom peptides that modulate the activity of voltage-gated sodium (NaV) channels, reducing their voltage threshold for activation and inhibiting channel inactivation. These peptide toxins are likely vertebrate-selective, consistent with a primarily defensive function. They emerged early in the Formicidae lineage and may have been a pivotal factor in the expansion of ants.
Read more in the publication here.
Guidelines for preclinical drug development reduce the occurrence of arrhythmia-related side effects. Besides ample evidence for the presence of arrhythmogenic substances in plants, there is no consensus on a research strategy for the evaluation of proarrhythmic effects of herbal products. Here, we propose a cardiac safety assay for the detection of proarrhythmic effects of plant extracts based on the experimental approaches described in the Comprehensive In vitro Proarrhythmia Assay (CiPA). Microelectrode array studies (MEAs) and voltage sensing optical technique on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were combined with ionic current measurements in mammalian cell lines, In-silico simulations of cardiac action potentials (APs) and statistic regression analysis. Proarrhythmic effects of 12 Evodia preparations, containing different amounts of the hERG inhibitors dehydroevodiamine (DHE) and hortiamine were analysed. Extracts produced different prolongation of the AP, occurrence of early after depolarisations and triangulation of the AP in hiPSC-CMs depending on the contents of the hERG inhibitors. DHE and hortiamine dose-dependently prolonged the field potential duration in hiPSC-CMs studied with MEAs. In-silico simulations of ventricular AP support a scenario where proarrhythmic effects of Evodia extracts are predominantly caused by the content of the selective hERG inhibitors. Statistic regression analysis revealed a high torsadogenic risk for both compounds that was comparable to drugs assigned to the high-risk category in a CiPA study.
Read more in the publication here.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30–80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.
Vericiguat and its metabolite M-1 were assessed for proarrhythmic risk in nonclinical in vitro and in vivo studies. In vitro manual voltage-clamp recordings at room temperature determined the effect of vericiguat on human Ether-a-go-go Related Gene (hERG) K+ channels. Effects of vericiguat and M-1 on hERG K+, Nav1.5, hCav1.2, hKvLQT1/1minK, and hKv4.3 channels were investigated via automated voltage-clamp recordings at ambient temperature. Effects of vericiguat and M-1 on hERG K+ and Nav1.5 channels at pathophysiological conditions were explored via manual voltage-clamp recordings at physiologic temperature. Single oral doses of vericiguat (0.6, 2.0, and 6.0 mg/kg) were assessed for in vivo proarrhythmic risk via administration to conscious telemetered dogs; electrocardiogram (ECG) and hemodynamic parameters were monitored. ECG recordings were included in 4- and 39-week dog toxicity studies. In manual voltage-clamp recordings, vericiguat inhibited hERG K+-mediated tail currents in a concentration-dependent manner (20% threshold inhibitory concentration ∼1.9 µM). In automated voltage-clamp recordings, neither vericiguat nor M-1 were associated with biologically relevant inhibition (>20%) of hNav1.5, hCav1.2, hKvLQT1, and hKv4.3. No clinically relevant observations were made for hNav1.5 and hKvLQT1 under simulated pathophysiological conditions. Vericiguat was associated with expected mode-of-action–related dose-dependent changes in systolic arterial blood pressure (up to −20%) and heart rate (up to +53%). At maximum vericiguat dose, corrected QT (QTc) interval changes from baseline varied slightly (−6 to +1%) depending on correction formula. Toxicity studies confirmed absence of significant QTc interval changes. There was no evidence of an increased proarrhythmic risk from nonclinical studies with vericiguat or M-1.
SIGNIFICANCE STATEMENT There was no evidence of an increased proarrhythmic risk from in vitro and in vivo nonclinical studies with vericiguat or M-1. The integrated risk assessment of these nonclinical data combined with existing clinical data demonstrate administration of vericiguat 10 mg once daily in patients with heart failure with reduced ejection fraction is not associated with a proarrhythmic risk.
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca2+-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca2+ response to AITC was shaped by both intra- and extracellular Ca2+ sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca2+-activated K+ channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca2+ signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca2+ entry (SOCE). Conversely, the Ca2+ response to AITC did not require Ca2+ mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca2+-ATPase (PMCA) activity, thereby attenuating Ca2+ removal across the plasma membrane and resulting in a sustained increase in [Ca2+]i. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction.
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose–proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Read more in the publication here.
Background
Tyrosine kinase inhibitors (TKIs) are anti-cancer therapeutics often prescribed for long-term treatment. Many of these treatments cause cardiotoxicity with limited cure. We aim to clarify molecular mechanisms of TKI-induced cardiotoxicity so as to find potential targets for treating the adverse cardiac complications.
Methods
Eight TKIs with different levels of cardiotoxicity reported are selected. Phenotypic and transcriptomic responses of human cardiomyocytes to TKIs at varying doses and times are profiled and analyzed. Stress responses and signaling pathways that modulate cardiotoxicity induced by three TKIs are validated in cardiomyocytes and rat hearts.
Results
Toxicity rank of the eight TKIs determined by measuring their effects on cell viability, contractility, and respiration is largely consistent with that derived from database or literature, indicating that human cardiomyocytes are a good cellular model for studying cardiotoxicity. When transcriptomes are measured for selected TKI treatments with different levels of toxicity in human cardiomyocytes, the data are classified into 7 clusters with mainly single-drug clusters. Drug-specific effects on the transcriptome dominate over dose-, time- or toxicity-dependent effects. Two clusters with three TKIs (afatinib, ponatinib, and sorafenib) have the top enriched pathway as the endoplasmic reticulum stress (ERS). All three TKIs induce ERS in rat primary cardiomyocytes and ponatinib activates the IRE1α-XBP1s axis downstream of ERS in the hearts of rats underwent a 7-day course of drug treatment. To look for potential triggers of ERS, we find that the three TKIs induce transient reactive oxygen species followed by lipid peroxidation. Inhibiting either PERK or IRE1α downstream of ERS blocks TKI-induced cardiac damages, represented by the induction of cardiac fetal and pro-inflammatory genes without causing more cell death.
Conclusions
Our data contain rich information about phenotypic and transcriptional responses of human cardiomyocytes to eight TKIs, uncovering potential molecular mechanisms in modulating cardiotoxicity. ER stress is activated by multiple TKIs and leads to cardiotoxicity through promoting expression of pro-inflammatory factors and cardiac fetal genes. ER stress-induced inflammation is a promising therapeutic target to mitigate ponatinib- and sorafenib-induced cardiotoxicity.
Read more in the publication here.
Nanopores are currently utilized as powerful tools for single-molecule protein sensing. The reporting signal typically requires protein analytes to enter the nanopore interior, yet a class of these sensors has emerged that allows targeted detection free in solution. This tactic eliminates the spatial limitation of nanopore confinement. However, probing proteins outside the nanopore implies numerous challenges associated with transducing the physical interactions in the aqueous phase into a reliable electrical signature. Hence, it necessitates extensive engineering and tedious optimization routes. These obstacles have prevented the widespread adoption of these sensors. Here, we provide an experimental strategy by developing and validating single-polypeptide-chain nanopores amenable to single-molecule and bulk-phase protein detection approaches. We utilize protein engineering, as well as nanopore and nanodisc technologies, to create nanopore sensors that can be integrated with an optical platform in addition to traditional electrical recordings. Using the optical modality over an ensemble of detectors accelerates these sensors’ optimization process for a specific task. It also provides insights into how the construction of these single-molecule nanopore sensors influences their performance. These outcomes form a basis for evaluating engineered nanopores beyond the fundamental limits of the resistive-pulse technique.
Read more in the publication here.
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo–electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorder
Read more in the publication here.
The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.
Read more in the publication here.
The standard model of pore formation was introduced more than fifty years ago, and it has been since, despite some refinements, the cornerstone for interpreting experiments related to pores in membranes. A central prediction of the model concerning pore opening under an electric field is that the activation barrier for pore formation is lowered proportionally to the square of the electric potential. However, this has only been scarcely and inconclusively confronted to experiments. In this paper, we study the electropermeability of model lipid membranes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) containing different fractions of POPC-OOH, the hydroperoxidized form of POPC, in the range 0 to 100 mol %. By measuring ion currents across a 50-μm-diameter black lipid membrane (BLM) with picoampere and millisecond resolution, we detect hydroperoxidation-induced changes to the intrinsic bilayer electropermeability and to the probability of opening angstrom-size or larger pores. Our results over the full range of lipid compositions show that the energy barrier to pore formation is lowered linearly by the absolute value of the electric field, in contradiction with the predictions of the standard model.
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Lithium (Li) has a wide range of uses in science, medicine, and industry, but its isotopy is underexplored, except in nuclear science and in geoscience. 6Li and 7Li isotopic ratio exhibits the second largest variation on earth’s surface and constitutes a widely used tool for reconstructing past oceans and climates. As large variations have been measured in mammalian organs, plants or marine species, and as 6Li elicits stronger effects than natural Li (∼95% 7Li), a central issue is the identification and quantification of biological influence of Li isotopes distribution. We show that membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes. This systematic 6Li enrichment is driven by membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport. Evidencing that transport proteins discriminate between isotopes differing by one neutron opens new avenues for transport mechanisms, Li physiology, and paleoenvironments.
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
Transmembrane proteins transmit chemical signals as well as mechanical cues. The latter is often achieved by coupling to the cytoskeleton. The incorporation of fully engineerable membrane-spanning structures for the transduction of chemical and, in particular, mechanical signals is therefore a critical aim for bottom-up synthetic biology. Here, a membrane-spanning DNA origami signaling units (DOSUs) is designed and mechanically coupled to DNA cytoskeletons encapsulated within giant unilamellar vesicles (GUVs). The incorporation of the DOSUs into the GUV membranes is verified and clustering upon external stimulation is achieved. Dye-influx assays reveal that clustering increases the insertion efficiency. The transmembrane-spanning DOSUs act as pores to allow for the transport of single-stranded DNA into the GUVs. This is employed to trigger the reconfiguration of DNA cytoskeletons within GUVs. In addition to chemical signaling, mechanical coupling of the DOSUs to the internal DNA cytoskeletons is induced. With chemical cues from the environment, clustering of the DOSUs is induced, which triggers a symmetry break in the organization of the DNA cytoskeleton inside of the GUV. DNA-based transmembrane structures are engineered that transduce signals without transporting the signaling molecule itself—providing a route toward signal processing and adaptive synthetic cells.
Read more in the publication here.
Conjugated oligoelectrolytes (COEs) are amphiphilic, fluorogenic molecules that spontaneously associate with lipid bilayer membranes and are gaining attention as molecular reporters, particularly for exosome detection by flow cytometry. Questions nonetheless remain on how to best design COEs for optimal performance and on the geometry of lipid bilayer intercalation. In response, we designed a series of oligo-phenylenevinylene COEs with varying lengths and numbers of charged groups to address these uncertainties. Examination of the organization within lipid bilayers through polarized fluorescence microscopy shows that the optical transition moments are perpendicular to the bilayer plane, with the conjugated segment flanked by hydrophobic phospholipid tails. COEs initially form a disorganized layer on the vesicle periphery, reflecting electrostatic association before intercalation. Uptake experiments show that longer dimensions and increased numbers of charges allow for a higher degree of cellular association. Both shorter core length and increased number of charges accelerate the rate needed to achieve emission saturation.
Read more in the publication here.
Theory and simulations predict the complex nature of calcium interaction with the lipid membrane. By maintaining the calcium concentrations at physiological conditions, herein we demonstrate experimentally the effect of Ca2+ in a minimalistic cell-like model. For this purpose, giant unilamellar vesicles (GUVs) with a neutral lipid DOPC are generated, and the ion-lipid interaction is observed with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy providing molecular resolution. Firstly, Ca2+ encapsulated within the vesicle binds to the phosphate head groups of the inner leaflets and triggers vesicle compaction. This is tracked by changes in vibrational modes of the lipid groups. As the calcium concentration within the GUV increases, IR intensities change indicating vesicle dehydration and lateral compression of the membrane. Secondly, by inducing a calcium gradient across the membrane up to a ratio of 1:20, interaction between several vesicles occurs as Ca2+ can bind to the outer leaflets leading to vesicle clustering. It is observed that larger calcium gradients induce stronger interactions. These findings with an exemplary biomimetic model reveal that divalent calcium ions not only cause local changes to the lipid packing but also have macroscopic implications to initiate vesicle-vesicle interaction.
Read more in the publication here.
Cholesterol is an important component of mammalian cell membranes affecting their fluidity and permeability. Together with sphingomyelin, cholesterol forms microdomains, called lipid rafts. They play important role in signal transduction forming platforms for interaction of signal proteins. Altered levels of cholesterol are known to be strongly associated with the development of various pathologies (e.g., cancer, atherosclerosis and cardiovascular diseases). In the present work, the group of compounds that share the property of affecting cellular homeostasis of cholesterol was studied. It contained antipsychotic and antidepressant drugs, as well as the inhibitors of cholesterol biosynthesis, simvastatin, betulin, and its derivatives. All compounds were demonstrated to be cytotoxic to colon cancer cells but not to non-cancerous cells. Moreover, the most active compounds decreased the level of free cellular cholesterol. The interaction of drugs with raft-mimicking model membranes was visualized. All compounds reduced the size of lipid domains, however, only some affected their number and shape. Membrane interactions of betulin and its novel derivatives were characterized in detail. Molecular modeling indicated that high dipole moment and significant lipophilicity were characteristic for the most potent antiproliferative agents. The importance of membrane interactions of cholesterol homeostasis-affecting compounds, especially betulin derivatives, for their anticancer potency was suggested.
One of the deepest branches in the tree of life separates the Archaea from the Bacteria. These prokaryotic groups have distinct cellular systems including fundamentally different phospholipid membrane bilayers. This dichotomy has been termed the lipid divide and possibly bestows different biophysical and biochemical characteristics on each cell type. Classic experiments suggest that bacterial membranes (formed from lipids extracted from Escherichia coli, for example) show permeability to key metabolites comparable to archaeal membranes (formed from lipids extracted from Halobacterium salinarum), yet systematic analyses based on direct measurements of membrane permeability are absent. Here, we develop a new approach for assessing the membrane permeability of approximately 10 μm unilamellar vesicles, consisting of an aqueous medium enclosed by a single lipid bilayer. Comparing the permeability of 18 metabolites demonstrates that diether glycerol-1-phosphate lipids with methyl branches, often the most abundant membrane lipids of sampled archaea, are permeable to a wide range of compounds useful for core metabolic networks, including amino acids, sugars, and nucleobases. Permeability is significantly lower in diester glycerol-3-phosphate lipids without methyl branches, the common building block of bacterial membranes. To identify the membrane characteristics that determine permeability, we use this experimental platform to test a variety of lipid forms bearing a diversity of intermediate characteristics. We found that increased membrane permeability is dependent on both the methyl branches on the lipid tails and the ether bond between the tails and the head group, both of which are present on the archaeal phospholipids. These permeability differences must have had profound effects on the cell physiology and proteome evolution of early prokaryotic forms. To explore this further, we compare the abundance and distribution of transmembrane transporter-encoding protein families present on genomes sampled from across the prokaryotic tree of life. These data demonstrate that archaea tend to have a reduced repertoire of transporter gene families, consistent with increased membrane permeation. These results demonstrate that the lipid divide demarcates a clear difference in permeability function with implications for understanding some of the earliest transitions in cell origins and evolution.
Read more in the publication here.
The effect of extracts of grapefruit seeds (EGSs), sea-buckthorn leaves (EBLs), and chaga (ECs) on model lipid membranes has been investigated. It has been shown that the threshold concentrations of EGSs and ECs that induced destabilization of phosphatidylglycerol-enriched bilayers are 1.3–1.4 times lower than for phosphatidylcholine-containing membranes. It has been established that EGSs and EBLs reduce the boundary potential of membranes formed from a mixture of phosphatadylcholine and cholesterol (the changes reach 45 and 40 mV at concentrations of 60 and 800 μg/mL, respectively). ECs did not produce pronounced potential-modifying effect. It was shown that changes in the boundary potential in the presence of EBLs were due to the presence of flavonols, quercetin, and myricetin in its composition. Using the method of differential scanning calorimetry, it was also found that quercetin and myricetin were able to influence the thermotropic behavior of membrane lipids and, consequently, their packing density. The potentiation of the pore-forming activity of the antifungal polyene macrolide nystatin and antibacterial lipopeptide polymyxin B was shown with introduction of an EBLs. These data indicate a possible synergism of the antimicrobial action of the tested antibiotics and EBLs, which can be used to generate combined broad-spectrum antimicrobial agents.
Read more in the publication here.
Signal transduction across biological membranes is among the most important evolutionary achievements. Herein, for the design of artificial cells, we engineer fully synthetic receptors with the capacity of transmembrane signaling, using tools of chemistry. Our receptors exhibit similarity with their natural counterparts in having an exofacial ligand for signal capture, being membrane anchored, and featuring a releasable messenger molecule that performs enzyme activation as a downstream signaling event. The main difference from natural receptors is the mechanism of signal transduction, which is achieved using a self-immolative linker. The receptor scaffold is modular and can readily be re-designed to respond to diverse activation signals including biological or chemical stimuli. We demonstrate an artificial signaling cascade that achieves transmembrane enzyme activation, a hallmark of natural signaling receptors. Results of this work are relevant for engineering responsive artificial cells and interfacing them and/or biological counterparts in co-cultures.
Read more in the publication here.
The NMDA subtype of glutamate receptor serves as an attractive drug target for the treatment of disorders evolving from hyper- or hypoglutamatergic conditions. Compounds that optimize the function of NMDA receptors are of great clinical sig -nificance. Here, we present the pharmacological characterization of a biased allosteric modulator, CNS4. Results indicate that CNS4 sensitizes ambient levels of agonists and reduces higher- concentration glycine & glutamate efficacy in 1/2AB receptors, but minimally alters these parameters in diheteromeric 1/2A or 1/2B receptors. Glycine efficacy is increased in both 1/2C and 1/2D, while glutamate efficacy is decreased in 1/2C and unaltered in 1/2D. CNS4 does not affect the activity of competitive antago-nist binding at glycine (DCKA) and glutamate (DL- AP5) sites; however, it decreases memantine potency in 1/2A receptors but not in 1/2D receptors. Current–voltage (I- V) relationship studies indicate that CNS4 potentiates 1/2A inward currents, a phe -nomenon that was reversed in the absence of permeable Na+ ions. In 1/2D recep-tors, CNS4 blocks inward currents based on extracellular Ca2+ concentration. Further, CNS4 positively modulates glutamate potency on E781A_1/2A mutant receptors, indicating its role at the distal end of the 1/2A agonist binding domain interface. Together, these findings reveal that CNS4 sensitizes ambient agonists and allosteri-cally modulates agonist efficacy by altering Na+ permeability based on the GluN2 subunit composition. Overall, the pharmacology of CNS4 aligns with the need for drug candidates to treat hypoglutamatergic neuropsychiatric conditions such as loss function GRIN disorders and anti-NMDA receptor encephalitis.
Endolysosomal ion channels are a group of ion channel proteins that are functionally expressed on the membrane of endolysosomal vesicles. The electrophysiological properties of these ion channels in the intracellular organelle membrane cannot be observed using conventional electrophysiological techniques. This section compiles the different electrophysiological techniques utilized in recent years to study endolysosomal ion channels and describes their methodological characteristics, emphasizing the most widely used technique for whole endolysosome recordings to date. This includes the use of different pharmacological tools and genetic tools for the application of patch-clamping techniques for specific stages of endolysosomes, allowing the recording of ion channel activity in different organelles, such as recycling endosomes, early endosomes, late endosomes, and lysosomes. These electrophysiological techniques are not only cutting-edge technologies that help to investigate the biophysical properties of known and unknown intracellular ion channels but also help us to investigate the physiopathological role of these ion channels in the distribution of dynamic vesicles and to identify new therapeutic targets for precision medicine and drug screening.
Read more about the article here.
Ethnopharmacology relevance
Tripterygium wilfordii Hook. f. has been widely used in clinical practice due to its good anti-inflammatory and analgesic activities. However, its application is limited by potential toxicity and side effects.
Aim of the study
The study aimed to identify the mechanisms responsible for the pharmacological activity and cardiotoxicity of the main monomers of Tripterygium wilfordii.
Materials and methods
Database analysis predicted that ion channels may be potential targets of Tripterygium wilfordii. The regulatory effects of monomers (triptolide, celastrol, demethylzeylasteral, and wilforgine) on protein Nav1.5 and Nav1.7 were predicted and detected by Autodock and patch clamping. Then, we used the formalin-induced pain model and evaluated heart rate and myocardial zymograms to investigate the analgesic activity and cardiotoxicity of each monomer in vivo.
Results
All four monomers were able to bind to Nav1.7 and Nav1.5 with different binding energies and subsequently inhibited the peak currents of both Nav1.7 and Nav1.5. The monomers all exhibited analgesic effects on formalin-induced pain; therefore, we hypothesized that Nav1.7 is one of the key analgesic targets. Demethylzeylasteral reduced heart rate and increased the level of creatine kinase-MB, thus suggesting a potential cardiac risk; data suggested that the inhibitory effect on Nav1.5 might be an important factor underlying its cardiotoxicity.
Conclusion
Our findings provide an important theoretical basis for the further screening of active monomers with higher levels of activity and lower levels of toxicity.
Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
Read more about the article here.
Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.
TMEM175 is a lysosomal cation leak channel, which impairment has been linked to Parkinson’s disease and other neurodegenerative disorders; thereby making it an interesting drug target. The presented recordings illustrate SURFE2R’s potential as means for target validation and compound screening against TMEM175 channels residing in lysosomal membranes.
Loss-of-function and gain-of-function mutations in the KCNH2 gene cause long and short-QT syndromes (LQTS or SQTS), respectively, predisposing to life-threatening cardiac arrhythmias. KCNH2 encodes the voltage-gated K+ channel hERG that generates the delayed rectifier K+ current IKr controlling the action potential (AP) duration. Prolonged or shortened ventricular AP durations are visualized as abnormal QT interval duration on the electrocardiogram. The occurrence and severity of KCNH2-related arrhythmias are determined by the variant functional impact. Sequencing KCNH2 has provided a plethora of variants associated or not with pathological cardiac phenotypes and indexed in the ClinVar NCBI database. Discriminating pathogenic variants from benign ones would clarify the genetic background of patients and relatives, and stratify the risk of adverse events. In the face of a wide spectrum of hERG functional defects, we looked for a way to summarize the net loss or gain of function in a unique index. We defined the repolarization power as the time integral of the K+ current (IhERG) developed during an AP clamp.
Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+-selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+-selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+-binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl−, and polyatomic cation, N-methyl-d-glucamine+, respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.
Understanding the kinetics of nano-assembly formation is important to elucidate the biological processes involved and develop novel nanomaterials with biological functions. In the present study, we report the kinetic mechanisms of nanofiber formation from a mixture of phospholipids and the amphipathic peptide 18A[A11C], carrying cysteine substitution of the apolipoprotein A-I-derived peptide 18A at residue 11. 18A[A11C] with acetylated N-terminus and amidated C-terminus can associate with phosphatidylcholine to form fibrous aggregates at neutral pH and lipid-to-peptide molar ratio of ∼1, although the reaction pathways of self-assembly remain unclear. Here, the peptide was added to giant 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles to monitor nanofiber formation under fluorescence microscopy. The peptide initially solubilized the lipid vesicles into particles smaller than the resolution of optical microscope, and fibrous aggregates appeared subsequently. Transmission electron microscopy and dynamic light scattering analyses revealed that the vesicle-solubilized particles were spherical or circular, measuring ∼10–20 nm in diameter. The rate of nanofiber formation of 18A with 1,2-dipalmitoyl phosphatidylcholine from the particles was proportional to the square of lipid–peptide concentration in the system, suggesting that the association of particles, accompanied by conformational changes, was the rate-limiting step. Moreover, molecules in the nanofibers could be transferred between aggregates faster than those in the lipid vesicles. These findings provide useful information for the development and control of nano-assembling structures using peptides and phospholipids.
With the population aging, age-related sinoatrial node dysfunction (SND) has been on the rise. Sinoatrial node (SAN) degeneration is an important factor for the age-related SND development. However, there is no suitable animal modeling method in this field. Here, we investigated whether D-galactose could induce SAN degeneration and explored the associated mechanism. In vivo, twelve C57BL/6 mice were divided into Control and D-galactose group to receive corresponding treatments. Senescence was confirmed by analyzing the hair and weight; cardiac function was evaluated through echocardiography, cerebral blood flux and serum-BNP; the SAN function was evaluated by electrocardiogram; fibrotic change was evaluated by Masson's trichrome staining and oxidative stress was assessed through DHE staining and serum indicators. Mechanism was verified through immunofluorescence-staining and Western blotting. In vitro, mouse-atrial-myocytes were treated with D-galactose, and edaravone was utilized as the ROS scavenger. Senescence, oxidative stress, proliferation ability and mechanism were verified through various methods, and intuitive evidence was obtained through electrophysiological assay. Finally, we concluded that D-galactose can be used to induce age-related SND, in which oxidative stress plays a key role, causing PITX2 ectopic expression and downregulates SHOX2 expression, then through the downstream GATA4/NKX2-5 axis, results in pacing-related ion channels dysfunction, and hence SND development.
Trastuzumab, the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (ERBB2/HER2), is currently used as a first-line treatment for HER2 (+) tumours. However, trastuzumab increases the risk of cardiac complications without affecting myocardial structure, suggesting a distinct mechanism of cardiotoxicity.
We used medium from trastuzumab-treated human umbilical vein endothelial cells (HUVECs) to treat CCC-HEH-2 cells, the human embryonic cardiac tissue-derived cell lines, and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to assess the crosstalk between vascular endothelial cells (VECs) and cardiomyocytes. Protein mass spectrometry analysis was used to identify the key factors from VECs that regulate the function of cardiomyocytes. We applied RNA-sequencing to clarify the mechanism, by which PTX3 causes cardiac dysfunction. We used an anti-human/rat HER2 (neu) monoclonal antibody to generate a rat model that was used to evaluate the effects of trastuzumab on cardiac structure and function and the rescue effects of lapatinib on trastuzumab-induced cardiac side effects. Medium from trastuzumab-treated HUVECs apparently impaired the contractility of CCC-HEH-2 cells and iPSC-CMs. PTX3 from VECs caused defective cardiomyocyte contractility and cardiac dysfunction in mice, phenocopying trastuzumab treatment. PTX3 affected calcium homoeostasis in cardiomyocytes, which led to defective contractile properties. EGFR/STAT3 signalling in VECs contributed to the increased expression and release of PTX3. Notably, lapatinib, a dual inhibitor of EGFR/HER2, could rescue the cardiac complications caused by trastuzumab by blocking the release of PTX3.
We identified a distinct mode of cardiotoxicity, wherein the activation of EGFR/STAT3 signalling by trastuzumab in VECs promotes PTX3 excretion, which contributes to the impaired contractility of cardiomyocytes by inhibiting cellular calcium signalling. We confirmed that lapatinib could be a feasible preventive agent against trastuzumab-induced cardiac complications and provided the rationale for the combined application of lapatinib and trastuzumab in cancer therapy.
Excitatory amino acid transporters (EAATs) uptake glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton, and countertransporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms still need to be clarified. We report high-resolution cryo-EM structures of human EAAT3 bound to the neurotransmitter glutamate with symported ions, potassium ions, sodium ions alone, or without ligands. We show that an evolutionarily conserved occluded translocation intermediate has a dramatically higher affinity for the neurotransmitter and the countertransported potassium ion than outward- or inward-facing transporters and plays a crucial role in ion coupling. We propose a comprehensive ion coupling mechanism involving a choreographed interplay between bound solutes, conformations of conserved amino acid motifs, and movements of the gating hairpin and the substrate-binding domain.
Read more in the paper here.
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) plays an essential role in maintaining the low cytosolic Ca2+ level that enables a variety of cellular processes. SERCA couples ATP hydrolysis to the transport of two Ca2+ ions against their electrochemical potential gradient from the cytoplasm into the lumen of the sarco/endoplasmic reticulum (SR/ER). Because of its central role in regulating cytoplasmic Ca2+ concentration, SERCA dysfunction has been associated with several pathological conditions. Stimulation of SERCA activity may represent a potential therapeutic strategy in various disease states connected with dysfunctional SERCA. The natural phenolic compound 6-gingerol, the most abundant and the major biologically active compound of ginger, was reported to activate the SERCA enzyme. The present study aimed at investigating the effect of 6-gingerol on SERCA transport activity using a bioelectrochemical approach based on a solid supported membrane (SSM). We first performed a voltammetric characterization of 6-gingerol to better understand its electrochemical behavior. We then studied the interaction of 6-gingerol with SR vesicles containing SERCA adsorbed on the SSM electrode. The measured current signals indicated that ATP-dependent Ca2+ translocation by SERCA was remarkably increased in the presence of 6-gingerol at low micromolar concentration. We also found that 6-gingerol has a rather high affinity for SERCA (EC50 of 1.8 ± 0.3 µM), and SERCA activation by 6-gingerol is reversible. The observed stimulatory effect of 6-gingerol on SERCA Ca2+-translocating activity may be beneficial in the prevention and/or treatment of pathological conditions related to SERCA dysfunction.
Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.
Changes in Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel function have been linked to depressive-like traits, making them potential drug targets. However, there is currently no peer-reviewed data supporting the use of a small molecule modulator of HCN channels in depression treatment. Org 34167, a benzisoxazole derivative, has been patented for the treatment of depression and progressed to Phase I trials. In the current study, we analysed the biophysical effects of Org 34167 on HCN channels in stably transfected human embryonic kidney 293 (HEK293) cells and mouse layer V neurons using patch-clamp electrophysiology, and we utilised three high-throughput screens for depressive-like behaviour to assess the activity of Org 34167 in mice. The impact of Org 34167 on locomotion and coordination were measured by performing rotarod and ledged beam tests. Org 34167 is a broad-spectrum inhibitor of HCN channels, slowing activation and causing a hyperpolarising shift in voltage-dependence of activation. It also reduced Ih-mediated sag in mouse neurons. Org 34167 (0.5 mg/kg) reduced marble burying and increased the time spent mobile in the Porsolt swim and tail suspension tests in both male and female BALB/c mice, suggesting reduced depressive-like behaviour. Although no adverse effects were seen at 0.5 mg/kg, an increase in dose to 1 mg/kg resulted in visible tremors and impaired locomotion and coordination. These data support the premise that HCN channels are valid targets for anti-depressive drugs albeit with a narrow therapeutic index. Drugs with higher HCN subtype selectivity are needed to establish if a wider therapeutic window can be obtained.
Polo like kinase 1 (PLK1) is a serine/threonine kinase that is widely distributed in eukaryotic cells and plays an important role in multiple phases of the cell cycle. Its importance in tumorigenesis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of novel dihydropteridone derivatives (13a-13v and 21g-21l) possessing oxadiazoles moiety as potent inhibitors of PLK1. Compound 21g exhibited improved PLK1 inhibitory capability with an IC50 value of 0.45 nM and significant anti-proliferative activities against four tumor-derived cell lines (MCF-7 IC50 = 8.64 nM, HCT-116 IC50 = 26.0 nM, MDA-MB-231 IC50 = 14.8 nM and MV4-11 IC50 = 47.4 nM) with better pharmacokinetic characteristics than BI2536 in mice (AUC0-t = 11 227 ng h mL−1 vs 556 ng h mL−1). Moreover, 21g exhibited moderate liver microsomal stability and excellent pharmacokinetic profile (AUC0-t = 11227 ng h mL−1, oral bioavailability of 77.4%) in Balb/c mice, acceptable PPB, improved PLK1 inhibitory selectivity, and no apparent toxicity was observed in the acute toxicity assay (20 mg/kg). Further investigation showed that 21 g could arrest HCT-116 cells in G2 phase and induce apoptosis in a dose-dependent manner. These results indicate that 21g is a promising PLK1 inhibitor.
This paper discusses the possibility of using plant polyphenols as viral fusion inhibitors with a lipid-mediated mechanism of action. The studied agents are promising candidates for the role of antiviral compounds due to their high lipophilicity, low toxicity, bioavailability, and relative cheapness. Fluorimetry of calcein release at the calcium-mediated fusion of liposomes, composed of a ternary mixture of dioleoyl phosphatidylcholine, dioleoyl phosphatidylglycerol, and cholesterol, in the presence of 4′-hydroxychalcone, cardamonin, isoliquiritigenin, phloretin, resveratrol, piceatannol, daidzein, biochanin A, genistein, genistin, liquiritigenin, naringenin, catechin, taxifolin, and honokiol, was performed. It was found that piceatannol significantly inhibited the calcium-induced fusion of negatively charged vesicles, while taxifolin and catechin showed medium and low antifusogenic activity, respectively. As a rule, polyphenols containing at least two OH-groups in both phenolic rings were able to inhibit the calcium-mediated fusion of liposomes. In addition, there was a correlation between the ability of the tested compounds to inhibit vesicle fusions and to perturb lipid packing. We suggest that the antifusogenic action of polyphenols was determined by the depth of immersion and the orientation of the molecules in the membrane.
Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.
Background: Connexins (Cxs) are proteins that help cells to communicate with the extracellular media and with the cytoplasm of neighboring cells. Despite their importance in several human physiological and pathological conditions, their pharmacology is very poor. In the last decade, some molecules derived from aminoglycosides have been developed as inhibitors of Cxs hemichannels. However, these studies have been performed in E. coli, which is a very simple model. Therefore, our main goal is to test whether these molecules have similar effects in mammalian cells. Methods: We transfected HeLa cells with the human Cx46tGFP and characterized the effect of a kanamycin-derived molecule (KI04) on Cx46 hemichannel activity by time-lapse recordings, changes in phosphorylation by Western blot, localization by epifluorescence, and possible binding sites by molecular dynamics (MD). Results: We observed that kanamycin and KI04 were the most potent inhibitors of Cx46 hemichannels among several aminoglycosides, presenting an IC50 close to 10 μM. The inhibitory effect was not associated with changes in Cx46 electrophoretic mobility or its intracellular localization. Interestingly, 5 mM DTT did not reverse KI04 inhibition, but the KI04 effect completely disappeared after washing out KI04 from the recording media. MD analysis revealed two putative binding sites of KI04 in the Cx46 hemichannel. Results: These results demonstrate that KI04 could be used as a Cx46 inhibitor and could help to develop future selective Cx46 inhibitors.
Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.
Many ion channels are multi-subunit complexes with a polar permeation pathway at the oligomeric interface, but their mechanisms of assembly into functional, thermodynamically stable units within the membrane are largely unknown. Here we characterize the assembly of the inverted-topology, homodimeric fluoride channel Fluc, leveraging a known mutation, N43S, that weakens Na+ binding to the dimer interface, thereby unlocking the complex. While single-channel recordings show Na+ is required for activation, single-molecule photobleaching and bulk Förster Resonance Energy Transfer experiments in lipid bilayers demonstrate that N43S Fluc monomers and dimers exist in dynamic equilibrium, even without Na+. Molecular dynamics simulations indicate this equilibrium is dominated by a differential in the lipid-solvation energetics of monomer and dimer, which stems from hydrophobic exposure of the polar ion pathway in the monomer. These results suggest a model wherein membrane-associated forces induce channel assembly while subsequent factors, in this case Na+ binding, result in channel activation.
N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson’s disease, Alzheimer’s disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.
Characterizing protein-protein interaction on a single molecular level is a challenge, experimentally as well as interpretation of the data. For example, Gram-negative bacteria contain protein complexes spanning the outer and inner cell wall devoted to efflux effectively cell toxic substances. Recent seminal work revealed the high-resolution structure of such a tripartic composition TolC-AcrA-AcrB suggesting to design inhibitors preventing efflux of antibiotics. To show that electrophysiology can provide supporting information here, we reconstitute single TolC homotrimer into a planar lipid membrane, apply a transmembrane voltage and follow the assembly of AcrA to TolC using the modulation of the ion current through TolC channel during binding. In particular, the presence of AcrA in solution increases the average ionic current through TolC and, moreover, reduces the ion-current fluctuations caused by flickering of TolC. Here, we show that statistical properties of ion-current fluctuations (the power spectral density) provide a complementary measure of the interaction of the TolC-AcrA complex in presence of putative efflux pump inhibitors. Both characteristics, the average ion current across TolC and the current noise, taken into consideration together, point to a stiffening of the tip of TolC which might reduce the formation of the complex.
Despite channel proteins being important drug targets, studies on channel proteins remain limited, as the proteins are difficult to express and require correct complex formation within membranes. Although several in vitro synthesized recombinant channels have been reported, considering the vast diversity of the structures and functions of channel proteins, it remains unclear which classes of channels cell-free synthesis can be applied to. In this study, we synthesized 250 clones of human channels, including ion channel pore-forming subunits, gap junction proteins, porins, and regulatory subunits, using a wheat cell-free membrane protein production system, and evaluated their synthetic efficiency and function. Western blotting confirmed that 95% of the channels were successfully synthesized, including very large channels with molecular weights of over 200 kDa. A subset of 47 voltage-gated potassium ion channels was further analyzed using a planar lipid bilayer assay, out of which 80% displayed a voltage-dependent opening in the assay. We co-synthesized KCNB1 and KCNS3, a known heteromeric complex pair, and demonstrated that these channels interact on a liposome. These results indicate that cell-free protein synthesis provides a promising solution for channel studies to overcome the bottleneck of in vitro protein production.
Many non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC50 values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition. These results demonstrated that hERG inhibition can be significantly altered based on the substitution on this template. An HCMV inhibitor with low hERG inhibition and reduced cytotoxicity is also described. The results suggest substitution can be fine tuned for the non-nucleoside polymerase inhibitors to reduce hERG inhibition and maintain HCMV antiviral potency.
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box–Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400 μg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.
The Comprehensive in vitro Proarrhythmic Assay (CiPA) has promoted use of in silico models of drug effects on cardiac repolarization to improve proarrhythmic risk prediction. These models contain a pharmacodynamic component describing drug binding to hERG channels that required in vitro data for kinetics of block, in addition to potency, to constrain them. To date, development and validation has been undertaken using data from manual patch-clamp. The application of this approach at scale requires the development of a high-throughput, automated patch-clamp (APC) implementation. Here, we present a comprehensive analysis of the implementation of the Milnes, or CiPA dynamic protocol, on an APC platform, including quality control and data analysis. Kinetics and potency of block were assessed for bepridil, cisapride, terfenadine and verapamil with data retention/QC pass rate of 21.8% overall, or as high as 50.4% when only appropriate sweep lengths were considered for drugs with faster kinetics. The variability in IC50 and kinetics between manual and APC was comparable to that seen between sites/platforms in previous APC studies of potency. Whilst the experimental success is less than observed in screens of potency alone, it is still significantly greater than manual patch. With the modifications to protocol design, including sweep length, number of repetitions, and leak correction recommended in this study, this protocol can be applied on APC to acquire data comparable to manual patch clamp.
Ion channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit.
To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes. Positive controls were retigabine, flupirtine, and RL-81; i.e. Kv7.2 channel activators that significantly shift voltage-dependent activation to more negative potentials (ΔV50) at 5 µM. We identified 6 new compounds that exhibited differential enhancing activity between WT and W236L mutant channels. Whole cell patch-clamp electrophysiology studies were conducted to identify Kv7.2. Kv7.2/3, Kv7.4, and Kv7.5 selectivity. Our results validate the SyncroPatch platform and establish new structure activity relationships (SAR). Specifically, in addition to selective Kv7.2, Kv7.2/3, Kv7.4. and Kv7.5 agonists, we identified a novel chemotype, ZK-21, a 4-aminotetrahydroquinoline that is distinct from any of the previously described Kv7 channel modifiers. Using flexible receptor docking, ZK-21 was predicted to be stabilized by W236 and bind perpendicular to retigabine, burying the benzyl carbamate group into a tunnel reaching the core of the pore domain.
The peptide HsTX1[R14A] is a potent and selective blocker of the voltage-gated potassium channel Kv1.3, which is a highly promising target for the treatment of autoimmune diseases and other conditions. In order to assess the biodistribution of this peptide, it was conjugated with NOTA and radiolabelled with copper-64. [64Cu]Cu-NOTA-HsTX1[R14A] was synthesised in high radiochemical purity and yield. The radiotracer was evaluated in vitro and in vivo. The biodistribution and PET studies after intravenous and subcutaneous injections showed similar patterns and kinetics. The hydrophilic peptide was rapidly distributed, showed low accumulation in most of the organs and tissues, and demonstrated high molecular stability in vitro and in vivo. The most prominent accumulation occurred in the epiphyseal plates of trabecular bones. The high stability and bioavailability, low normal-tissue uptake of [64Cu]Cu-NOTA-HsTX1[R14A], and accumulation in regions of up-regulated Kv channels both in vitro and in vivo demonstrate that HsTX1[R14A] represents a valuable lead for conditions treatable by blockade of the voltage-gated potassium channel Kv1.3. The pharmacokinetics shows that both intravenous and subcutaneous applications are viable routes for the delivery of this potent peptide.
Due to challenges with historical data and the diversity of assay formats, in silico models for safety-related endpoints are often based on discretized data instead of the data on a natural continuous scale. Models for discretized endpoints have limitations in usage and interpretation that can impact compound design. Here, we present a consistent data inference approach, exemplified on two data sets of Ether-à-go-go-Related Gene (hERG) K+ inhibition data, for dose–response and screening experiments that are generally applicable for in vitro assays. hERG inhibition has been associated with severe cardiac effects and is one of the more prominent safety targets assessed in drug development, using a wide array of in vitro and in silico screening methods. In this study, the IC50 for hERG inhibition is estimated from diverse historical proprietary data. The IC50 derived from a two-point proprietary screening data set demonstrated high correlation (R = 0.98, MAE = 0.08) with IC50s derived from six-point dose–response curves. Similar IC50 estimation accuracy was obtained on a public thallium flux assay data set (R = 0.90, MAE = 0.2). The IC50 data were used to develop a robust quantitative model. The model’s MAE (0.47) and R2 (0.46) were on par with literature statistics and approached assay reproducibility. Using a continuous model has high value for pharmaceutical projects, as it enables rank ordering of compounds and evaluation of compounds against project-specific inhibition thresholds. This data inference approach can be widely applicable to assays with quantitative readouts and has the potential to impact experimental design and improve model performance, interpretation, and acceptance across many standard safety endpoints.
Due to challenges with historical data and the diversity of assay formats, in silico models for safety-related endpoints are often based on discretized data instead of the data on a natural continuous scale. Models for discretized endpoints have limitations in usage and interpretation that can impact compound design. Here, we present a consistent data inference approach, exemplified on two data sets of Ether-à-go-go-Related Gene (hERG) K+ inhibition data, for dose–response and screening experiments that are generally applicable for in vitro assays. hERG inhibition has been associated with severe cardiac effects and is one of the more prominent safety targets assessed in drug development, using a wide array of in vitro and in silico screening methods. In this study, the IC50 for hERG inhibition is estimated from diverse historical proprietary data.
In our continuing efforts to discover novel triazoles with improved antifungal activity in vitro and in vivo, a series of 41 novel compounds containing 1,2,3-triazole side chains were designed and synthesized via a click reaction based on our previous work. Most of the compounds showed moderate to excellent broad-spectrum antifungal activity in vitro. Among them, the most promising compound 9A16 displayed excellent antifungal and anti-drug-resistant fungal ability (MIC80 = 0.0156–8 μg/mL). In addition, compound 9A16 showed powerful in vivo efficacy on mice systematically infected with Candida albicans SC5314, Cryptococcus neoformans H99, fluconazole-resistant C. albicans 100, and Aspergillus fumigatus 7544. Moreover, compared to fluconazole, compound 9A16 showed better in vitro anti-biofilm activity and was more difficult to induce drug resistance in a 1 month induction of resistance assay in C. albicans. With favorable pharmacokinetics, an acceptable safety profile, and high potency in vitro and in vivo, compound 9A16 is currently under preclinical investigation.
4-Benzoic acid modification of Yoda1 improves PIEZO1 agonist activity at PIEZO1 channels. We suggest naming this new modulator Yoda2. It should be a useful tool compound in physiological assays and facilitate efforts to identify a binding site. Such compounds may have therapeutic potential, for example, in diseases linked genetically to PIEZO1 such as lymphatic dysplasia.
This article presents detailed descriptions of procedures and troubleshooting tips for solid-supported membrane (SSM)-based electrophysiology assays (SURFE2R) to measure electrogenic solute carrier transporter proteins (SLCs) and assess the effects of compounds that modulate their activity. SURFE2R allows the use of the standard 96-well format, making it an ideal platform for tertiary assays in a drug-discovery campaign. The assays are performed with cell-line-derived membrane fractions or proteoliposomes containing the transporter of interest. Three main protocols are described for the isolation of membrane fractions from cell culture and the generation of proteoliposomes containing the transporter of interest. Additionally, detailed protocols for SURFE2R single concentration and dose-response experiments are included to measure the potencies of test compounds in stimulating or inhibiting transporter function (EC50 or IC50 values, respectively) and kinetic functional assays to calculate apparent affinity (kM) and maximal velocity (Vmax) of substrate uptake.
Find the article here.
G protein-coupled cell surface receptors (GPCR) trigger complex intracellular signaling cascades upon agonist binding. Classic pharmacological assays provide information about binding affinities, activation or blockade at different stages of the signaling cascade, but real time dynamics and reversibility of these processes remain often disguised. We show that combining photochromic NPY receptor ligands, which can be toggled in their receptor activation ability by irradiation with light of different wavelengths, with whole cell label-free impedance assays allows observing the cell response to receptor activation and its reversibility over time. The concept demonstrated on NPY receptors may be well applicable to many other GPCRs providing a deeper insight into the time course of intracellular signaling processes.
In bioinspired design, biological templates are mimicked in structure and function by highly controllable synthetic means. Of interest are static barrel-like nanopores that enable molecular transport across membranes for use in biosensing, sequencing, and biotechnology. However, biological ion channels offer additional functions such as dynamic changes of the entire pore shape between open and closed states, and triggering of dynamic processes with biochemical and physical stimuli. To better capture this complexity, this report presents multi-stimuli and mechano-responsive biomimetic nanopores which are created with DNA nanotechnology. The nanopores switch between open and closed states, whereby specific binding of DNA and protein molecules as stimuli locks the pores in the open state. Furthermore, the physical stimulus of high transmembrane voltage switches the pores into a closed state. In addition, the pore diameters are larger and more tunable than those of natural templates. These multi-stimuli-responsive and mechanically actuated nanopores mimic several aspects of complex biological channels yet offer easier control over pore size, shape and stimulus response. The designer pores are expected to be applied in biosensing and synthetic biology.
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Three-dimensional (3D) bioprinting is a promising technology which typically uses bioinks to pattern cells and their scaffolds. The selection of cytocompatible inks is critical for the printing success. In laserbased 3D bioprinting, photoresist molecules are used as bioinks. We propose that cytotoxicity can be a consequence of the interaction of photoresists with lipid membranes and their permeation into the cell. Here, molecular dynamics simulations and in vitro assays address this issue, retrieving partition coefficients, free energies, and permeabilities for eight commonly-used photoresists in model lipid bilayers. Crossing the hydrophobic center of the membrane constitutes the rate limiting step during permeation. In addition, three photoresists feature a preferential localization site at the acyl chain headgroup interface. Photoresist permeabilities range over eight orders of magnitude, with some molecules being membrane-permeable on bioprinting timescales. Moreover, permeation correlates well with the oil-water partition coefficients and is severely hampered by the lipid ordering imposed by the lipid saturation. Overall, the mechanism of interaction of photoresists with model lipid bilayers is provided here, helping to classify them according to their residence in the membrane and permeation through it. This is useful information to guide the selection of cytocompatible photoresists for 3D bioprinting.
The voltage-gated sodium (NaV) channel NaV1.7 has been identified as a potential novel analgesic target due to its involvement in human pain syndromes. However, clinically available NaV channel-blocking drugs are not selective among the nine NaV channel subtypes, NaV1.1–NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype-selective inhibitors (aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. To this point understanding of the structure–activity relationships of the acylsulfonamide class of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC-0310, has been based solely on a single co-crystal structure of an arylsulfonamide inhibitor bound to voltage-sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued high-resolution ligand-bound NaV1.7-VSD4 structures using cryogenic electron microscopy (cryo-EM). Here, we report that GDC-0310 engages the NaV1.7-VSD4 through an unexpected binding mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previously unknown ligand binding site in NaV channels. This finding enabled the design of a novel hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for the generation of molecules with substantially differentiated structures and properties. Overall, our study highlights the power of cryo-EM methods to pursue challenging drug targets using iterative and high-resolution structure-guided inhibitor design. This work also underscores an important role of the membrane bilayer in the optimization of selective NaV channel modulators targeting VSD4.
The cardiac sodium channel Nav1.5 is a key contributor to the cardiac action potential, and dysregulations in Nav1.5 can lead to cardiac arrhythmias. Nav1.5 is a target of numerous antiarrhythmic drugs (AADs). Previous studies identified the protein 14-3-3 as a regulator of Nav1.5 biophysical coupling. Inhibition of 14-3-3 can remove the Nav1.5 functional coupling and has been shown to inhibit the dominant-negative effect of Brugada syndrome mutations. However, it is unknown whether the coupling regulation is involved with AADs’ modulation of Nav1.5. Indeed, AADs could reveal important structural and functional information about Nav1.5 coupling. Here, we investigated the modulation of Nav1.5 by four classic AADs, quinidine, lidocaine, mexiletine, and flecainide, in the presence of 14-3-3 inhibition. The experiments were carried out by high-throughput patch-clamp experiments in an HEK293 Nav1.5 stable cell line. We found that 14-3-3 inhibition can enhance acute block by quinidine, whereas the block by other drugs was not affected. We also saw changes in the use- and dose-dependency of quinidine, lidocaine, and mexiletine when inhibiting 14-3-3. Inhibiting 14-3-3 also shifted the channel activation toward hyperpolarized voltages in the presence of the four drugs studied and slowed the recovery of inactivation in the presence of quinidine. Our results demonstrated that the protein 14-3-3 and Nav1.5 coupling could impact the effects of AADs. Therefore, 14-3-3 and Nav1.5 coupling are new mechanisms to consider in the development of drugs targeting Nav1.5.
Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes.
Beside the ongoing efforts to determine structural information, detailed functional studies on transporters are essential to entirely understand the underlying transport mechanisms. We recently found that solid supported membrane-based electrophysiology (SSME) enables the measurement of both sugar binding and transport in the Na+/sugar cotransporter SGLT1 (Bazzone et al, 2022a). Here, we continued with a detailed kinetic characterization of SGLT1 using SSME, determining KM and KDapp for different sugars, kobs values for sugar-induced conformational transitions and the effects of Na+, Li+, H+ and Cl− on sugar binding and transport. We found that the sugar-induced pre-steady-state (PSS) charge translocation varies with the bound ion (Na+, Li+, H+ or Cl−), but not with the sugar species, indicating that the conformational state upon sugar binding depends on the ion. Rate constants for the sugar-induced conformational transitions upon binding to the Na+-bound carrier range from 208 s−1 for D-glucose to 95 s−1 for 3-OMG. In the absence of Na+, rate constants are decreased, but all sugars bind to the empty carrier. From the steady-state transport current, we found a sequence for sugar specificity (Vmax/KM): D-glucose > MDG > D-galactose > 3-OMG > D-xylose. While KM differs 160-fold across tested substrates and plays a major role in substrate specificity, Vmax only varies by a factor of 1.9. Interestingly, D-glucose has the lowest Vmax across all tested substrates, indicating a rate limiting step in the sugar translocation pathway following the fast sugar-induced electrogenic conformational transition. SGLT1 specificity for D-glucose is achieved by optimizing two ratios: the sugar affinity of the empty carrier for D-glucose is similarly low as for all tested sugars (KD,Kapp = 210 mM). Affinity for D-glucose increases 14-fold (KD,Naapp = 15 mM) in the presence of sodium as a result of cooperativity. Apparent affinity for D-glucose during transport increases 8-fold (KM = 1.9 mM) compared to KD,Naapp due to optimized kinetics. In contrast, KM and KDapp values for 3-OMG and D-xylose are of similar magnitude. Based on our findings we propose an 11-state kinetic model, introducing a random binding order and intermediate states corresponding to the electrogenic transitions detected via SSME upon substrate binding.
Read more in the paper and find out more about other Solute Carriers in the article collection here.
In neocortical layer-5 pyramidal neurons, the action potential (AP) is generated in the axon initial segment (AIS) when the membrane potential (Vm) reaches the threshold for activation of the voltage-gated Na+ channels (VGNCs) Nav1.2 and Nav1.6. Yet, whereas these VGNCs are known to differ in spatial distribution along the AIS and in biophysical properties, our understanding of the functional differences between the two channels remains elusive. Here, using ultrafast Na+, Vm and Ca2+ imaging in combination with partial block of Nav1.2 by the peptide G1G4-huwentoxin-IV, we demonstrate an exclusive role of Nav1.2 in shaping the generating AP. Precisely, we show that selective block of ∼30% of Nav1.2 widens the AP in the distal part of the AIS and we demonstrate that this effect is due to a loss of activation of BK Ca2+-activated K+ channels (CAKCs). Indeed, Ca2+ influx via Nav1.2 activates BK CAKCs, determining the amplitude and the early phase of repolarization of the AP in the AIS. By using control experiments using 4,9-anhydrotetrodotoxin, a moderately selective inhibitor of Nav1.6, we concluded that the Ca2+ influx shaping the early phase of the AP is exclusive of Nav1.2. Hence, we mimicked this result with a neuron model in which the role of the different ion channels tested reproduced the experimental evidence. The exclusive role of Nav1.2 reported here is important for understanding the physiology and pathology of neuronal excitability.
Although automated patch clamp (APC) devices have been around for many years and have become an integral part of many aspects of drug discovery, high throughput instruments with GΩ seal data quality are relatively new. Experiments where a large number of compounds are screened against ion channels are ideally suited to high throughput APC, particularly when the amount of compound available is low. Here we evaluate different APC approaches using a variety of ion channels and screening settings. We have performed a screen of 1,920 compounds on GluN1/GluN2A NMDA receptors for negative allosteric modulation using both the SyncroPatch 384 and FLIPRTM. Additionally, we tested the effect of 36 arthropod venoms on NaV1.9 using a single 384-well plate on the SyncroPatch 384. As an example for mutant screening, a range of acid-sensing ion channel variants were tested and the success rate increased through FACS prior to APC experiments. GΩ seal data quality makes the 384- format accessible to recording of primary and stem cell-derived cells on the SyncroPatch 384. We show recordings in voltage and current clamp modes of stem cell-derived cardiomyocytes. In addition, the option of intracellular solution exchange enabled investigations into the effects of intracellular Ca2+ and cAMP on TRPC5 and HCN2 currents, respectively. Together, this highlights the broad applicability and versatility of APC platforms and also outlines some limitations of the approach.
Introduction: Cannabis contains cannabidiol (CBD), the main non-psychoactive phytocannabinoid, but also many other phytocannabinoids that have therapeutic potential in the treatment of epilepsy. Indeed, the phytocannabinoids cannabigerolic acid (CBGA), cannabidivarinic acid (CBDVA), cannabichromenic acid (CBCA) and cannabichromene (CBC) have recently been shown to have anti-convulsant effects in a mouse model of Dravet syndrome (DS), an intractable form of epilepsy. Recent studies demonstrate that CBD inhibits voltage-gated sodium channel function, however, whether these other anti-convulsant phytocannabinoids affect these classic epilepsy drug-targets is unknown. Voltage-gated sodium (NaV) channels play a pivotal role in initiation and propagation of the neuronal action potential and NaV1.1, NaV1.2, NaV1.6 and NaV1.7 are associated with the intractable epilepsies and pain conditions.
Methods: In this study, using automated-planar patch-clamp technology, we assessed the profile of the phytocannabinoids CBGA, CBDVA, cannabigerol (CBG), CBCA and CBC against these human voltage-gated sodium channels subtypes expressed in mammalian cells and compared the effects to CBD.
Results: CBD and CBGA inhibited peak current amplitude in the low micromolar range in a concentration-dependent manner, while CBG, CBCA and CBC revealed only modest inhibition for this subset of sodium channels. CBDVA inhibited NaV1.6 peak currents in the low micromolar range in a concentration-dependent fashion, while only exhibiting modest inhibitory effects on NaV1.1, NaV1.2, and NaV1.7 channels. CBD and CBGA non-selectively inhibited all channel subtypes examined, whereas CBDVA was selective for NaV1.6. In addition, to better understand the mechanism of this inhibition, we examined the biophysical properties of these channels in the presence of each cannabinoid. CBD reduced NaV1.1 and NaV1.7 channel availability by modulating the voltage-dependence of steady-state fast inactivation (SSFI, V0.5 inact), and for NaV1.7 channel conductance was reduced. CBGA also reduced NaV1.1 and NaV1.7 channel availability by shifting the voltage-dependence of activation (V0.5 act) to a more depolarized potential, and for NaV1.7 SSFI was shifted to a more hyperpolarized potential. CBDVA reduced channel availability by modifying conductance, SSFI and recovery from SSFI for all four channels, except for NaV1.2, where V0.5 inact was unaffected.
Discussion: Collectively, these data advance our understanding of the molecular actions of lesser studied phytocannabinoids on voltage-gated sodium channel proteins.
On this episode of the podcast we spoke with Dr. Filip Van Petegem about his journey starting as a structural biologist, to the work his lab is currently focused on. Van Petegem Lab studies the structure and function of ion channels, membrane protein responsible for electrical signaling in excitable cells.
On this episode of the podcast we spoke with Dr. Yohei Ohashi about his unique journey from the University of Kyoto where he was working on his PhD specifically within plant molecular biology. Dr. Yohei Ohashi is a multidisciplinary researcher with over 15 years of experience in basic/translational biology.
Dr Carlos Pardo-Pastor (King's College London) is a Research Fellow in the Randall Centre for Cell & Molecular Biophysics. He started his scientific journey studying Human Biology, an MSc in Biomedical Research and then completed his PhD in Biomedicine at Universitat Pompeu Fabra.
On this episode of the podcast we spoke with Carlos about his most recent publication (Piezo2 Channel), you can read the full publication here. He highlights the importance of funding in science, his personal experiences in applying for grants, and some helpful tips for staying motivated as a researcher and connecting with peers in the field.
Dr. Fernanda C Cardoso joined the Institute for Molecular Bioscience at University of Queensland to develop therapies to treat complex neurological diseases. In this episode, she tells us about her passion from a young age to study biology and arachnids. Find out more about Fernanda here.
Here she describes the benefits of working with an Automated Patch Clamp set-up (in comparison to the more traditional manual patch clamp set-up). Her work focuses on Sodium and Calcium Channels, specifically dealing with disorders associated with chronic pain.
In this edition of the podcast - we speak to Catherine Webley, Master of Chemistry, who completed a placement in the academic research lab in the Solar Centre at King Abdullah University of Science and Technology under the supervision of Prof. Iain McCulloch. She describes her 'love affair' with how the natural world works and the impact that the recent Nobel Prize winners have had on her.
In this edition of the podcast - we speak to Claudia Weidling Ph.D. who tells us about her recent publication in Nature, her experience being a Ph.D student during a pandemic and what advice she would offer to prospective Ph.D students.
Beatrice Badone, a Ph.D. student at the University of Milano-Bicocca. Beatrice works with Cardiomyocytes and explains how drug screening can be improved and can be made more accessible and ethical for scientists.
Benjamin is a Wellcome trust PhD student, who is working under the supervision of Dr Christos Pliotas and Dr Stephen Muench. He recently joined their groups to work on his project combining Cryo-EM and PELDOR with electrophysiology, to structurally and functionally characterise novel mechanosensitive ion channels.
Toxoplasma and Plasmodium are the parasitic agents of toxoplasmosis and malaria, respectively, and use perforin-like proteins (PLPs) to invade host organisms and complete their life cycles. The Toxoplasma gondii PLP1 (TgPLP1) is required for efficient exit from parasitophorous vacuoles in which proliferation occurs. We report structures of the membrane attack complex/perforin (MACPF) and Apicomplexan PLP C-terminal β-pleated sheet (APCβ) domains of TgPLP1. The MACPF domain forms hexameric assemblies, with ring and helix geometries, and the APCβ domain has a novel β-prism fold joined to the MACPF domain by a short linker. Molecular dynamics simulations suggest that the helical MACPF oligomer preserves a biologically important interface, whereas the APCβ domain binds preferentially through a hydrophobic loop to membrane phosphatidylethanolamine, enhanced by the additional presence of inositol phosphate lipids. This mode of membrane binding is supported by site-directed mutagenesis data from a liposome-based assay. Together, these structural and biophysical findings provide insights into the molecular mechanism of membrane targeting by TgPLP1.
In this edition of the podcast - we speak to Prof. Lars Kaestner and his work with Red Blood Cells; specifically looking at advances in diagnostic tools for Neuroacanthocytosis.
Corynespora cassiicola is the pathogen that causes Corynespora leaf fall (CLF) disease. Cassiicolin (Cas), a toxin produced by C. cassiicola, is responsible for CLF disease in rubber trees (Hevea brasiliensis). Currently, the molecular mechanism of the cytotoxicity of Cas and its host selectivity have not been fully elucidated. To gain insight into these issues, we analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane-disruption activities. Our real-time observations with high-speed atomic force microscopy (HS-AFM) and confocal microscopy reveal that the binding and disruption activities of Cas1 and Cas2 are strongly dependent on the types of membrane lipids. The mixtures of DPPC with DPPA, MGDG, DGDG, and stigmasterol are more susceptible to membrane damage caused by Cas1 and Cas2 than DPPC alone or its mixtures with sitosterol, DGTS-d9, and DGTS. This difference derives from the stronger binding of the toxins to membranes with the former lipid composition. Cytotoxicity tests on rubber leaves of RRIV 1, RRIV 4, and PB 255 clones suggest that the toxins cause necrosis of rubber leaves, except for the strong resistance of PB 255 against Cas2. Cryo-SEM analyses of necrotic leaf tissues exposed to Cas1 confirm that cytoplasmic membranes are vulnerable to the toxin. Thus, the host selectivity of Cas toxin in CLF disease is attained by the lipid-dependent binding activity of Cas to the membrane, and the cytotoxicity of Cas arises from its ability to disrupt membranes.
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
The Staphylococcus aureus cidABC and lrgAB operons encode members of a well-conserved family of proteins thought to be involved in programmed cell death (PCD). Based on the structural similarities that CidA and LrgA share with bacteriophage holins, we have hypothesized that these proteins function by forming pores within the cytoplasmic membrane. To test this, we utilized a "lysis cassette" system that demonstrated the abilities of the cidA and lrgA genes to support bacteriophage endolysin-induced cell lysis. Typical of holins, CidA- and LrgA-induced lysis was dependent on the coexpression of endolysin, consistent with the proposed holin-like functions of these proteins. In addition, the CidA and LrgA proteins were shown to localize to the surface of membrane vesicles and cause leakage of small molecules, providing direct evidence of their hole-forming potential. Consistent with recent reports demonstrating a role for the lrgAB homologues in other bacterial and plant species in the transport of by-products of carbohydrate metabolism, we also show that lrgAB is important for S. aureus to utilize pyruvate during microaerobic and anaerobic growth, by promoting the uptake of pyruvate under these conditions. Combined, these data reveal that the CidA and LrgA membrane proteins possess holin-like properties that play an important role in the transport of small by-products of carbohydrate metabolism. IMPORTANCE The Staphylococcus aureus cidABC and lrgAB operons represent the founding members of a large, highly conserved family of genes that span multiple kingdoms of life. Despite the fact that they have been shown to be involved in bacterial PCD, very little is known about the molecular/biochemical functions of the proteins they encode. The results presented in this study reveal that the cidA and lrgA genes encode proteins with bacteriophage holin-like functions, consistent with their roles in cell death. However, these studies also demonstrate that these operons are involved in the transport of small metabolic by-products of carbohydrate metabolism, suggesting an intriguing link between these two seemingly disparate processes.
Membrane phase separation forms liquid-ordered (Lo) and liquid-disordered (Ld) phases and is involved in cellular processes and functions. Our previous study has confirmed that peptides can regulate phase separation by increasing the Lo phase. However, the specific mechanisms underlying the phase separation regulation of peptides remain poorly understood. This study aimed to explore the effect of soybean meal peptides on phase separation and illustrate the correlation between phase regulation and membrane localization of the peptides. Phase separation was studied by giant unilamellar vesicles (GUVs), and membrane localization of the peptides was detected by steady-state fluorescence quenching. Our results revealed that peptides YYK, CLA, and SLW enhanced the Lo phase while WLQ decreased the Lo phase. The localization in the membrane amphiphilic region of the peptides played a crucial role in their regulation of phase separation. The more localization of the peptides (YYK, CLA, and SLW) in the membrane amphiphilic region, the stronger the capacity to increase the Lo phase.
During replication, herpesviral capsids are translocated from the nucleus into the cytoplasm by an unusual mechanism, termed nuclear egress, that involves capsid budding at the inner nuclear membrane. This process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid. Although the NEC is essential for capsid nuclear egress across all three subfamilies of the Herpesviridae, most studies to date have focused on the NEC homologs from alpha- and beta- but not gammaherpesviruses. Here, we report the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus. The structure resembles known structures of NEC homologs yet is conformationally dynamic. We also show that purified, recombinant EBV NEC buds synthetic membranes in vitro and forms membrane-bound coats of unknown geometry. However, unlike other NEC homologs, EBV NEC forms dimers in the crystals instead of hexamers. The dimeric interfaces observed in the EBV NEC crystals are similar to the hexameric interfaces observed in other NEC homologs. Moreover, mutations engineered to disrupt the dimeric interface reduce budding. Putting together these data, we propose that EBV NEC-mediated budding is driven by oligomerization into membrane-bound coats.
Materials containing zwitterionic polymers are interesting candidates for diverse applications due to their versatile properties. The assembly of the amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) with three different phospholipids (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) into small and giant vesicles is reported focusing on their morphology, size, and membrane properties. Giant hybrid vesicles were obtained for all types of lipids, but DOPC was more suitable to assemble small hybrid vesicles without a large fraction of hybrid micelles present. Further, the permeability of the small vesicle membranes towards 5(6)-carboxyfluorescein is very similar to comparable sized liposomes. In contrast, the permeability of the giant hybrid vesicle membranes towards 5(6)-carboxy-X-rhodamine is higher compared to only cholesterol-containing lipid giant vesicles. DOPS-containing vesicles showed pH-dependent morphology changes. Hybrid vesicles containing DOPS and DOPE in addition to the block copolymer have the highest association with HepG2 cells. In contrast, only DOPC-containing hybrid vesicles can be incorporated into alginate beads. Taken together, using these block copolymers with a zwitterionic hydrophilic extension of the chosen architecture offers fundamental insight into the possibility to assemble hybrid vesicles and their potential in bottom-up synthetic biology.
Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer–lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.
Hybrid vesicles (HVs) assembled from phospholipids and amphiphilic block copolymers (BCPs) are a more recent alternative to liposomes and polymersomes. We aim to change the properties of the HV membranes by varying the chemical composition of the hydrophobic block in the BCPs that have poly(carboxyethyl acrylate) (PCEA) as the hydrophilic part. To this end, statistical copolymers of cholesteryl methacrylate and either butyl methacrylate (BuMA) or 2-hydroxyethyl methacrylate (HEMA) as well as the corresponding homopolymers were synthesized and used as macroinitiator for the extension with PCEA. All the BCPs allowed for the assembly of small and giant HVs with soybean L-α-phosphatidylcholine. The extend of the co-extisting micellar populations varied as shown by transmission electron microscopy and small-angle X-ray spectroscopy. Although the membrane packings derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe were comparable between the different HVs, their permeability towards 5(6)-carboxy-X-rhodamine or carboxyfluorescein depended on the membrane composition, i.e., HEMA-containing membranes had higher permeability than membranes containing the other tested BCPs for small and giant HVs. Further, membranes with BuMA offered the most suitable environment for the association with β-galactosidase illustrated by the efficient substrate conversion. Taken together, the hydrophobic block is a relevant mean to control the morphologies and membrane properties of HVs.
Nicotinic acetylcholine receptors (nAChRs) are involved in a great range of physiological and pathological conditions. Since they are transmembrane proteins, they interact strongly with the lipids surrounding them. Thus, the plasma membrane composition and heterogeneity play an essential role for the correct nAChR function, on the one hand, and the nAChR influences its immediate lipid environment, on the other hand. The aim of this work was to investigate in more detail the role of the biophysical properties of the membrane in nAChR function and vice versa, focusing on the relationship between Chol and nAChRs. To this end, we worked with different model systems which were treated either with (i) more Chol, (ii) cholesteryl hemisuccinate, or (iii) the enzyme cholesterol oxidase to generate different membrane sterol conditions and in the absence and presence of γTM4 peptide as a representative model of the nAChR. Fluorescence measurements with crystal violet and patch-clamp recordings were used to study nAChR conformation and function, respectively. Using confocal microscopy of giant unilamellar vesicles we probed the membrane phase state/order and organization (coexistence of lipid domains) and lipid-nAChR interaction. Our results show a feedback relationship between membrane organization and nAChR function, i.e. whereas the presence of a model of nAChRs conditions membrane organization, changing its lipid microenvironment, membrane organization and composition perturb nAChRs function. We postulate that nAChRs have a gain of function in disordered membrane environments but a loss of function in ordered ones, and that Chol molecules at the outer leaflet in annular sites and at the inner leaflet in non-annular sites are related to nAChR gating and desensitization, respectively. Thus, depending on the membrane composition, organization, and/or order, the nAChR adopts different conformations and locates in distinct lipid domains and this has a direct effect on its function.
In this study, we evaluated the potential of amphiphilic polyoxazolines (POx) to interact with biological membranes thanks to models of increasing complexity, from a simple lipid bilayer using giant unilamellar vesicles (GUV), to plasma membranes of three different cell types, fibroblasts, keratinocytes and melanocytes, which are found in human skin. Upon assessing an excellent penetration into GUV membranes and cultured cells, we addressed POx’s potential to penetrate the murine skin within an in vivo model. Exposure studies were made with native POx and with POx encapsulated within lipid nanocapsules (LNC). Our findings indicate that POx’s interactions with membranes tightly depend on the nature of the alkyl chain constituting the POx. Saturated C 16 POx insert rapidly and efficiently into GUV and plasma membranes, while unsaturated C 18:2 POx insert to a smaller extent. The high amount of membrane-inserted saturated C 16 POx impacts cell viability to a greater extent than the unsaturated C 18:2 POx. The in vivo study, performed on mice, showed an efficient accumulation of both POx types in the stratum corneum barrier, reaching the upper epidermis, independently of POx’s degree of saturation. Furthermore, the formulation of POx into lipid nanocapsules allowed delivering an encapsulated molecule, the quercetin, in the upper epidermis layers of murine skin, proving POx’s efficacy for topical delivery of active molecules. Overall, POx proved to be an excellent choice for topical delivery, which might in turn offer new possibilities for skin treatments in diseases such as psoriasis or melanomas.
The ability of polymyxin B, an antibiotic used to treat infections caused by multidrug-resistant Gram-negative bacteria as a last-line therapeutic option, to form ion pores in model membranes composed of various phospholipids and lipopolysaccharides was studied. Our data demonstrate that polymyxin B predominantly interacts with negatively charged lipids. Susceptibility decreases as follows: Kdo2-Lipid A >> DOPG ≈ DOPS >> DPhPG ≈ TOCL ≈ Lipid A. The dimer and hexamer of polymyxin B are involved in the pore formation in DOPG(DOPS)- and Kdo2-Lipid A-enriched bilayers, respectively. The pore-forming ability of polymyxin B significantly depends on the shape of membrane lipids, which indicates that the antibiotic produces toroidal lipopeptide-lipid pores. Small amphiphilic molecules diminishing the membrane dipole potential and inducing positive curvature stress were shown to be agonists of pore formation by polymyxin B and might be used to develop innovative lipopeptide-based formulations.
Herein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines 1, 6, 7, and 8 decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80–120 mV. The allylmorpholine-induced drop in the dipole potential produce 10–30% enhancement in the conductance of gramicidin A channels. Chromone-containing allylmorpholines also affect the thermotropic behavior of dipalmytoylphosphocholine (DPPC), abolishing the pretransition, lowering melting cooperativity, and turning the main phase transition peak into a multicomponent profile. Compounds 4, 6, 7, and 8 are able to decrease DPPC’s melting temperature by about 0.5–1.9 °C. Moreover, derivative 7 is shown to increase the temperature of transition of palmitoyloleoylphosphoethanolamine from lamellar to inverted hexagonal phase. The effects on lipid-phase transitions are attributed to the changes in the spontaneous curvature stress. Alterations in lipid packing induced by allylmorpholines are believed to potentiate the pore-forming ability of amphotericin B and gramicidin A by several times.
Cell membranes are heterogeneous and consist of liquid-ordered (Lo) and liquid-disordered (Ld) phases due to phase separation. Membrane regulation of egg white peptides (LCAY and QVPLW) was confirmed in our previous study. However, the underlying mechanism of phase regulation by the peptides has not been elucidated. This study aimed to explore the effect of LCAY and QVPLW on the membrane phase separation and illustrate their mechanism by giant unilamellar vesicles (GUVs). Based on phase separation visualization, LCAY and QVPLW were found to increase the Lo phase by rearranging lipids and ordering the Ld phase. LCAY and QVPLW can bind to the GUVs and localize in the amphiphilic region of the membrane. By hydrogen bonds and hydrophobic interactions, LCAY and QVPLW may play a cholesterol-like role in regulating phase separation.
In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.
The role of astrocytes in brain function has received increased attention lately due to their critical role in brain development and function under physiological and pathophysiological conditions. However, the biological evaluation of soft material nanoparticles in astrocytes remains unexplored. Here, the interaction of crosslinked hybrid vesicles (HVs) and either C8-D1A astrocytes or primary astrocytes cultured in polystyrene tissue culture or floatable paper-based chips is investigated. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) (P1) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine lipids are used for the assembly of HVs with crosslinked membranes. The assemblies show no short-term toxicity towards the C8-D1A astrocytes and the primary astrocytes, and both cell types internalize the HVs when cultured in 2D cell culture. Further, it is demonstrated that both the C8-D1A astrocytes and the primary astrocytes could mature in paper-based chips with preserved calcium signaling and glial fibrillary acidic protein expression. Last, it is confirmed that both types of astrocytes could internalize the HVs when cultured in paper-based chips. These findings lay out a fundamental understanding of the interaction between soft material nanoparticles and astrocytes, even when primary astrocytes are cultured in paper-based chips offering a 3D environment.
Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.
The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a–GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.
Although phosphodiesterase type 5 inhibitors are widely used and well-studied drugs, the potential benefits of their application in the treatment of various diseases and new drug delivery systems, including liposome forms, are still being discussed. In this regard, the role of the lipid matrix of cell membranes in the pharmacological action of the inhibitors is of special interest. It was shown that sildenafil, vardenafil, and tadalafil caused a significant decrease in the boundary potential of model membranes composed of palmitoyloleoylphosphatidylcholine or its mixture with cholesterol, by 70–80 mV. The reduction in the membrane dipole potential induced by inhibitors led to a 20–25% increase in the conductance of cation-selective pores formed by the antimicrobial peptide gramicidin A. The addition of sildenafil or vardenafil also led to a significant decrease in the temperature of the main phase transition of dipalmytoylphosphatidylcholine, by about 1.5 °C, while tadalafil did not change the melting temperature. Sildenafil, vardenafil, and tadalafil enhanced the pore-forming activity of the antifungal polyene antibiotic nystatin by 11, 13, and 2 times, respectively. This fact might indicate the induction of membrane curvature stress by the inhibitors. The data obtained might be of special interest for the development of lipid-mediated forms of drugs.
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
This study was focused on the molecular mechanisms of action of saponins and related compounds (sapogenins and alkaloids) on model lipid membranes. Steroids and triterpenes were tested. A systematic analysis of the effects of these chemicals on the physicochemical properties of the lipid bilayers and on the formation and functionality of the reconstituted ion channels induced by antimicrobial agents was performed. It was found that digitonin, tribulosin, and dioscin substantially reduced the boundary potential of the phosphatidylcholine membranes. We concluded that saponins might affect the membrane boundary potential by restructuring the membrane hydration layer. Moreover, an increase in the conductance and lifetime of gramicidin A channels in the presence of tribulosin was due to an alteration in the membrane dipole potential. Differential scanning microcalorimetry data indicated the key role of the sapogenin core structure (steroid or triterpenic) in affecting lipid melting and disordering. We showed that an alteration in pore forming activity of syringomycin E by dioscin might be due to amendments in the lipid packing. We also found that the ability of saponins to disengage the fluorescent marker calcein from lipid vesicles might be also determined by their ability to induce a positive curvature stress.
Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer’s disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.
Polyunsaturated fatty acids (PUFAs) modify the activity of a wide range of membrane proteins and are increasingly hypothesized to modulate protein activity by indirectly altering membrane physical properties. Among the various physical properties affected by PUFAs, the membrane area expansion modulus (Ka), which measures membrane strain in response to applied force, is expected to be a significant controller of channel activity. Yet the impact of PUFAs on membrane Ka has not been measured previously. Through a series of micropipette aspiration studies, we measured the apparent Ka (Kapp) of phospholipid model membranes containing non-esterified fatty acids. First, we measured membrane Kapp as a function of the location of the unsaturated bond and degree of unsaturation in the incorporated fatty acids and found that Kapp generally decreases in the presence of fatty acids with three or more unsaturated bonds. Next, we assessed how select ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), affect the Kapp of membranes containing cholesterol. In vesicles prepared with high amounts of cholesterol, which should increase the propensity of the membrane to phase segregate, we found that inclusion of DHA decreases the Kapp in comparison to EPA. We also measured how these ω-3 PUFAs affect membrane fluidity and bending rigidity to determine how membrane Kapp changes in relation to these other physical properties. Our study shows that PUFAs generally decrease Kapp of membranes and that EPA and DHA have differential effects on Kapp when membranes contain higher levels of cholesterol. Our results suggest membrane phase behavior, and the distribution of membrane elasticizing amphiphiles, impacts the ability of a membrane to stretch.
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding.
There is broad interest in developing nanostructured assemblies composed of fatty acids and monoglycerides to inhibit membrane-enveloped pathogens and modulate immune cell behavior. Herein, we investigated the interactions of micellar nanostructures composed of a biologically active monoglyceride, glycerol monolaurate (GML), or its ether-bonded equivalent, 1-O-dodecyl-rac-glycerol (DDG), with cell-membrane-mimicking giant unilamellar vesicles (GUVs). Our findings revealed that GML nanostructures induced fission or fusion depending on the GML concentration and corresponding degree of supramolecular organization, while DDG nanostructures only caused aggregation-like disruption of the GUV outer surface. In specific conditions, the GML nanostructures also triggered pearling instability, which led to dynamic membrane remodeling behavior and the pattern of GML interactions was consistent across simplified and complex membrane compositions. Notably, the spectrum of membrane morphological changes induced by GML nanostructures, including fission, fusion, and pearling behaviors, is appreciably wider than the fission behavior exhibited by fatty acid nanostructures in past studies. Collectively, these findings demonstrate how controlling the supramolecular organization of monoglycerides within nanostructured assemblies can be useful to modulate the type and degree of membrane interactions relevant to biophysical and nanomedicine applications.
An alternating electric field is applied to induce swelling of thin lipid films and generation of giant unilamellar vesicles (GUVs) on an indium tin oxide (ITO)-coated glass surface. The process is, hereafter, referred to as the electroformation of GUVs. Several important parameters such as lipid manipulation, temperature, osmolarity and ionic strength of the solutions involved, and the electric field (current (DC, AC), amplitude, frequency) should be optimal for the successful electroformation of GUVs. In our case study, GUVs composed of lipid mixtures available in plant cells provide many benefits for studying the lipid-dependent pathogenicity of cassiicolin (Cas) toxins and thereby deciphering the host-selective toxin interaction of Cas toxins with the specific lipid membranes of plant cells. GUVs gently maintained in the solution furnish perfectly suspended and intact lipid membranes similar to cytoplasmic membranes enabling us to examine the selective binding of GFP-Cas1 and GFP-Cas2 to the specific lipid membranes. In this protocol, we briefly explain the principle of electroformation method and provide the experimental conditions and the manipulation for successfully making GUVs composed of plant lipids (DPPC, DPPC/DPPA, DPPC/MGDG, DPPC/DGDG, DPPC/stigmasterol, DPPC/sitosterol, DPPC/DGTS-d9, and DPPC/DGTS).
Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA–lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA–lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.
Ordered two-dimensional arrays such as S-layers and designed analogues have intrigued bioengineers, but with the exception of a single lattice formed with flexible linkers, they are constituted from just one protein component. Materials composed of two components have considerable potential advantages for modulating assembly dynamics and incorporating more complex functionality. Here we describe a computational method to generate co-assembling binary layers by designing rigid interfaces between pairs of dihedral protein building blocks, and use it to design a p6m lattice. The designed array components are soluble at millimolar concentrations, but when combined at nanomolar concentrations, they rapidly assemble into nearly crystalline micrometre-scale arrays nearly identical to the computational design model in vitro and in cells without the need for a two-dimensional support. Because the material is designed from the ground up, the components can be readily functionalized and their symmetry reconfigured, enabling formation of ligand arrays with distinguishable surfaces, which we demonstrate can drive extensive receptor clustering, downstream protein recruitment and signalling. Using atomic force microscopy on supported bilayers and quantitative microscopy on living cells, we show that arrays assembled on membranes have component stoichiometry and structure similar to arrays formed in vitro, and that our material can therefore impose order onto fundamentally disordered substrates such as cell membranes. In contrast to previously characterized cell surface receptor binding assemblies such as antibodies and nanocages, which are rapidly endocytosed, we find that large arrays assembled at the cell surface suppress endocytosis in a tunable manner, with potential therapeutic relevance for extending receptor engagement and immune evasion. Our work provides a foundation for a synthetic cell biology in which multi-protein macroscale materials are designed to modulate cell responses and reshape synthetic and living systems.
A single giant unilamellar vesicle (GUV) functionalized with an anti-bovine serum albumin (BSA) antibody was immobilized on an avidin slip, and alamethicin channels were embedded as a signal transduction element for creating a channel-based molecular sensing system. The GUV sensor based on the membrane-bound anti-BSA antibody receptor exhibited alamethicin activities that reflected the binding of BSA (an analyte) at the membrane/solution interface. The normalized integrated current at −60 mV was able to be used as a measure of the amount of BSA in a solution. The quantification of BSA at pg/mL level was demonstrated.
iposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA–lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA–lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.
In an attempt to understand the possibility of applications of the fullerene-based systems for transporting various polar compounds like hexamethonium through the blood–brain barrier, we studied the influence of a series of derivatives of fullerene C60 in the form of salts with hexamethonium bis-anion, namely the adducts of fullerenols with 6-aminohexanoic acid (IEM-2197), and two bis-adduct malonic acid derivatives of fullerene with addents bound in two hemispheres (IEM-2143) and in equatorial positions (IEM-2144), on model membranes. We showed that IEM-2197 induced the disintegration of the bilayers composed of DOPC at the concentrations more than 2 mg/ml. IEM-2144 and IEM-2143-induced ion-permeable pores at concentrations of 0.3 and 0.02 mg/ml, respectively; herewith, IEM-2143 was characterized by the greater efficiency than IEM-2144. IEM-2197 did not significantly affect the phase behavior of DPPC, while the melting temperature significantly decreased with addition of IEM-2144 and IEM-2143. The increase in the half-width of the main transition peaks by more than 2.0 °C in the presence of IEM-2144 and IEM-2143 was observed, along with the pronounced peak deconvolution. We proposed that the immersion of IEM-2144 and IEM-2143 into the polar region of the DOPC or DPPC bilayers led to an increase in the relative mobility of tails and formation of ion-permeable defects. IEM-2197 demonstrated the more pronounced effects on the melting and ion permeability of PG- and PS-containing bilayers compared to PC-enriched membranes. These results indicated that IEM-2197 preferentially interacts with the negatively charged lipids compared to neutral species.
Cell-sized vesicles like giant unilamellar vesicles (GUVs) are established as a promising biomimetic model for studying cellular phenomena in isolation. However, the presence of residual components and by-products, generated during vesicles preparation and manipulation, severely limits the utility of GUVs in applications like synthetic cells. Therefore, with the rapidly growing field of synthetic biology, there is an emergent demand for techniques that can continuously purify cell-like vesicles from diverse residues, while GUVs are being simultaneously synthesized and manipulated. We developed a microfluidic platform capable of purifying GUVs through stream bifurcation, where a stream of vesicles suspension is partitioned into three fractions - purified GUVs, residual components, and a washing solution. Using our purification approach, we showed that giant vesicles can be separated from various residues – that range in size and chemical composition – with a very high efficiency (e = 0.99), based on size and deformability of the filtered objects. In addition, by incorporating the purification module with a microfluidic-based GUV-formation method, octanol-assisted liposome assembly (OLA), we established an integrated production-purification microfluidic unit that sequentially produces, manipulates, and purifies GUVs. We demonstrate the applicability of the integrated device to synthetic biology through sequentially fusing SUVs with freshly prepared GUVs and separating the fused GUVs from extraneous SUVs and oil droplets at the same time.
To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena (termed CTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet-purple protein samples amenable to lyophilization and long-term storage. We characterize spectroscopic properties of the pigment-protein complexes and thermodynamics of liposome-protein carotenoid transfer and demonstrate the highly efficient delivery of echinenone form CTDH into liposomes. Most importantly, we show carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species. The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery. Significance statement: Carotenoids are excellent natural antioxidants but their delivery to vulnerable cells is challenging due to their hydrophobic nature and susceptibility to degradation. Thus, systems securing antioxidant stability and facilitating targeted delivery are of great interest for the design of medical agents. In this work, we have demonstrated that soluble cyanobacterial carotenoprotein can deliver echinenone into membranes of liposomes and mammalian cells with almost 70 % efficiency, which alleviates the induced oxidative stress. Our findings warrant the robustness of the protein-based carotenoid delivery for studies of carotenoid activities and effects on cell models.
This study was focused on the effect of plant metabolites (phloretin, capsaicin, digitonin, diosgeninThis study was focused on the effect of plant metabolites (phloretin, capsaicin, digitonin, diosgeninand betulin) on the model lipid membranes. The methods of assessing the permeability of lipid bilayers basedon measuring the leakage of a fluorescent marker (calcein) from liposomes and differential scanning microcalorimetryof vesicle suspension were used. It was found that the release rate of calcein from 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) liposomes with test compounds added to the suspension at aratio with lipid 1 : 50 decreased in the order capsaicin > phloretin >> betulin ≈ diosgenin ≈ digitonin. In thecase of cholesterol- and ergosterol-containing POPC liposomes, the activity decreased as diosgenin ≈ digitonin> betulin > capsaicin > phloretin. It was demonstrated that phloretin and capsaicin significantly reducethe melting temperature (Tm) and to increase the half-width of the main peak on the endotherm (T1/2) ofdipalmitoylphosphocholine (DPPC), distearoylphosphocholine (DSPC) and diarachidoylphosphocholine(DAPC). These results show that the incorporation of these small molecules between the polar “heads” ofphosphocholine. It was found that the increase in the length of saturated chains of membrane-forming lipids(from 16 to 20 hydrocarbon units), the absolute values of ΔTm and ΔT1/2 decreased in the presence of phloretinand increased with capsaicin. This may be the result of differences in the localization of phloretin and capsaicinin the membrane. Steroid saponins exhibited a weak effect on the thermotropic behavior of phosphocholines.The absolute values of ΔTm and ΔT1/2 decreased in the order DPPC, DSPC, and DAPC and increasedin the order betulin, diosgenin, and digitonin. Steroid saponins are characterized by a more pronouncedeffect on the thermotropic behavior of the sterol–phospholipid mixture. The findings are consistent with theassumption of a high affinity of the tested saponins for sterol-containing membranes.
This work is devoted to the identification of molecular mechanisms of action of local anesthetic ropivacaine and other aminoamides (mepivacaine and bupivacaine) on the membrane physicochemical properties and formation and functioning of various ion channels in model lipid bilayers. The boundary membrane potential and its components, permeability for fluorescent markers, and the temperature and cooperativity of the melting of membrane lipid, as well as the mosaic organization of the bilayer, were studied. It was found that ropivacaine, as well as mepivacaine and bupivacaine, changed the surface charge of the bilayer and increased the membrane boundary potential. It was demonstrated that the permeability of lipid vesicles for calcein increased with the introduction of aminoamides, while the temperature and cooperativity of the melting of saturated phosphocholines decreased. The effect of anesthetics on the packing density of lipids in the membrane correlated with the hydrophobicity of their molecules. A comparison of the effects of aminoamides allowed three mechanisms of anesthetics action on the functioning of ion channels to be determined: increasing the surface potential of the membrane, decreasing the packing density of lipids in the membrane, and blocking ion channels.
To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance.
The lipid kinase VPS34 orchestrates diverse processes, including autophagy, endocytic sorting, phagocytosis, anabolic responses and cell division. VPS34 forms various complexes that help adapt it to specific pathways, with complexes I and II being the most prominent ones. We found that physicochemical properties of membranes strongly modulate VPS34 activity. Greater unsaturation of both substrate and non-substrate lipids, negative charge and curvature activate VPS34 complexes, adapting them to their cellular compartments. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) of complexes I and II on membranes elucidated structural determinants that enable them to bind membranes. Among these are the Barkor/ATG14L autophagosome targeting sequence (BATS), which makes autophagy-specific complex I more active than the endocytic complex II, and the Beclin1 BARA domain. Interestingly, even though Beclin1 BARA is common to both complexes, its membrane-interacting loops are critical for complex II, but have only a minor role for complex I.
Polymer–lipid hybrid vesicles are an emerging type of nano‐assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)‐block‐poly(methionine methacryloyloxyethyl ester (METMA)—random– 2‐carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.
Background - In recent years, there has been a growing interest in the formation of copolymer-lipid hybrid self-assemblies, which allow combining and improving the main features of pure lipid-based and copolymer-based systems known for their potential applications in the biomedical field. As the most common method used to obtain giant vesicles is electroformation, most systems so far used low Tg polymers for their flexibility at room temperature.
CoroNaViruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.
Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure–activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near‐infrared region. The dye also exhibited switch‐on fluorescence to enable visualisation of cells with high signal‐to‐noise ratio without washing‐out of unbound dye. The BODIPY‐based probe is non‐cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.
In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25-3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.
Pore-forming proteins are an agent for attack or defense in various organisms, and its cytolytic activity has medical potential in cancer therapy. Despite recent advances in mimicking these proteins by amphipathic DNA nanopores, it remains inefficient to incorporate them into lipid bilayers. Here, we present the development of vesicular DNA nanopores that can controllably open a lipid membrane. Different from previously reported DNA nanopores that randomly insert into the planar bilayers, we design on-command fusogenic liposome-incorporated transmembrane DNA nanopores (FLIPs) that bypass the direct insertion process. By steric deshielding of fusogenic liposomal supports under low pH conditions, the embedded FLIPs are transferred and perforate lipid bilayers. We find that FLIPs depolarize the plasma membrane and thereby induce pyroptosis-like cell death. We further demonstrate the use of FLIPs to inhibit tumor growth in murine tumor models, which provides a new route to cancer nanotherapy.
Dimethyl sulfoxide (DMSO) is widely used in a number of biological and biotechnological applications, mainly because of its effects on the cell plasma membrane, but the molecular origins of this action are yet to be fully clarified. In this work, we used two- and three-component synthetic membranes (liposomes) and the plasma membrane of human erythrocytes to investigate the effect of DMSO when added to the membrane-solvating environment. Fourier transform infrared spectroscopy and thermal fluctuation spectroscopy revealed significant differences in the response of the two types of liposome systems to DMSO in terms of the bilayer thermotropic behavior, available free volume of the bilayer, its excess surface area, and bending elasticity. DMSO also alters the mechanical properties of the erythrocyte membrane in a concentration-dependent manner and is capable of increasing membrane permeability to ATP at even relatively low concentrations (3% v/v and above). Taken in its entirety, these results show that DMSO is likely to have a differential effect on heterogeneous biological membranes, depending on their local composition and structure, and could affect membrane-hosted biological functions.
Versatile lipid membrane-inserting nanopores have been made by functionalizing DNA nanostructures with hydrophobic tags. Here, we outline design and considerations to obtain DNA nanopores with the desired dimensions and conductance properties. We further provide guidance on their reconstitution into lipid membranes.
Lipid membranes are becoming increasingly popular in synthetic biology due to their biophysical properties and crucial role in communication between different compartments. Several alluring protein–membrane sensors have already been developed, whereas protein logic gates designs on membrane-embedded proteins are very limited. Here we demonstrate the construction of a two-level protein–membrane logic gate with an OR-AND logic. The system consists of an engineered pH-dependent pore-forming protein listeriolysin O and its DARPin-based inhibitor, conjugated to a lipid vesicle membrane. The gate responds to low pH and removal of the inhibitor from the membrane either by switching to a reducing environment, protease cleavage, or any other signal depending on the conjugation chemistry used for inhibitor attachment to the membrane. This unique protein logic gate vesicle system advances generic sensing and actuator platforms used in synthetic biology and could be utilized in drug delivery.
Ram sperm are particularly sensitive to freeze-thawing mainly due to their lipid composition, limiting their use in artificial insemination programs. We evaluated the extent of cholesterol and desmosterol incorporation into ram sperm through incubation with increasing concentrations of methyl-β-cyclodextrin (MβCD)-sterol complexes, and its effect on membrane biophysical properties, membrane lateral organization and cryopreservation outcome. Sterols were effectively incorporated into the sperm membrane at 10 and 25 mM MβCD-sterols, similarly increasing membrane lipid order at physiological temperature and during temperature decrease. Differential ordering effect of sterols in ternary-mixture model membranes revealed a reduced tendency of desmosterol of segregating into ordered domains. Live cell imaging of fluorescent cholesterol showed sterol incorporation and evidenced the presence of sperm sub-populations compatible with different sterol contents and a high concentration of sterol rich-ordered domains mainly at the acrosome plasma membrane. Lateral organization of the plasma membrane, assessed by identification of GM1-related rafts, was preserved after sterol incorporation except when high levels of sterols (25 mM MβCD-desmosterol) were incorporated. Ram sperm incubation with 10 mM MβCD-sterols prior to cryopreservation in a cholesterol-free extender improved sperm quality parameters after cooling and freezing. While treatment with 10 mM MβCD-cholesterol increased sperm motility, membrane integrity and tolerance to osmotic stress after thawing, incorporation of desmosterol increased the ability of ram sperm to overcome osmotic stress. Our research provides evidence on the effective incorporation and biophysical behavior of cholesterol and desmosterol in ram sperm membranes and on their consequences in improving functional parameters of sperm after temperature decrease and freezing.
The self-assembly of the protein clathrin on biological membranes facilitates essential processes of endocytosis and has provided a source of inspiration for materials design by the highly ordered structural appearance. By mimicking the architecture of the protein building blocks and clathrin self-assemblies to coat liposomes with biomaterials,advanced hybrid carriers can be derived. Here, we present a method for fabricating DNA-coated liposomes by hydrophobically anchoring and subsequently connecting DNA-based triskelion structures on the liposome surface inspired by the assembly of the protein clathrin. Dynamic light scattering, ζ-potential, confocal microscopy, and cryo-electron microscopy measurements independently demonstrate successful DNA coating. Nanomechanical measurements conducted with atomic force microscopy show that the DNA coating enhances the mechanical stability of the liposomes relative to uncoated ones. Furthermore, we provide the possibility to reverse the coating process by triggering the disassembly of the DNA coats through a toehold-mediated displacement reaction. Our results describe a straightforward, versatile, and reversible approach for coating and stabilizing lipid vesicles through the assembly of rationally designed DNA structures. This method has potential for further development toward the ordered arrangement of tailored functionalities on the surface of liposomes and for applications as hybrid nanocarriers.
Atg3‐catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N‐terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.
Giant Unilamellar Vesicles (GUVs) are a versatile tool in many branches of science, including biophysics and synthetic biology. Octanol-Assisted Liposome Assembly (OLA), a recently developed microfluidic technique enables the production and testing of GUVs within a single device under highly controlled experimental conditions. It is therefore gaining significant interest as a platform for use in drug discovery, the production of artificial cells and more generally for controlled studies of the properties of lipid membranes. In this work, we expand the capabilities of the OLA technique by forming GUVs of tunable binary lipid mixtures of DOPC, DOPG and DOPE. Using fluorescence recovery after photobleaching we investigated the lateral diffusion coefficients of lipids in OLA liposomes and found the expected values in the range of 1 μm2/s for the lipid systems tested. We studied the OLA derived GUVs under a range of conditions and compared the results with electroformed vesicles. Overall, we found the lateral diffusion coefficients of lipids in vesicles obtained with OLA to be quantitatively similar to those in vesicles obtained via traditional electroformation. Our results provide a quantitative biophysical validation of the quality of OLA derived GUVs, which will facilitate the wider use of this versatile platform.
The effects of new synthetic antibacterial agents – tris(1-pentyl-1H-indol-3-yl)methylium chloride (LCTA-1975) and (1-(4-(dimethylamino)-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-1H-indol-3-yl)bis(1-propyl- 1H-indol-3-yl)methylium chloride (LCTA-2701 – on model lipid membranes were studied. The ability of the tested agents to form ion-conductive transmembrane pores, influence the electrical stability of lipid bilayers and the phase transition of membrane lipids, and cause the deformation and fusion of lipid vesicles was investigated. It was established that both compounds exert a strong detergent effect on model membranes. The results of differential scanning microcalorimetry and measuring of the threshold transmembrane voltage that caused membrane breakdown before and after adsorption of LCTA-1975 and LCTA-2701 indicated that both agents cause disordering of membrane lipids. Synergism of the uncoupling action of antibiotics and the alkaloid capsaicin on model lipid membranes was shown. The threshold concentration of the antibiotic that caused an increase in the ion permeability of the lipid bilayer depended on the membrane lipid composition. It was lower by an order of magnitude in the case of negatively charged lipid bilayers than for the uncharged membranes. This can be explained by the positive charge of the tested agents. At the same time, LCTA-2701 was characterized by greater efficiency than LCTA-1975. In addition to its detergent action, LCTA-2701 can induce ion-permeable transmembrane pores: step-like current fluctuations corresponding to the opening and closing of individual ion channels were observed. The difference in the mechanisms of action might be related to the structural features of the antibiotic molecules: in the LCTA-1975 molecule, all three substituents at the nitrogen atoms of the indole rings are identical and represent n-alkyl (pentyl) groups, while LCTA-2701 contains a maleimide group, along with two alkyl substituents (n-propyl). The obtained results might be relevant to our understanding of the mechanism of action of new antibacterial agents, explaining the difference in the selectivity of action of the tested agents on the target microorganisms and their toxicity to human cells. Model lipid membranes should be used in further studies of the trends in the modification and improvement of the structures of new antibacterial agents.
Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness new types of living systems. Both approaches, however, face their own challenges towards biotechnological and biomedical applications. Here, we realize a strategic merger to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them as organelle mimics in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we can reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. By attaching a polymerized DNA origami plate to the DNA triplex motif, we obtain a cytoskeleton mimic that considerably deforms lipid vesicles in a pH-responsive manner. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells as potent microreactors.
Cell division is one of the hallmarks of life. Success in the bottom-up assembly of synthetic cells will, no doubt, depend on strategies for the controlled autonomous division of protocellular compartments. Here, we describe the protein-free division of giant unilamellar lipid vesicles (GUVs) based on the combination of two physical principles – phase separation and osmosis. We visualize the division process with confocal fluorescence microscopy and derive a conceptual model based on the vesicle geometry. The model successfully predicts the shape transformations over time as well as the time point of the final pinching of the daughter vesicles. Remarkably, we show that two fundamentally distinct yet highly abundant processes – water evaporation and metabolic activity – can both regulate the autonomous division of GUVs. Our work may hint towards mechanisms that governed the division of protocells and adds to the strategic toolbox of bottom-up synthetic biology with its vision of bringing matter to life.
Self‐assembly of lipids or polymeric amphiphiles into vesicular structures has been achieved by various methods since the first generation of liposomes in the 1960s. Vesicles can be obtained with diameters from the nanometer to the micrometer regime. From the perspective of cell mimicking, vesicles with diameters of several micrometers are most relevant. These vesicles are called giant unilamellar vesicles (GUVs). Commonly used methods to form GUVs are solvent‐displacement techniques, especially since the development of microfluidics. These methodologies however, trap undesirable organic solvents in their membrane as well as other potentially undesired additives (surfactants, polyelectrolytes, polymers, etc.). In contrast to those strategies, summarized herein are solvent‐free approaches as suitable clean alternatives. The vesicles are formed from a dry thin layer of the lipid or amphiphilic polymers and are hydrated in aqueous media using the entropically favored self‐assembly of amphiphiles into GUVs. The rearrangement of the amphiphilic films into vesicular structures is usually aided by shear forces such as an alternative current (electroformation) or the swelling of water‐soluble polymeric supports (gel‐assisted hydration).
Lipid membrane fluorescent probes that are both domain-selective and compatible with demanding microscopy methods are crucial to elucidate the presence and function of rafts and domains in cells and biophysical models. Whereas targeting fluorescent probes to liquid-disordered (Ld) domains is relatively facile, it is far more difficult to direct probes with high selectivity to liquid-ordered (Lo) domains. Here, a simple, one-pot approach to probe–cholesterol conjugation is described using Steglich esterification to synthesise two identical BODIPY derivatives that differ only in the length of the aliphatic chain between the dye and cholesterol. In the first, BODIPY-Ar-Chol, the probe and cholesterol were directly ester linked and in the second BODIPY-Ahx-Chol, a hexyl linker separated probe from cholesterol. Uptake and distribution of each probe was compared in ternary, phase separated giant unilamellar vesicles (GUVs) using a commercial Ld marker as a reference. BODIPY-Ar-Chol targets almost exclusively the Ld domains with selectivity of >90% whereas by contrast introducing the C6 linker between the probe and cholesterol drove the probe to Lo with excellent selectivity (>80%). The profound impact of the linker length extended also to uptake and distribution in live mammalian cells. BODIPY-Ahx-Chol associates strongly with the plasma membrane where it partitioned preferably into opposing micron dimensioned do-mains to a commercial Ld marker and its concentration at the membrane was reduced by cyclodextrin treatment of the cells. By contrast the BODIPY-Ahx-Chol permeated the membrane and localised strongly to lipid droplets within the cell. The data demonstrates the profound influence of linker length in cholesterol bioconjugates in directing the probe.
This work is devoted to the study of the processes of formation and functioning of ion channels by amyloidogenic peptides, pathological aggregation and accumulation of which is a cause of neurodegenerative disorders. The effect of the plant polyphenols phloretin, butein, resveratrol, isoliquiritigenin, 4'-hydroxychalcone, and cardamonine on the pore-forming activity of β-amyloid peptide fragment 25–35 in bilayer lipid membranes from palmitoyl-phosphocholine was studied. It was demonstrated that the introduction of phloretin, butein or isoliquiritigenin in membrane-bathing solutions to a concentration of 20 µM leads to the increase of macroscopic transmembrane currents induced by peptide. At the same time, cardamonine, 4'-hydroxychalcone, and resveratrol have no effect on the activity of β-amyloid peptide fragment 25–35. The comparison of the results of studying the effect of tested polyphenols on electric and elastic properties of model membranes and pore-forming ability of β-amyloid peptide fragment 25–35 allowed it to concluded that there is no connection between the potentiating effect of phloretin, butein, or isoliquiritigenin and changes in the physicochemical properties of lipid bilayers. Results obtained by means of a confocal fluorescent microscopy indicate that the domain organization of the lipid bilayer may play a role in the pore-forming activity of amyloidogenic peptide. The results of electrophysiological measurements obtained for α-synuclein (another protein forming ion-permeable pores) do not contradict the hypothesis of binding of polyphenols, hydroxylated in the 7 position of the A cycle and in the 4'-position of the B cycle, with an open propane fragment with β-layers formed by amyloid peptides.
The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10-9‑10-3 cm s-1. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity.
Hepatitis B virus X protein (HBx) functions in a variety of cellular events during the HBV life cycle. In a previous study, we reported that the HBx protein is sufficient to induce mitochondrial membrane permeabilization; however, the exact mechanism of HBx-induced mitochondrial membrane permeabilization has been not proposed. In this study, we report that HBx specifically targets cardiolipin (CL) and induces membrane permeabilization depending on CL concentration in mitochondrial outer membrane-mimic artificial liposomes. Interestingly, HBx-induced membrane permeabilization was enhanced by liposomes containing phosphatidylethanolamine, which plays a crucial role in forming a negative curvature on the membrane. We also show that the 68-117 region of HBx, which interacts with mitochondria, is necessary for membrane permeabilization. We examined the size of the pores formed by HBx and found that HBx permeates fluorescent dyes depending on the hydrodynamic diameter with a pore size of approximately 10 nm. The results of this study suggest that CL is necessary for HBx-induced membrane permeabilization and provide important information that suggests a new strategy for anti-HBV therapy.
Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase-segregated membranes, promote fusion between specific vesicle populations. We show that membrane phase-segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA-mediated fusion events. Using this system, we show that orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. We then demonstrate that vesicle fusion between DNA-tethered vesicles can be used to initiate in vitro protein expression that leads to the synthesis of model soluble and membrane proteins. The ability to engineer orthogonal fusion events between DNA-tethered vesicles will provide a new strategy to control the spatio-temporal dynamics of cell-free reactions, expanding opportunities to engineer artificial cellular systems.
Despite increasing interests in non-lamellar liquid crystalline dispersions, such as hexosomes, for drug delivery, little is known about their interactions with cells and mechanism of cell entry. Here we examine the cellular uptake of hexosomes based on phytantriol and mannide monooleate by HeLa cells using live cell microscopy in comparison to conventional liposomes. To investigate the importance of specific endocytosis pathways upon particle internalization, we silenced regulatory proteins of major endocytosis pathways using short interfering RNA. While endocytosis plays a significant role in liposome internalization, hexosomes are not taken up via endocytosis but through a mechanism that is dependent on cell membrane tension. Biophysical studies using biomembrane models highlighted that hexosomes have a high affinity for membranes and an ability to disrupt lipid layers. Our data suggest that direct biomechanical interactions of hexosomes with membrane lipids play a crucial role and that the unique morphology of hexosomes is vital for their membrane activity. Based on these results, we propose a mechanism, where hexosomes destabilize the bilayer, allowing them to “phase through” the membrane. Understanding parameters that influence the uptake of hexosomes is critical to establish them as carrier systems that can potentially deliver therapeutics efficiently to intracellular sites of action.
Attachment of lipophilic groups is an important post‐translational modification of proteins, which involves the coupling of one or more anchors such as fatty acids, isoprenoids, phospholipids or glycosylphosphatidyl inositols. To study its impact on the membrane partitioning of hydrophobic peptides or proteins, we designed a tyrosine‐based trifunctional linker. The linker allows in a single step facile incorporation of two different functionalities at a cysteine. We determined the effect of the lipid modification on the membrane partitioning of the synthetic α‐helical model peptide WALP w/wo palmitoyl groups in giant unilamellar vesicles that contain a liquid‐ordered (Lo) and liquid‐disordered (Ld) phase. Introduction of two palmitoyl groups did not alter the localization of the membrane peptides, nor did the membrane thickness or lipid composition. In all cases, the peptide was retained in the Ld phase. These data demonstrate that the Lo domain in model membranes is highly unfavorable for a single membrane‐spanning peptide.
Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER and other organelles contain domains involved in heterotypic (e.g., ER to Golgi) membrane tethering as well as domains involved in lipid transfer. Here, we show that a long ≈90 aa intrinsically unfolded sequence at the N terminus of oxysterol-binding protein (OSBP) controls OSBP orientation and dynamics at MCS. This Gly-Pro-Ala-rich sequence, whose hydrodynamic radius is twice as that of folded domains, prevents the two PH domains of the OSBP dimer from homotypically tethering two Golgi-like membranes and considerably facilitates OSBP in-plane diffusion and recycling at MCS. Although quite distant in sequence, the N terminus of OSBP-related protein-4 (ORP4) has similar effects. We propose that N-terminal sequences of low complexity in ORPs form an entropic barrier that restrains protein orientation, limits protein density, and facilitates protein mobility in the narrow and crowded MCS environment.
Cells dynamically regulate their membrane surface area during a variety of processes critical to their survival. Recent studies with model membranes have pointed to a general mechanism for surface area regulation under tension in which cell membranes unfold or take up lipid to accommodate membrane strain. Yet we lack robust methods to simultaneously measure membrane tension and surface area changes in real time. Using lipid vesicles that contain two dyes isolated to spatially distinct parts of the membrane, we introduce, to our knowledge, a new method to monitor the processes of membrane stretching and lipid uptake in model membranes. Laurdan, located within the bilayer membrane, and Förster resonance energy transfer dyes, localized to the membrane exterior, act in concert to report changes in membrane tension and lipid uptake during osmotic stress. We use these dyes to show that membranes under tension take up lipid more quickly and in greater amounts compared to their nontensed counterparts. Finally, we show that this technique is compatible with microscopy, enabling real-time analysis of membrane dynamics on a single vesicle level. Ultimately, the combinatorial use of these probes offers a more complete picture of changing membrane morphology. Our optical method allows us to remotely track changes in membrane tension and surface area with model membranes, offering new opportunities to track morphological changes in artificial and biological membranes and providing new opportunities in fields ranging from mechanobiology to drug delivery.
CoroNaViruses represent current and emerging threats for many species, including humans. Middle East respiratory syndrome-related coroNaVirus (MERS-CoV) is responsible for sporadic infections in mostly Middle Eastern countries, with occasional transfer elsewhere. A key step in the MERS-CoV replication cycle is the fusion of the virus and host cell membranes mediated by the virus spike protein, S. The location of the fusion peptide within the MERS S protein has not been precisely mapped. We used isolated peptides and giant unilamellar vesicles (GUV) to demonstrate membrane binding for a peptide located near the N-terminus of the S2 domain. Key residues required for activity were mapped by amino acid replacement and their relevance in vitro tested by their introduction into recombinant MERS S protein expressed in mammalian cells. Mutations preventing membrane binding in vitro also abolished S-mediated syncytium formation consistent with the identified peptide acting as the fusion peptide for the S protein of MERS-CoV.
Noble metallic nanoparticles (NPs) such as gold and silver nanoparticles (AuNPs and AgNPs) have been shown to exhibit anti-tumor effect in anti-angiogenesis, photothermal and radio therapeutics. On the other hand, cell membranes are critical locales for specific targeting of cancerous cells. Therefore, NP-membrane interactions need be studied at molecular level to help better understand the underlying physicochemical mechanisms for future applications in cancer nanotechnology. Herein, we report our study on the interactions between citrate stabilized colloidal AuNPs/AgNPs (10 nm in size) and giant unilamellar vesicles (GUVs) using hyperspectral dark-field microscopy. GUVs are large model vesicle systems well established for the study of membrane dynamics. GUVs used in this study were prepared with dimyristoyl phosphatidylcholine (DMPC) and doped with cholesterol at various molar concentrations. Both imaging and spectral results support that AuNPs and AgNPs interact very differently with GUVs, i.e., AuNPs tend to integrate in between the lipid bilayer and form a uniform golden-brown crust on vesicles, whereas AgNPs are bejeweled on the vesicle surface as isolated particles or clusters with much varied configurations. The more disruptive capability of AuNPs is hypothesized to be responsible for the formation of golden brown crusts in AuNP-GUV interaction. GUVs of 20 mol% CHOL:DMPC were found to be a most economical concentration for GUVs to achieve the best integrity and the least permeability, consistent with the finding from other phase studies of lipid mixture that the liquid-ordered domains have the largest area fraction of the entire membrane at around 20 mol% of cholesterol.
The influence of local anesthetics on the regulation of the channel-forming activity of the antimicrobial peptide cecropin A has been investigated. The mean current flowing through the single cecropin channels isc was determined, and steady-state transmembrane current induced by cecropin AI∞ was measured. It has been shown that the introduction of 1 mM of bupivacaine, benzocaine or 0.3 mM of tetracaine into the membrane bathing solution results in a decrease in isc and I∞. At the same time, the addition of 1 mM lidocaine or procaine to the membrane-bathing solutions does not lead to a significant change in isc and I∞. Comparison of the absolute values and the sign of the change in the boundary potential of negatively charged membranes and relative changes of isc and I∞ after addition of local anesthetics shows that neither parameter correlates with the membrane boundary potential. The results of studying the effect of tested local anesthetics on the phase transition of membrane lipids allow us to conclude that the observed changes of isc and I∞ are due to modulation of the elastic properties of the membrane.
Bacteriophage phi29 DNA packaging motor consists of a dodecameric portal channel protein complex termed connector that allows transportation of genomic dsDNA and a hexameric packaging RNA (pRNA) ring to gear the motor. The elegant design of the portal protein has facilitated its applications for real-time single-molecule detection of biopolymers and chemicals with high sensitivity and selectivity. The robust self-assembly property of the pRNA has enabled biophysical studies of the motor complex to determine the stoichiometry and structure/folding of the pRNA at single-molecule level. This chapter focuses on biophysical and analytical methods for studying the phi29 motor components at the single-molecule level, such as single channel conductance assays of membrane-embedded connectors; single molecule photobleaching (SMPB) assay for determining the stoichiometry of phi29 motor components; fluorescence resonance energy transfer (FRET) assay for determining the structure and folding of pRNA; atomic force microscopy (AFM) for imaging pRNA nanoparticles of various size, shape, and stoichiometry; and bright-field microscopy with magnetomechanical system for direct visualization of viral DNA packaging process. The phi29 system with explicit engineering capability has incredible potentials for diverse applications in nanotechnology and nanomedicine including, but not limited to, DNA sequencing, drug delivery to diseased cells, environmental surveillance, and early disease diagnosis.
Lipophilic BODIPY fluorphores, in which the BODIPY core bears pendant dipyrido[3,2-a:2′,3′-c]phenazine (Dppz) or naphthyridyl and cholesterol substituents were designed and prepared as lipid probes for both liposomes and live cell imaging. The probes are non-emissive in water but permeate both GUV and live cell membranes and provide high contrast fluorescence and lifetime imaging of membranous structures and lipid droplets in cells and are suitable for FCS measurements on lipid membranes.
The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at − 50 mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60 mV at 50 μM, while Rose Bengal, phloxine B and erythrosin at 2.5 μM reduce the membrane dipole potential by 120, 80 and 50 mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.
Super-resolution imaging and single-particle tracking require cells to be immobile as any movement reduces the resolution of the measurements. Here, we present a method based on APTES-glutaraldehyde coating of glass surfaces to immobilize cells without compromising their growth. Our method of immobilization is compatible with Saccharomyces cerevisiae, Escherichia coli, and synthetic cells (here, giant-unilamellar vesicles). The method introduces minimal background fluorescence and is suitable for imaging of single particles at high resolution. With S. cerevisiae we benchmarked the method against the commonly used concaNaValin A approach. We show by total internal reflection fluorescence microscopy that modifying surfaces with ConA introduces artifacts close to the glass surface, which are not present when immobilizing with the APTES-glutaraldehyde method. We demonstrate validity of the method by measuring the diffusion of membrane proteins in yeast with single-particle tracking and of lipids in giant-unilamellar vesicles with fluorescence recovery after photobleaching. Importantly, the physical properties and shape of the fragile GUVs are not affected upon binding to APTES-glutaraldehyde coated glass. The APTES-glutaraldehyde is a generic method of immobilization that should work with any cell or synthetic system that has primary amines on the surface.
In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system.
In recent years, there has been a growing interest in the formation of copolymers-lipids hybrid self-assemblies, which allow combining and improving the main features of pure lipids-based and copolymer-based systems known for their potential applications in the biomedical field. In this contribution we investigate the self-assembly behavior of dipalmitoylphosphatidylcholine (DPPC) mixed with poly(butadiene-b-ethyleneoxide) (PBD-PEO), both at the micro- and at the nano-length scale. Epifluorescence microscopy and Laser Scanning Confocal microscopy are employed to characterize the morphology of micron-sized hybrid vesicles. The presence of fluid-like inhomogeneities in their membrane has been evidenced in all the investigated range of compositions. Furthermore, a microfluidic set-up characterizes the mechanical properties of the prepared assemblies by measuring their deformation upon flow: hybrids with low lipid content behave like pure polymer vesicles, whereas objects mainly composed of lipids show more variability from one vesicle to the other. Finally, the structure of the nanosized assemblies is characterized through a combination of Dynamic Light Scattering, Small Angle Neutron Scattering and Transmission Electron Microscopy. A vesicles-to-wormlike transition has been evidenced due to the intimate mixing of DPPC and PBD-PEO at the nanoscale. Combining experimental results at the micron and at the nanoscale improves the fundamental understanding on the phase behavior of copolymer-lipid hybrid assemblies, which is a necessary prerequisite to tailor efficient copolymer-lipid hybrid devices.
Electrophysiology is the method of choice to characterize membrane channels. In this study, we demonstrate a patch pipette based simple miniaturization that allows performing conductance measurements on a planar lipid bilayer in a microfluidic channel. Membrane proteins were reconstituted into Giant Unilamellar Vesicles (GUVs) by electroswelling, and GUVs with a single channel insertion were patched at the tip of pipette. We applied this approach to investigate the interactions of porins from E. coli with single antibiotics, and this will potentially provide information on the permeability rates. The results of this study suggest that this approach can be extended to the integration of several pipettes into the microfluidic channel from different positions, allowing the multiplexed recordings and also reducing the substrate consumption below μL volumes.
Bacterial lipopolysaccharides (LPS) activate the TRPA1 cation channels in sensory neurons, leading to acute pain and inflammation in mice and to aversive behaviors in fruit flies. However, the precise mechanisms underlying this effect remain elusive. Here we assessed the hypothesis that TRPA1 is activated by mechanical perturbations induced upon LPS insertion in the plasma membrane. We asked whether the effects of different LPS on TRPA1 relate to their ability to induce mechanical alterations in artificial and cellular membranes. We found that LPS from E. coli, but not from S. minnesota, activates TRPA1. We then assessed the effects of these LPS on lipid membranes using dyes whose fluorescence properties change upon alteration of the local lipid environment. E. coli LPS was more effective than S. minnesota LPS in shifting Laurdan’s emission spectrum towards lower wavelengths, increasing the fluorescence anisotropy of diphenylhexatriene and reducing the fluorescence intensity of merocyanine 540. These data indicate that E. coli LPS induces stronger changes in the local lipid environment than S. minnesota LPS, paralleling its distinct ability to activate TRPA1. Our findings indicate that LPS activate TRPA1 by producing mechanical perturbations in the plasma membrane and suggest that TRPA1-mediated chemosensation may result from primary mechanosensory mechanisms.
Endosomes serve as a central sorting station of lipids and proteins that arrive via vesicular carrier from the plasma membrane and the Golgi complex. At the endosome, retromer complexes sort selected receptors and membrane proteins into tubules or vesicles that bud off the endosome. The mature endosome finally fuses with the lysosome. Retromer complexes consist of a cargo selection complex (CSC) and a membrane remodeling part (SNX-BAR or Snx3 in yeast), and different assemblies of retromer mediate recycling of different cargoes. Due to this complexity, the exact order of events that results in carrier formation is not yet understood. Here, we reconstituted this process on giant unilamellar vesicles together with purified retromer complexes from yeast and selected cargoes. Our data reveal that the membrane remodeling activity of both Snx3 and the SNX-BAR complex is strongly reduced at low concentrations, which can be reactivated by CSC. At even lower concentrations, these complexes still associate with membranes, but only remodel membranes in the presence of their specific cargoes. Our data thus favor a simple model, where cargo functions as a specific trigger of retromer-mediated sorting on endosomes.
Archaeosomes are vesicles made of lipids from archaea. They possess many unique features in comparison to other lipid systems, with their high stability being the most prominent one, making them a promising system for biotechnological applications. Here, we report a preparation protocol of large unilamellar vesicles, giant unilamellar vesicles (GUVs), and nanodiscs from archaeal lipids with incorporated cholesterol. Incorporation of cholesterol led to additional increase in thermal stability of vesicles. Surface plasmon resonance, sedimentation assays, intrinsic tryptophan fluorescence measurements, calcein release experiments, and GUVs experiments showed that members of cholesterol-dependent cytolysins, listeriolysin O (LLO), and perfringolysin O (PFO), bind to cholesterol-rich archaeosomes and thereby retain their pore-forming activity. Interestingly, we observed specific binding of LLO, but not PFO, to archaeosomes even in the absence of cholesterol. This suggests a new capacity of LLO to bind to carbohydrate headgroups of archaeal lipids. Furthermore, we were able to express LLO inside GUVs by cell-free expression. GUVs made from archaeal lipids were highly stable, which could be beneficial for synthetic biology applications. In summary, our results describe novel model membrane systems for studying membrane interactions of proteins and their potential use in biotechnology.
Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane’s inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine.
Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions.
Hydrophobic hydrocarbons are absorbed by cell membranes. The effects of hydrocarbons on biological membranes have been studied extensively, but less is known how these compounds affect lipid phase separation. Here, we show that pyrene and pyrene-like hydrocarbons can dissipate lipid domains in phase separating giant unilamellar vesicles at room temperature. In contrast, related aromatic compounds left the phase separation intact, even at high concentration. We hypothesize that this behavior is because pyrene and related compounds lack preference for either the liquid-ordered (Lo) or liquid-disordered (Ld) phase, while larger molecules prefer Lo, and smaller, less hydrophobic molecules prefer Ld. In addition, our data suggest that localization in the bilayer (depth) and the shape of the molecules might contribute to the effects of the aromatic compounds. Localization and shape of pyrene and related compounds are similar to cholesterol and therefore these molecules could behave as such.
Hepatitis B virus X protein (HBx) acts as a multifunctional protein that regulates intracellular signalling pathways during HBV infection. It has mainly been studied in terms of its interaction with cellular proteins. Here, we show that HBx induces membrane permeabilization independently of the mitochondrial permeability transition pore complex. We generated mitochondrial outer membrane‐mimic liposomes to observe the direct effects of HBx on membranes. We found that HBx induced membrane permeabilization, and the region comprising the transmembrane domain and the mitochondrial‐targeting sequence was sufficient for this process. Membrane permeabilization was inhibited by nonselective channel blockers or by N‐(n‐nonyl)deoxynojirimycin (NN‐DNJ), a viroporin inhibitor. Moreover, NN‐DNJ inhibited HBx‐induced mitochondrial depolarization in Huh‐7 cells. Based on the results of this study, we can postulate that the HBx protein itself is sufficient to induce mitochondrial membrane permeabilization. Our finding provides important information for a strategy of HBx targeting during HBV treatment
In this study we report on experimental observations of giant unilamellar liposomes composed of ternary mixtures of cholesterol (Chol), phospholipids with relatively low Tmelt (DOPC, POPC, or DPoPC) and high Tmelt (sphingomyelin (SM), or tetramyristoyl cardiolipin (TMCL)) and their phase behaviors in the presence and absence of dipole modifiers. It was shown that the ratios of liposomes exhibiting noticeable phase separation decrease in the series POPC, DOPC, DPoPC regardless of any high-Tmelt lipid. Substitution of SM for TMCL led to increased lipid phase segregation. Taking into account the fact that the first and second cases corresponded to a reduction in the thickness of the lipid domains enriched in low- and high-Tmelt lipids, respectively, our findings indicate that the phase behavior depends on thickness mismatch between the ordered and disordered domains. The dipole modifiers, flavonoids and styrylpyridinium dyes, reduced the phase segregation of membranes composed of SM, Chol, and POPC (or DOPC). The other ternary lipid mixtures tested were not affected by the addition of dipole modifiers. It is suggested that dipole modifiers address the hydrophobic mismatch through fluidization of the ordered and disordered domains. The ability of a modifier to partition into the membrane and fluidize the domains was dictated by the hydrophobicity of modifier molecules, their geometric shape, and the packing density of domain-forming lipids. Phloretin, RH 421, and RH 237 proved the most potent among all the modifiers examined.
Background:Trimeric intracellular cation (TRIC) channels are crucial for Ca2+ handling in eukaryotes and are involved in K+ uptake in prokaryotes. Recent studies on the representative members of eukaryotic and prokaryotic TRIC channels demonstrated that they form homotrimeric units with the ion-conducting pores contained within each individual monomer.Results:Here we report detailed insights into the ion- and water-binding sites inside the pore of a TRIC channel from Sulfolobus solfataricus (SsTRIC). Like the mammalian TRIC channels, SsTRIC is permeable to both K+ and Na+ with a slight preference for K+, and is nearly impermeable to Ca2+, Mg2+, or Cl–. In the 2.2-Å resolution K+-bound structure of SsTRIC, ion/water densities have been well resolved inside the pore. At the central region, a filter-like structure is shaped by the kinks on the second and fifth transmembrane helices and two nearby phenylalanine residues. Below the filter, the cytoplasmic vestibule is occluded by a plug-like motif attached to an array of pore-lining charged residues.Conclusions:The asymmetric filter-like structure at the pore center of SsTRIC might serve as the basis for the channel to bind and select monovalent cations. A Velcro-like plug-pore interacting model has been proposed and suggests a unified framework accounting for the gating mechanisms of prokaryotic and eukaryotic TRIC channels.
An artificial membrane nanopore assembled from DNA oligonucleotides carries porphyrin tags, which anchor the nanostructure into the lipid bilayer. The porphyrin moieties also act as fluorescent dyes to aid the microscopic visualization of the DNA nanopore.
The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant unilamellar lipid vesicle (GUV) which is then imaged using phase sensitive fluorophores embedded within the bilayer. By local melting of GUVs we reveal how a protein-free, one component lipid bilayer can mediate passive transport of fluorescent molecules by localized and transient pore formation. Also, we show how tubular membrane curvatures can be generated by optical pulling from the melted region on the GUV. This will allow us to measure the effect of membrane curvature on the phase transition temperature.
Mechanosensitive (MS) ion channels are membrane proteins that detect and respond to membrane tension in all branches of life. In bacteria, MS channels prevent cells from lysing upon sudden hypoosmotic shock by opening and releasing solutes and water. Despite the importance of MS channels and ongoing efforts to explain their functioning, the molecular mechanism of MS channel gating remains elusive and controversial. Here we report a method that allows single-subunit resolution for manipulating and monitoring “mechanosensitive channel of large conductance” from Escherichia coli. We gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time. Our experimental results suggest that both channel opening and closing are initiated by the transmembrane 1 helix of a single subunit and that the participation of each of the five identical subunits in the structural transitions between the closed and open states is asymmetrical. Such a minimal change in the pore environment seems ideal for a fast and energy-efficient response to changes in the membrane tension.
Confocal fluorescence microscopy have been employed to investigate phase separation in giant unilamellar vesicles prepared from binary mixtures of unsaturated dioleoylphosphocholine with saturated phosphocholines or brain sphingomyelin in the absence and presence of the flavonoids, biochanin A, phloretin, and myricetin. It has been demonstrated that biochanin A and phloretin make uncolored domains more circular or eliminate visible phase separation in liposomes while myricetin remains the irregular shape of fluorescence probe-excluding domains. Influence of the flavonoids on the endotherms of liposome suspension composed of dioleoylphosphocholine and dimyristoylphosphocholine was investigated by the differential scanning calorimetry. Calorimetry data do not contradict to confocal imaging results.
Get up-to-date with the CiPA progress of the Myocyte and Ion Channel Work Goups: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines.
Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed.Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values.
With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.
Get up-to-date with the CiPA progress of the Myocyte and Ion Channel Work Goups: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines.
Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed.Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values.
With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.
The CiPA HTS Ion Channel Working Group finalized its phase I study in 2017. Amongst other external sites, Nanion Technologies in Germany, USA and Japan participated with the Patchliner and the SyncroPatch 384PE in this study. A comparative view of the ion channel targets and a cross-platform and cross-site comparison will be presented. Furthermore, results from the myocyte Work Stream using arrhythmogenic compounds will be compared and confirmed with patch clamp data derived from the HTS Work Stream.
Please note: The original webinar presentation contained 8 slides with data of an upcoming publication. Due to confidentiality reasons, the relevant slides were cut out of the movie.
Whilst voltage-gated ion channels formed the bulk of academic and industrial effort in developing and utilising APC assays for ion channel drug discovery, recent years have seen increasing interest in ligand-gated receptors. These targets offer specific challenges for APC systems in terms of lower channel expression, rapid application and wash-off of ligands, and loss of responsiveness due to short- and long-term desensitisation. In this presentation I will outline successful development of pipette- and tip-based APC assay formats for the rapidly-activating ASIC1A channel on the Patchliner and SyncroPatch384i.
The use of automated patch clamp (APC) electrophysiology in cardiac safety screening has increased over the years, and APC is now an established and accepted technique in most, if not all, safety testing laboratories. Since the introduction of the ICH S7B non-clinical guidance in November 2005 which requires all new drugs to be tested for activity on the IKr current carried by hERG expressed in recombinant cell lines using the patch-clamp technique, very few drugs have been withdrawn from the market due to pro-arrhythmic complications. APC has become the major workhorse in safety testing laboratories and is now considered to be the gold standard. Furthermore, with the introduction of the comprehensive in vitro pro-arrhythmia assay (CiPA) which recommends expanding electrophysiological recordings to include other cardiac ion channels, APC will continue to play a major role in cardiac safety testing. Recently, a large study comparing the results of a set of standard compounds tested on different instruments at different sites has been published[1] which highlights the need for standardized protocols for reliable results, for example, for hERG recordings.
We have undertaken a study to identify key parameters that can affect IC50 values of compounds acting on hERG using the medium and high throughput APC systems, Patchliner, SyncroPatch 384PE and SyncroPatch 384i. Effects of experimental parameters such as voltage protocol, incubation time, labware, compound storage time and replicate number on IC50 values of a set of CiPA compounds will be presented and recommendations for best practices for hERG measurements using APC is provided. Furthermore, as outlined in the 2020 Best Practice Consideration for In vitro Studies, ‘The concentration of compound to which the cells were exposed should be verified by applying a validated analytical method to the solution collected from the cell chamber’[2] in patch clamp studies. Nanion has implemented a new procedure that enables sample collection from used wells from the NPC-384 chips and this will be described.
The human skin is constantly exposed to various stress factors such as temperature changes, mechanical stress, different humidity levels, air pollution or radiation. These factors can have a tremendous impact on the skin and can contribute to barrier disruption and inflammation, dry and fragile skin as well as premature ageing. Recent advances in different research areas point to an important role of LRRC8 volume regulated anion channels (VRACs) in a plethora of different physiological processes. The function of LRRC8 has been characterized in human keratinocytes and in the native human epidermis and the LRRC8 ion channel has been proposed to be a novel molecular target to modulate keratinocyte differentiation in a recent patent.LRRC8A (also named SWELL1) has been identified as the first essential component of VRACs in various cell types. LRRC8A is composed of four transmembrane domains and a C-terminal domain containing up to 17 leucine-rich repeats. Together with four additional LRRC8 family members (LRRC8B-E) it assembles into hetero-hexameric complexes. Interestingly, the LRRC8 subunit composition differs between cell types and influences VRAC properties such as inactivation kinetics, voltage-dependence and selectivity of the transported osmolyte. The generation of LRRC8A-/- knockout HaCaT keratinocytes have provided evidence for the essential function of LRRC8A in hypotonic stress response of human keratinocytes.In this Application Note we show electrophysiological data from WT and LRRC8A-/- knockout HaCaT keratinocytes which corroborate the essential function of LRRC8A in keratinocytes.
Transient Receptor Potential Canonical (TRPC) channels are a subfamily of TRP channels. The TRPC family contains at least 7 subunits and are predominantly expressed in neuronal cells where they may play an important role in Ca2+ flux. TRPC5 channels are non-selective cation channels expressed in many areas of the brain particularly the hippocampus, amygdala and cerebellum, amongst others. Although the physiological and pathophysiological role of TRPC5 is not fully known, it does appear to be important in neuronal function, in particular during development where it is involved in hippocampal neurite outgrowth and growth cone morphology. Knockout mouse studies have also revealed that TRPC5 plays an essential role in innate fear. TRPC5 is expressed in some regions outside of the CNS including the heart where it contributes to cardiac hypertrophy in heart failure. TRPC5 is activated by intracellular calcium. Using the SyncroPatch 384PE, TRPC5 expressed in HEK cells could be activated by perfusion of the intracellular solution to contain free-Ca2+. This current was potentiated by the lanthanide, gadolinium (Gd3+), as expected and blocked by 2-APB with an IC50 consistent with that reported in the literature.
The TWIK-related K+ channel (TREK-1) is a two pore domain (K2P) K+ channel encoded by the KCNK2 gene. The protein is a homodimer, each subunit comprised of transmembrane (TM) helical regions (M1-M4), two pore domains (P1 & P2), an extracellular region with 2 helices, and intracellular N and C termini. The pore helices and pore loops form the K+ selectivity filter. First discovered in 1996, it plays an important physiological role in background K+ conductance and thus plays a major role in regulating resting membrane potential. TREK-1 widely is expressed throughout the CNS and spinal cord, particularly in the cortex, hippocampus, thalamus, hypothalamus, cerebellum and basal ganglia. Additionally, TREK-1 is expressed in high levels in small and medium sized dorsal root ganglion (DRG) neurons. It is also expressed in other regions such as lung, heart, kidney, skeletal muscle and human myometrium where it is up-regulated during pregnancy5 and may play a role in maintaining a negative membrane potential prior to labor. TREK-1 is modulated by a variety of different physical and chemical stimuli including mechanical (stretch), temperature, intracellular acidosis, poly-unsaturated fatty acids and phospoholipids. It has also been shown to be opened by volatile anaesthetics and is likely to be an important target for these agents. TREK-1 has been proposed to play a pivotal role in cerebral ischemia, epilepsy, depression, pain perception and temperature sensing and is an interesting therapeutic target. Human TREK-1 expressed in HEK cells were recorded on the SyncroPatch 384PE with good success rates. hTREK-1 was activated by BL-1249 and blocked by THA.
Transient receptor potential (TRP) channels have become important potential targets in drug discovery for the treatment of, for example, pain, respiratory diseases such as asthma, cancer and immune disorders, multiple kidney diseases and skeletal disorders1 . The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP family of cation channels, plays a predominant role in the sensation of noxious cold2 and inflammatory pain3 . The channel is activated by a range of environmental irritants causing pain, pungent compounds found in foods such as garlic, mustard and cinnamon, as well as metabolites produced during oxidative stress4 . Consistent with its proposed function in nociception, TRPA1 has been shown to be expressed in sensory neurons of the dorsal root ganglion (DRG) and trigeminal ganglion, both of which transmit painful responses2. Thus, within drug development, much attention is paid to the TRPA1 channel. Preclinical data and data from a recent human genetic study5 highlight TRPA1 antagonists as a promising new approach for the treatment of acute and chronic pain. Indeed, a TRPA1 antagonist has shown positive results in a proof-ofconcept study for diabetic neuropathic pain6 . The most challenging aspects involved in the screening of the TRPA1 channel are the channel’s mechanosensitivity, fast desensitization and activity dependence on intracellular calcium. Here, we present high quality data with reliable pharmacology on hTRPA1 expressing HEK cells collected on the SyncroPatch 384PE. Data is presented showing activation of the TRPA1 channel by SCMA and inhibition by A-967079.
The resting membrane potential of excitable cells is determined by leak conductances predominantly mediated by KCNK and two-pore-domain potassium channels (K2P). K2P channels are characterized by the presence of two pore forming regions and four trans-membrane spanning (4TMS) regions in each channel subunit and form functional dimers. These channels are essential for the production of background leak type potassium currents that act to regulate resting membrane potential and levels of cellular excitability. The TWIKrelated acid-sensitive K+ channel 1 (K2P3.1 or TASK-1) is a member of the K2P channel family and is encoded by the KCNK3 gene. TASK-1 is ubiquitously expressed throughout the CNS but also in other tissues such as in the heart, adrenal gland, lung, pancreas,kidney, intestine and prostate. TASK-1 has been implicated in atrial fibrillation (AF) pathophysiology and was suggested as an atrial-selective antiarrhythmic drug target. TASK-1 is activated by extracellular acidosis and inhibited by anandamide and by local anesthetics including bupivicaine. Volatile general anestethics such as halothan and xenon stimulate TASK-1.
TMEM16A/Anoctamin1 is a Ca2+-activated Cl− channel (CACC) which has a broad functional spectrum in processes including trans-epithelial ion transport, olfaction, photo-transduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. TMEM16A has been implicated to play a role in a number of health disorders and may be an important therapeutic target in cystic fibrosis, asthma, pain and some human cancers. TMEM16A is activated by elevated cytosolic calcium concentrations. In conventional patch clamp experiments, exchange of the intracellular solution to include calcium in order to initiate channel activity is challenging and typically performed using inside-out patches or by comparing the effect of internal calcium between different cells in the whole cell configuration. Furthermore, current run-down or desensitization are common problems associated with recording this ion channel. Here, we present data from HEK293 cells expressing hTMEM16A in whole cell and perforated patch mode using fluoride-free internal solution on the SyncroPatch 384PE. The data show that intracellular solution can be exchanged in a very robust manner to investigate calcium sensitivity, voltage dependence and pharmacology of the channel.
P2X receptors are ligand-gated ion channels that open in response to extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. P2X receptors are found on many cell types including smooth muscle cells, sensory neurones, epithelia, bone and leukocytes. A role for P2X receptors has been suggested in transmission of thermal stimuli, chemosensory signalling, taste and pain. To date, 7 P2X receptor genes have been cloned and studied in heterologous expression systems. Functional receptors are trimeric, which can be homomeric or heteromeric. The P2X2 and P2X3 receptors can function either as homomers or as P2X2/3 heteromers. When expressed together, a mixture of P2X2 and P2X3 homomers as well as P2X2/3 heteromers are likely to exist, which may be distinguished through their biophysical and pharmacological properties. Both P2X3 homomers and P2X2/3 heteromeric receptors have been implicated in nociception and pain signalling and may be important therapeutic targets for analgesic drugs. Additionally, the P2X3 and P2X2/3 receptor antagonist MK- 7264 (gefapixant), has recently progressed to Phase III trials for refractory or unexplained chronic cough.Here, we present data collected on the SyncroPatch 384PE showing activation and inhibition of P2X3 currents expressed in CHO cells with rapid and brief application of ligand (‘Ligand Puff’). ATP or αβ-methylene ATP (αβ-MeATP) activated P2X3 receptors with an EC50 value similar to values found in the literature. P2X3 receptors could be repetitively activated by ATP and blocked by A-317491 with an IC50 value in good agreement with the literature.
Recombinant cell lines that functionally express human cardiac ion channels are a valuable tool for testing new drugs for potential side effects that induce proarrhythmia. It can be difficult to maintain a constant quality of these cell lines in a continually passaged culture making this process incompatible with routine screening in high-throughput mode. Here we demonstrate the preparation of Patch Ready Cells prepared from five cell lines expressing recombinant ion chan-nels (B’SYS, Switzerland) which are recommended by the CiPA initiative for drug safety testing. The Patch Ready Cells have been tested by automated patch-clamp on a SyncroPatch 384PE (Nanion, Germany) to demonstrate their applicability in high-throughput cardiotoxicity testing.
N-Methyl-D-aspartate (NMDA) receptors are a member of the ionotropic glutamate receptor family, ligandgated ion channels that mediate the majority of excitatory neurotransmission in the mammalian CNS. They are expressed primarily in the CNS but also in peripheral locations such as pancreatic islet cells, sensory nerve terminals in skin and cardiac ganglia. Seven subunits of the NMDA receptor have been identified, NR1, NR2A-D and NR3A-B2 , they assemble as a tetramer consisting of two NR1 subunits and either two NR2 subunits or a combination of NR2 and NR3 subunits. Activation of NMDA receptors requires the simultaneous binding of glutamate and glycine. Calcium entry through NMDA receptors plays an important role in development and synaptic plasticity and is proposed to underlie higher processes such as learning and memory. It is also proposed to play a role in a number of neurological diseases such as epilepsy and Alzheimer’s. Indeed, memantine is an NMDA antagonist which has been approved for the treatment of moderate to severe Alzheimer’s. NMDA antagonists may also be targets for the treatment of neuropathic pain, major depression and Parkinson’s disease. Here we present high quality data at a high throughput collected on the SyncroPatch 384PE showing activation and inhibition of NMDA NR1/ NR2B expressed in HEK cells. Stable recordings of NMDA receptor were achieved and modulation of the response by spermine and ketamine is shown.
P2X receptors are ligand-gated ion channels that open in response to extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. P2X receptors are found on many cell types including smooth muscle cells, sensory neurones, epithelia, bone and leukocytes. A role for P2X receptors has been suggested in transmission of thermal stimuli, chemosensory signalling, taste and pain. To date, 7 P2X receptor genes have been cloned and studied in heterologous expression systems. Functional receptors are trimeric, which can be homomeric or heteromeric. The P2X2 and P2X3 receptors can function either as homomers or as P2X2/3 heteromers. When expressed together, a mixture of P2X2 and P2X3 homomers as well as P2X2/3 heteromers are likely to exist, which may be distinguished through their biophysical and pharmacological properties. P2X2/3 receptors have been implicated in nociception and pain signalling and may be important therapeutic targets for analgesic drugs.Here we present data collected on the SyncroPatch 384PE showing activation and inhibition of P2X2/3 currents expressed in CHO cells with rapid and brief application of ligand (‘Ligand Puff’). ATP activated P2X2/3 receptors in a concentration-dependent manner with an EC50 similar to those reported in the literature for a mixture of homomeric and heteromeric P2X2/3 receptors. P2X2/3 receptors could be repetitively activated by ATPand blocked by suramin with an IC50 in good agreement with the literature.
The NaV1.8 gene (originally named PN3 or SNS; gene symbol SCN10A) encodes a voltage-gated sodium (NaV) channel, selectively expressed in dorsal root ganglion (DRG) neurons. In contrast to the fast and rapidly inactivating TTX-sensitive channels, NaV1.8 is TTX resistant and exhibits slower kinetics with a depolarized voltage-dependence of activation and inactivation. hNaV1.8 is an interesting drug target for inflammatory and neuropathic pain because modulation of this ion channel by inflammatory mediators appears to be a key mechanism of DRG nociceptor sensitization and activation. Interestingly, the development of potent and selective NaV1.8 inhibitors has shown promising results in reducing neuropathic pain in animal models and this has fueled interest in the search for selective NaV1.8 inhibitors. The bottleneck for drug discovery involving ion channels is often the electrophysiological assays. Nanion’s SyncroPatch 384PE offers a high throughput gigaseal platform which records up to 384/768 experiments simultaneously which helps to address this problem. It enables the recording of high quality data with reliable pharmacology, and biophysical characterizations of the protein. Our results show current-voltage relationships consistent with published results and very stable recordings using multi-hole chips. Furthermore, we show activation of hNaV1.8 from different states results in altered compound affinity. We demonstrate the suitability of Nanion’s SyncroPatch 384PE for high throughput screening of hNaV1.8.
Human neurons derived from induced pluripotent stem cells (hiPSCs) are becoming increasingly important for studying basic neuronal physiology and can provide good models for studying neurological disorders. hiPSC derived neurons provide a viable alternative to primary cells and animal models in the drug discovery industry for finding novel therapeutics to treat seizure-related and neurodegenerative disorders. iCell® GlutaNeurons are glutamatergic-enriched cortical neurons derived from hiPSCs. Single cell gene transcription analysis has shown the presence of glutamate receptors: AMPA, kainate and NMDA, as well as glutamate and GABA transporters. Ionotropic glutamate receptors mediate the majority of excitatory neurotransmission in the mammalian CNS and removal of glutamate from the synaptic cleft by reuptake via glutamate transporters plays a role in regulating neuronal excitability. GABA is the major inhibitory neurotransmitter in the brain and is important in controlling excitability. After release, GABA is removed from the extracellular space by GABA transporters(GATs), thus terminating inhibitory synaptic transmission. Both GABA and glutamate transporters may provide novel therapeutic targets for, e.g. Parkinson’s disease, Alzheimer’s disease, and epilepsy.We recorded ligand-gated ion channel currents mediated by GABAA and AMPA receptors from iCell® GlutaNeurons on the Patchliner and SyncroPatch 384PE. Furthermore, we could measure GABA and glutamate transporters in these neurons using the SURFE2R N1 device.
Automated patch clamp (APC) instruments are used for a wide variety of applications ranging from basic research into channelopathies and biophysical characteristics of ion channels, through to routine cardiac safety testing. Their use in cardiac safety screening has increased over the years and APC is now an established and accepted technique in most, if not all, safety testing laboratories. It is well known that fluoride is often used in the internal solution in APC experiments to improve the seal resistance. The presence of external calcium (or other divalent cation) further improves the seal by a mechanism thought to be due to the formation of CaF2 crystals at the interface between the pipette or micro-pore and the cell as described in a recent patent application.Even in manual patch clamp experiments, fluoride has been used to record voltage gated Na+ channels for over 20 years, despite known effects on voltage dependence of conductance, and steady-state fast inactivation and its inhibition of protein phosphatase. Fluoride is used because it improves the seal and allows stable measurements to be performed over long periods of time. However, because there are some experiments where it is advantageous to use physiological, fluoride-free internal solutions and external solution that does not use divalent ‘seal enhancer’ solutions, we have developed a method that allows fluoride-free, physiological solutions to be used with good success rates. We demonstrate this using the cardiac ion channels hERG expressed in HEK293 cells (SB Drug Discovery) and NaV1.5 expressed in CHO cells (Charles River).
The NaV1.7 gene (SCN9A) encodes a voltage-gated sodium (NaV) channel, primarily expressed in the peripheral nervous system. It has been isolated from rat dorsal root ganglion (DRG) neurons, human medullary thyroid cancer cells (hNE-Na) and PC12 cells. Different NaV channels play a key role in modulation of action potentials in the central and peripheral nervous systems. In particular, the fast upstroke of the action potential is mediated by NaV channels. NaV channels are in part characterized by their TTX-sensitivity (TTX-resistant [TTXr], TTX-sensitive [TTXs]). NaV1.7 is a TTXs channel and is sensitive to TTX in the nanomolar range. The role of hNaV1.7 has yet to be fully elucidated but is proposed to play an important part in nociception and pain sensing. NaV1.7 has been implicated to play a role in disease pain states, in particular inflammatory pain and hypersensitivity to heat following burn injury. Common to many of the voltage-gated ion channels, a number of compounds exhibit both state- and use-dependence. For this reason, it is important to be able to reliably measure the effects of compounds using different voltage protocols to investigate state and use-dependency. In this Application Note we present data using the SyncroPatch 384PE characterizing CHO cells stably expressing hNaV1.7. The current-voltage relationship and the state- and use-dependence effects of the sodium channel blocker, tetracaine, are shown.
Nicotinic Acetylcholine Receptors (nAChR) are cationpermeable ion channels, which mediate fast synaptic transmission when activated by the endogenous neurotransmitter acetylcholine (ACh) and the exogenous natural alkaloid, nicotine. Neuronal nAChR form pentameric channels which are composed of two α (α2 to α10) and three β subunits (β2 to β4). Mutations of nAChR are associated with some forms of epilepsy and many other neurological disorders such as Alzheimer’s Disease, Parkinson’s, Tourette’s Syndrome, Schizophrenia and depression. The most abundantly expressed nAChR in the mammalian brain are the α7 homomeric and α4β2 heteromeric receptors. In contrast to the α7, a4β2 nAChR has a high affinity for nicotine. This property, the up-regulation during chronic exposure to nicotine, and the receptor expression location in addiction sensitive regions of the brain like the ventral tegmental area, strongly indicate that the a4β2 nAChR is a potential target for addiction to nicotine. Here we present data collected on the SyncroPatch 384PE showing activation and block of α4β2 nAChR currents expressed in HEK cells with rapid application of ligand (‘Ligand Puff’). ACh activates α4β2 nAChR in a concentration dependent manner with an EC50 value similar to those reported in the literature. Reproducible currents were achieved when cells were preincubated with acetylcholinesterase (AChE). Finally, α4β2 nAChR were blocked by dihydro-b-erythroidine hydrobromide (DHßE), a well known competitive antagonist of the α4 subunit3 with an IC50 in good agreement with the literature.
High throughput screening (HTS) is used in the pharmaceutical industry to aid drug discovery. Large numbers of chemical compounds can be tested for biological activity using a range of techniques. The patch clamp technique remains the gold standard to test activity of compounds on ion channels and automated patch clamp (APC) is increasingly adopted in HTS labs as an alternative to conventional patch clamp given its increased ease-of-use and higher throughput. APC is employed in all aspects of drug discovery from hit finding and lead optimization through to target validation and safety testing. This is only possible due to the increase in throughput toward HTS capabilities, the compatibility with HTS workflows, and a lower cost per data point which can compete with other techniques such as fluorescence imaging (using, for example, the FLIPRTM instrument) and calcium imaging with the added benefit of real-time kinetics of drug effects. Indeed, all the major contract research organizations worldwide use APC for ion channel screening and cardiac safety testing. Increased automation, including unattended operation, is also an important factor for increasing throughput, and instruments can reliably work beyond an 8-h day provided they are serviced with enough cells, solutions, and compounds. For this to work effectively, data must be reliable with high success rates, low false positive and negative rates along with reproducible IC50 values.
The SCN11A gene encodes the voltage-gated sodium channel NaV1.9 which is predominantly expressed in small-diameter sensory neurons of dorsal root ganglia (DRG) and trigeminal ganglia. NaV1.9 is characterized by slow activation with little depolarization near the resting membrane potential generating a persistent, tetrodotoxin (TTX)-insensitive current which inactivates only slowly. These properties suggest that the conductance mediated by NaV1.9 mainly contributes to amplification of depolarizing responses to subthreshold stimuli leading to lower action potential (AP) firing thresholds and increase in AP firing frequency. The role of hNaV1.9 has yet to be fully elucidated but is proposed to be involved in nociception of inflammatory and neuropathic pain. Several gain-of function mutations in SCN11A have been identified which result in either painful neuropathy or an insensitivity to pain. Given its proposed role in pain perception, NaV1.9 has gained some attention as a potential target for the development of novel pain therapeutics. Here we present high quality data with reliable pharmacology on hNaV1.9 expressing HEK293 cells at a high throughput collected on the SyncroPatch 384. Biophysical properties of NaV1.9 expressed in HEK cells (cells kindly provided by Icagen, Inc., USA) and concentration response curves for three NaV channel blockers are shown, including use-dependence of tetracaine.
The transient receptor potential ankyrin 1 (TRPA1) is a calcium permeable non-selective cation channel that belongs to the transient receptor potential (TRP) superfamily. The TRPA1 channel is expressed in the sensory neurons of the nodose ganglia, dorsal root ganglia, and trigeminal ganglia, and also non-neuronal cells such as cardiomyocytes, lung fibroblasts and pancreatic β cells. TRPA1 is activated by a range of natural pungent compounds including allyl isothiocyanate (AITC),cinnamaldehyde, and allicin. TRPA1 can also be activated by cold temperature and has been proposed to act as a mechanosensor. Not only has TRPA1 been proposed to play a role in nociception and certain pain conditions, but has also in cardiovascular conditions such as atherosclerosis, heart failure, arrhythmia, vasodilation, and hypertension. Thus, within drug development, much attention is paid to the TRPA1 channel. For example, TRPA1 has been identified as a potential target for persistent chronic painful states including inflammation, neuropathic pain, diabetes, fibromyalgia, bronchitis, and emphysema. Indeed, the TRPA1 antagonist GR 17536 from Glenmark showed efficacy in a Phase IIa proof-of-concept clinical trial for peripheral diabetic neuropathy.
Neuronal and cardiac rhythmicity is predominantly controlled by hyperpolarization activated cyclic nucleotide gated (HCN) channels. The HCN family comprises four members (HCN1-4) which are ubiquitously expressed in the central and peripheral nervous system. Activated by hyperpolarization, HCN channels open slowly with no inactivation. Cyclic AMP (and other second messenger proteins) affects the activation properties independent of phosphorylation, modulating the voltage dependence of current activation and accelerating the kinetics of channel opening. HCN mediates a Na+/K+ conductance (Ih) which contributes to the establishment of the resting membrane potential. It is therefore not surprising that HCN channels play an important role in the regulation of neuronal firing and excitability as well as pacemaking. Disruption of HCN function slows down the heart rate and provides a potential target for the treatment of neuronal disorders such as epilepsy and neuropathic pain.Here we present data collected on the SyncroPatch 384PE showing pharmacology and modulation of hHCN2 expressed in HEK cells. In addition, these cells heterologously express a light-sensitive bacterial phospho-adelynate cyclase (bPAC). We demonstrate two ways of triggering the cAMP pathway in order to modulate the HCN2 channel opening kinetics. First, we used the internal perfusion system of the SyncroPatch 384PE for direct application of cAMP to the intracellular environment. Second, we triggered the cAMP pathway by optical stimulation of bPAC. Further, we showed voltage dependent block of Ih with Cs+ and ZD7288. Ivabradine, a drug used for symptomatic management of stable heart related chest pain and heart failure blocked the channel with an IC50 of 0.1 mM in good agreement the literature.
The hERG gene encodes a potassium channel responsible for the repolarization of the IKr current in cardiac cells. This channel is important in the repolarization of the cardiac action potential. Abnormalities in this channel can lead to long or short QT syndrome, leading to potentially fatal cardiac arrhythmia. Given the importance of this channel in maintaining cardiac function, and disturbances of channel activity by certain compounds such as antiarrhythmias and anti-psychotics, it has become an important target in compound safety screening. A large range of therapeutic agents with diverse chemical structures have been reported to induce long QT syndrome by inhibiting the hERG channel. These include antihistamines (e.g. Terfenadine), gastrointestinal prokinetic agents (e.g. Cisapride), amongst others. Therefore, it is important to test new therapeutics for actions on the hERG channel early on in the drug discovery process. Here we present high quality data with reliable pharmacology on hERG expressing CHO cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots, and concentration response curves for the compounds pimozide, astemizole, cisapride and terfenadine are shown. The IC50 values for these compounds are within the expected range and success rates of 80% for completed experiments were recorded.
Acid-sensing ion channels (ASICs) are protongated ion channels which are highly sensitive to extracellular acidosis and are permeable to cations, predominantly Na+. They are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG)family.
The voltage-gated chloride channel gene (ClC) family is highly conserved and their members are present in both pro- and eukaryotes. In mammals, nine different ClC subtypes have been identified, which differ according to tissue distribution and subcellular location. ClC-1 is exclusively expressed in skeletal muscles. ClCs function as homodimers, allowing chloride and other anions to be conducted through each single protopore. Gating of the single monomer is fast while the common gate to open and close the pores simultaneously is slow. The channel gating can be modulated by intracellular and extracellular chloride as well as pH. ClC proteins mediate chloride flux across cellular membranes in most cell types and participate in maintenance of resting membrane potential. Plasma membrane chloride channels play an important role in reducing muscle excitability. ClC-1 contributes to membrane repolarization and stabilizes the membrane voltage in skeletal muscle. Experimental block of the chloride conductance mediated by ClC-1 facilitated muscle hyperexcitability, manifested as myotonia. Here we present data conducted on the SyncroPatch 384 showing characteristic biophysical properties and pharmacology of hClC-1 expressed in CHO cells. We applied voltage protocols including various test potentials to study the voltage dependence of compounds. In order to investigate compound binding properties we used the internal perfusion system of the SyncroPatch 384 for direct application of anthracene-9-carboxylic acid (9-AC) to the intracellular environment. Moreover, we also investigated the effect of 9-AC and niflumic acid (NFA) when they are applied from the extracellular side.
The CaV3.2 channel is one of the three low voltage activated (LVA) T-type calcium channels. The LVA currents differ from the high voltage activated (HVA) calcium currents in their activation and inactivation kinetics. LVA currents are activated at lower voltages (typically activating above -50 mV and peaking at around -20 mV), they display faster inactivation, slower deactivation and a smaller conductance of Ba2+ ions as compared with the HVA currents. The CaV3.2 channel contains the α1H subunit, encoded by the CACNA1H gene on the human chromosome 16p13.3. T-type channels are expressed in a wide variety of organs throughout the human body, including nervous tissue, heart, kidney, smooth muscle, and many endocrine organs. They have been implicated in a variety of physiological processes including neuronal firing, smooth muscle contraction and hormone secretion. More recently, CaV3.2 has been shown to play a role in nociception and pain. Here we present high quality data with reliable pharmacology on CaV3.2 expressing HEK cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots and concentration response curves for the compounds nitrendipine, nifedipine, mibefradil and amiloride are shown. The IC50 values for these compounds are within the expected range and success rates of up to 79% for completed experiments were recorded.
Cystic Fibrosis (CF) is an autosomal recessive genetic disorder which affects a number of organs, in particular the lungs, pancreas and sweat glands. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR). CFTR is a regulated epithelial chloride channel and mutations cause a reduction in activity of the channel via a variety of mechanisms. This results in defective electrolyte transport in airway epithelia and thereby, chronic lung infection and premature mortality. Therefore, compounds which increase activity of CFTR have therapeutic potential for treating CF. The CFTR protein is composed of 5 domains: there are 2 transmembrane (TM) domains, 2 nucleotidebinding domains (NBDs) and 1 regulatory domain (R). The TM domains form the pore of the channel, channel activity is determined by phosphorylation of the R domain and gating is controlled by hydrolysis of ATP at the NBD. CFTR is activated via a number of reagents including internal fluoride, cAMP and external forskolin. Here we show activation of CFTR expressed in CHO cells on the SyncroPatch 384PE by internal perfusion of F- or external application of forskolin. The current was blocked with the specific blocker, inh-172 with an IC50 in good agreement with the literature. In addition, CFTR activated by internal cAMP was potentiated by VX-770. Using F- -free internal solution and activation by submaximal cAMP or forskolin, potentiators of CFTR can be investigated as potential therapeutics to treat CF.
The CaV1.2 channel is a voltage-gated calcium channel (VGCC) expressed in a variety of mammalian tissues and is essential for multiple processes including CNS function, cardiac and smooth muscle contraction and Ca2+-selective pore, contains the voltage sensor and many of the binding sites for regulatory modulators and drugs and accessory subunits α2δ, β and γ which are involved in anchorage, trafficking and regulatory functions. The CaV1.2 channel contains the alpha-1C subunit, encoded by the CACNA1C gene on the human chromosome 12p133. Mutations in the L-type Ca2+ channels have been associated with inherited arrhythmic disorders such as Timothy, Brugada and early repolarization syndromes. In addition, in the light of the CiPA initiative, the L-type channel is likely to become an important target for cardiac safety testing. Here we present high quality data with reliable pharmacology on CaV1.2 expressing CHO cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots and concentration response curves for the compounds nifedipine and verapamil are shown. The IC50 values for these compounds are within the expected range and success rates of >70% for completed experiments were recorded. Importantly, CaV1.2 recorded on the Syncro- Patch 384PE exhibited stable peak amplitudes during the course of the experiment and displayed little or no rundown.
The CaV1.2 channel is a voltage-gated calcium channel (VGCC) expressed in a variety of mammalian tissues and is essential for multiple processes including CNS function, cardiac and smooth muscle contraction and neuroendocrine regulation. VGCC are composed of 4 subunits, which include an alpha 1 subunit which forms the Ca2+-selective pore, contains the voltage sensor and many of the binding sites for regulatory modulators and drugs and accessory subunits α2δ, β and γ which are involved in anchorage, trafficking and regulatory functions. The CaV1.2 channel contains the alpha-1C subunit, encoded by the CACNA1C gene on the human chromosome 12p13. Mutations in the L-type Ca2+ channels have been associated with inherited arrhythmic disorders such as Timothy, Brugada and early repolarization syndromes. In addition, the L-type Ca2+ channel is an important target for cardiac safety testing, especially in the light of the CiPA initiative. Here we present high quality data with reliable pharmacology on Assay Ready CaV1.2 Cells at a high throughput collected on the SyncroPatch 384. Current-voltage plots and concentration response curves for the compounds nifedipine and verapamil are shown. The IC50 values for these compounds are within the expected range and success rates of >75% for completed experiments were recorded. Importantly, CaV1.2 recorded on the Syncro- Patch 384 exhibited stable peak amplitude during the course of the experiment and displayed low rundown.
Looking for new targets in pain and cancer therapy, the transient receptor potential chan-nels (TRP-channels) gained a lot of interest during the last decade. The ligand-gated calcium channels play an important role in the perception of pain and temperature and are often dysregulated in tumor tissues. They have become appealing targets for Drug Discovery. Re-combinant cell lines which stably express different TRP-channels have been successfully used for lead identification and compound profiling.Looking for new targets in pain and cancer therapy, the transient receptor potential chan-nels (TRP-channels) gained a lot of interest during the last decade. The ligand-gated calcium channels play an important role in the perception of pain and temperature and are often dysregulated in tumor tissues. They have become appealing targets for Drug Discovery. Re-combinant cell lines which stably express different TRP-channels have been successfully used for lead identification and compound profiling.Assay ready cryopreserved aliquots prepared from these cell lines can be used instantly after thawing without prior cultivation. Here, we demonstrate that Assay Ready Cells prepared from TRP-channel expressing cell lines resemble the pharmacology of cells from continuous culture in different end-point assays. The cells were successfully qualified for plate-based fluorescent calcium-flux assays and for recording of activated ion channel currents using automated patch clamping.
The CaV1.2 channel is a voltage-gated calcium channel (VGCC) expressed in a variety of mammalian tissues and is essential for multiple processes including CNS function, cardiac and smooth muscle contraction and neuroendocrine regulation. VGCC are composed of 4 subunits, which include an alpha 1 subunit which forms the Ca2+-selective pore, contains the voltage sensor and many of the binding sites for regulatory modulators and drugs and accessory subunits α2δ, β and γ which are involved in anchorage, trafficking and regulatory functions. The CaV1.2 channel contains the alpha-1C subunit, encoded by the CACNA1C gene on the human chromosome 12p13. Mutations in the L-type Ca2+ channels have been associated with inherited arrhythmic disorders such as Timothy, Brugada and early repolarization syndromes. In addition, in the light of the CiPA initiative, the L-type channel is likely to become an important target for cardiac safety testing. Here we present high quality data with reliable pharmacology on CaV1.2 expressing HEK cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots and concentration response curves for the compounds nifedipine and verapamil are shown. The IC50 values for these compounds are within the expected range and success rates of >75% for completed experiments were recorded. Importantly, CaV1.2 recorded on the SyncroPatch 384PE exhibited stable peak amplitude during the course of the experiment and displayed little or no rundown.
AMPA receptors are cation-permeable ionotropic glutamate receptors of the non-NMDA receptor subfamily. To date four subunits, GluA1-4, have been identified which are of similar size (approx. 900 kDa) and share 68-73% amino acid sequence identity. The functional receptor exists as a tetramer, either as homomers or heteromers (GluA1 and GluA4). The vast majority of excitatory fast synaptic transmission in the mammalian central nervous system is mediated by AMPA receptors of differing subunit combinations. It is well known that glutamate is a neurotoxin and it is proposed that overactivation of ionotropic glutamate receptors may underlie many neurodegenerative disorders such as ischemic stroke, epilepsy, Parkinson’s and dementia, amongst others. Here we present data collected on the SyncroPatch 384PE showing recordings of GluA2-mediated currents. Glutamate activated GluA2 receptors with an EC50 similar to those reported in the literature. CNQX inhibited and LY404187 enhanced GluA2-mediated responses.
Acid-sensing ion channels (ASICs) are ligand-gated ion channels activated by protons. They are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family. ASICs are highly sensitive to extracellular acidosis and are permeable to cations, predominantly Na+. So far, 6 different ASIC subunits have been identified encoded by 4 genes. They are found expressed throughout the CNS and PNS and have a proposed role in nociception and pain, and other neurological diseases such as ischaemia and inflammation. The ASIC3 channel was first identified in the late 1990’s. It was found to be localized to primary afferent nociceptive fibers innervating the skin, muscles, joints and viscera, in agreement with a role in pain perception. Furthermore, ASIC3 is expressed in higher amounts in nociceptive neurons innervating muscle (~ 50%) compared to skin (~ 10%), which indicates that ASIC3 may play an important role in detecting muscle acidosis. Here we present high quality data at a high throughput collected on the SyncroPatch 384PE showing activation and inhibition of ASIC3 expressed in HEK cells. The pH which elicited a halfmaximal response was in good agreement with the literature. The IC50 for block of the ASIC3 current by amiloride, a known blocker of ASIC and ENaC channels, was also in good agreement with the literature. Success rates of over 80% for completed experiments were recorded.
The cardiac late Na current (late INa) generates persistent currents throughout the plateau phase of the cardiac action potential. Several mutations in the SCN5A gene cause a form of hereditary long QT syndrome (LQT3)1-3. The ΔKPQ mutation deletes residues Lys 1505, Pro 1506 and Gln 1507, resulting in a sustained, non-inactivating current during long (over 50 ms) depolarizations1,2. This sustained current causes prolongation of the action potential which can result in fatal ventricular arrhythmias such as Torsade de Pointes (TdP)1.One aim of the Comprehensive In Vitro Pro-arrhythmia Assay (CiPA) initiative is to improve drug safety testing in pre-clinical development by evaluating the pro-arrhythmic risk of a compound4,5. Validation studies confirm that testing the effect of compounds on an increased number of human cardiac ion channel currents including INa (NaV1.5 peak and late current) as well as IKr (hERG) leads to improved prediction of their clinical risk. Late INa can be recorded in WT NaV1.5 channels using the toxin ATX-II or veratridine, or using a cell line with LQT3 mutations in NaV1.5 without the need for pharmacological enhancement. The latter might also reduce the risk of cross-reactions between late-current enhancers and test compounds.Here we present data collected on the Syncro- Patch 384i showing the peak and late INa current re¬corded from WT and NaV1.5-ΔKPQ cell lines. Peak current could be reliably recorded from both cell types. In WT cells, late INa was negligible in the absence of ATX-II, whereas the late INa from NaV1.5-ΔKPQ cells could be reliably recorded. Peak current from WT, and peak and late INa from NaV1.5-ΔKPQ was inhibited by ranolazine and mexiletine and IC50 values agreed well with the literature6.
Nicotinic acetylcholine receptors (nAChR) are acetylcholine- (ACh) and nicotine-gated cation permeable ion channels, which mediate fast synaptic transmission at central synapses and neuromuscular junctions. Neuromuscular nAChR form heteromeric proteins composed of four subunits: α, β, γ (or ε) and δ. Depending on the developmental stage, the AChR subunit stoichiometry changes from α1β1γδ (embryonic) to α1β1εδ (adult). Several inherited and acquired diseases are associated with nAChR dysfunction, most of which lead to impaired neuromuscular transmission and muscle weakness. The acquired autoimmune disease myasthenia gravis (MG) is caused by autoantibodies targeting muscle nAChRs that disrupts nerve-muscle communication resulting in muscle weakness and fatigue. Inherited diseases called congenital myasthenic syndromes (CMS) are associated with several abnormalities affecting ACh-release, acetylcholinesterase activity, nAChR function and/or nAChR number. Treatment has been limited to nonselective, chronic immunosuppressive therapies which have longterm toxicities. More selective and targeted therapies are now under development. Here we present data collected on the SyncroPatch 384 showing activation and block of nAChRα1β1γδ expressed in human TE671 cells with rapid application of ligand or co-application with blockers. We found that ACh activates nAChRα1β1γδ receptors with an EC50 value similar to those reported in the literature. We recorded highly reproducible currents in response to ACh and obtained IC50 values for mecamylamine and α-conotoxin GI that were in good agreement with the literature.
The cardiac action potential is defined by multiple voltage-dependent ion channels. A drug candidate’s capacity to interact with the ion channels involved in the depolarization or repolarization phases of the cardiac action potential is important for drug safety assessment. Until now, safety testing has focussed on interaction with the hERG channel and QT prolongation which can lead to potentially fatal torsades de pointes (TdP). Although this approach has been largely successful in preventing new drugs reaching the market with unexpected potential to cause TdP, it is also possible that potentially valuable therapeutics have failed due to this early screening. A new paradigm, the Comprehensive In-vitro Proarrhythmia Assay (CiPA), was introduced in 2013 to provide a more complete assessment of proarrythmic risk. An assessment of a multitude of cardiac ion channels, in addition to hERG, should provide a more accurate prediction of the proarrythmic risk of a compound compared with testing on hERG alone. Here we show recordings from HEK or CHO cells expressing the CiPA stipulated ion channels; NaV1.5, CaV1.2, hERG, KV7.1, Kir2.1 or KV4.3, activated within one single experiment on the SyncroPatch 384PE.
The NaV1.5 channel, encoded by the SCN5A gene, is a voltage-gated sodium (NaV) channel found in skeletal muscle and heart. It is TTX insensitive with an IC50 in the micromolar range. NaV1.5 is responsible for the upstroke of the cardiac action potential in both ventricular and atrial myocytes and is therefore critical for generation and propagation of the cardiac action potential in human heart. Block of this channel can lead to prolongation of the QRS interval of the electrocardiogram (ECG) and can have profound effects on the rate of cardiac deploarization and conduction velocity, thus causing potentially dangerous cardiac arrythmias. Furthermore, effects of NaV1.5 inactivation can modify cardiac repolarization. Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening. Local anaesthetics, such as lidocaine, have been shown to exhibit state- and use-dependence when acting on the cardiac sodium channel. The IC50 was shown to be approximately 30 times lower at depolarized holding potentials where inactivation was almost complete. For this reason, it is important to test potency of compounds at different holding potentials. Here we present high quality data with reliable pharmacology on hNaV1.5 expressing HEK293 cells at a high throughput collected on the SyncroPatch 384PE. Current-voltage plots and concentration response curves for four NaV channel blockers are shown, including lidocaine at different holding potentials.
Abstract: Mutations in the KCNH2 gene are a well-established cause of sudden cardiac death, resulting from disturbed electrical signalling, in otherwise healthy young people. Yet, the majority of missense variants identified in KCNH2 are likely to be benign. To differentiate between benign and pathogenic variants in KCNH2 we have developed a high throughput functional assay using the syncropatch 384PE automated patch clamp system. The Victor Chang Cardiac Research Institute is an independent, not-for-profit, medical research facility that is dedicated to finding cures for cardiovascular disease. Renowned for the quality of its breakthroughs, the Victor Chang Cardiac Research Institute is one of the most respected heart research facilities in the world.
Whether ion channels experience ligand-dependent dynamic ion selectivity remains of critical importance since this could support ion channel functional bias. Tracking selective ion permeability through ion channels, however, remains challenging even with patch-clamp electrophysiology. In this study, we have developed highly sensitive bioluminescence resonance energy transfer (BRET) probes providing dynamic measurements of Ca2+ and K+ concentrations and ionic strength in the nanoenvironment of Transient Receptor Potential Vanilloid-1 Channel (TRPV1) and P2X channel pores in real time and in live cells during drug challenges. Our results indicate that AMG517, BCTC, and AMG21629, three well-known TRPV1 inhibitors, more potently inhibit the capsaicin (CAPS)-induced Ca2+ influx than the CAPS-induced K+ efflux through TRPV1. Even more strikingly, we found that AMG517, when injected alone, is a partial agonist of the K+ efflux through TRPV1 and triggers TRPV1-dependent cell membrane hyperpolarization. In a further effort to exemplify ligand bias in other families of cationic channels, using the same BRET-based strategy, we also detected concentration- and time-dependent ligand biases in P2X7 and P2X5 cationic selectivity when activated by benzoyl-adenosine triphosphate (Bz-ATP). These custom-engineered BRET-based probes now open up avenues for adding value to ion-channel drug discovery platforms by taking ligand bias into account.
This publication details the discovery of a series of selective transient receptor potential cation channel subfamily M member 5 (TRPM5) agonists culminating with the identification of the lead compound (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (39). We describe herein our biological rationale for agonism of the target, the examination of the then current literature tool molecules, and finally the process of our discovery starting with a high throughput screening hit through lead development. We also detail the selectivity of the lead compound 39 versus related family members TRPA1, TRPV1, TRPV4, TRPM4 and TRPM8, the drug metabolism and pharmacokinetics (DMPK) profile and in vivo efficacy in a mouse model of gastrointestinal motility.
Gamma-aminobutyric acid type A receptors (GABAARs) are ligand gated channels mediating inhibition in the central nervous system. Here, we identify a so far undescribed function of β-subunit homomers as proton-gated anion channels. Mutation of a single H267A in β3 subunits completely abolishes channel activation by protons. In molecular dynamic simulations of the β3 crystal structure protonation of H267 increased the formation of hydrogen bonds between H267 and E270 of the adjacent subunit leading to a pore stabilising ring formation and accumulation of Cl- within the transmembrane pore. Conversion of these residues in proton insensitive ρ1 subunits transfers proton-dependent gating, thus highlighting the role of this interaction in proton sensitivity. Activation of chloride and bicarbonate currents at physiological pH changes (pH50 is in the range 6- 6.3) and kinetic studies suggest a physiological role in neuronal and non-neuronal tissues that express beta subunits, and thus as potential novel drug target.
SMN protein deficiency causes motoneuron disease spinal muscular atrophy (SMA). SMN-based therapies improve patient motor symptoms to variable degrees. An early hallmark of SMA is the perturbation of the neuromuscular junction (NMJ), a synapse between a motoneuron and muscle cell. NMJ formation depends on acetylcholine receptor (AChR) clustering triggered by agrin and its co-receptors lipoprotein receptor-related protein 4 (LRP4) and transmembrane muscle-specific kinase (MuSK) signalling pathway. We have previously shown that flunarizine improves NMJs in SMA model mice, but the mechanisms remain elusive. We show here that flunarizine promotes AChR clustering in cell-autonomous, dose- and agrin-dependent manners in C2C12 myotubes. This is associated with an increase in protein levels of LRP4, integrin-beta-1 and alpha-dystroglycan, three agrin co-receptors. Furthermore, flunarizine enhances MuSK interaction with integrin-beta-1 and phosphotyrosines. Moreover, the drug acts on the expression and splicing of Agrn and Cacna1h genes in a muscle-specific manner. We reveal that the Cacna1h encoded protein CaV3.2 closely associates in vitro with the agrin co-receptor LRP4. In vivo, it is enriched nearby NMJs during neonatal development and the drug increases this immunolabelling in SMA muscles. Thus, flunarizine modulates key players of the NMJ and identifies CaV3.2 as a new protein involved in the NMJ biology.
The Comprehensive in vitro Proarrhythmic Assay (CiPA) has promoted use of in silico models of drug effects on cardiac repolarization to improve proarrhythmic risk prediction. These models contain a pharmacodynamic component describing drug binding to hERG channels that required in vitro data for kinetics of block, in addition to potency, to constrain them. To date, development and validation has been undertaken using data from manual patch-clamp. To enable the application of this approach at scale this requires the development of a high-throughput, automated patch-clamp (APC) implementation. Here, we present a comprehensive analysis of the implementation of the Milnes, or CiPA dynamic protocol, on an APC platform, including automated quality control and data analysis. Kinetics and potency of block were assessed for bepridil, cisapride, terfenadine and verapamil with data retention/QC pass rate of 21.8%. The variability in IC50 and kinetics between manual and APC was comparable to that seen between sites/platforms in previous APC studies of potency. Whilst the experimental success is less than observed in screens of potency alone, it is still significantly greater than manual patch. With appropriate consideration of protocol design, including sweep length, number of repetitions, and leak correction, this protocol can be applied on APC to acquire data comparable to manual patch clamp.
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we performed docking calculations and high-throughput electrophysiology experiments. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.
Fluoride has been used in the internal recording solution for manual and automated patch clamp experiments for decades because it helps to improve the seal resistance and promotes longer lasting recordings. In manual patch clamp, fluoride has been used to record voltage-gated Na (NaV) channels where seal resistance and access resistance are critical for good voltage control. In automated patch clamp, suction is applied from underneath the patch clamp chip to attract a cell to the hole and obtain a good seal. Since the patch clamp aperture cannot be moved to improve the seal like the patch clamp pipette in manual patch clamp, automated patch clamp manufacturers use internal fluoride to improve the success rate for obtaining GΩ seals. However, internal fluoride can affect voltage-dependence of activation and inactivation, as well as affecting internal second messenger systems and therefore, it is desirable to have the option to perform experiments using physiological, fluoride-free internal solution. We have developed an approach for high throughput fluoride-free recordings on a 384-well based automated patch clamp system with success rates >40% for GΩ seals. We demonstrate this method using hERG expressed in HEK cells, as well as NaV1.5, NaV1.7, and KCa3.1 expressed in CHO cells. We describe the advantages and disadvantages of using fluoride and provide examples of where fluoride can be used, where caution should be exerted and where fluoride-free solutions provide an advantage over fluoride-containing solutions.
The presence of the Transient Receptor Potential channel Vanilloid type 2 (TRPV2) in red blood cells (RBCs) was recently discovered. TRPV2 is a non-selective cation channel that is reported to be mechanosensitive having numerous properties in common with Piezo1. TRPV2 channels can be activated by Δ9-tetrahydrocannabinol (Δ9-THC) and the changes induced in RBC by application of Δ9-THC can be attributed to TRPV2 channel activity. A previous study shown that addition of 30 µM Δ9-THC led to a large fraction of super hydrated RBCs in a healthy donor consuming marijuana in contrast to significantly milder response from no smoker healthy donors. For further investigations three marijuana consumers with very similar smoking habits were scouted, and blood was collected. Whether this heightened sensitivity of the smokers (MS) vs. no-smokers (NS) RBCs is caused by hypersensitizing of TRPV2 was tackled by comparing MS and NS RBCs in functional patch-clamp measurements using the high - throughput automated patch clamp platform SyncroPatch 384. Whole-cell currents elicited by THC application did not show a significant different thus indicates a similar cellular conductance for MS and NS RBCs and therefore rather a lack of difference in TRPV2 expression level. We demonstrate that APC technology is a suitable tool permits for studying TRPV2 channels in RBCs.
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.
Slack channels are sodium-activated potassium channels that are encoded by the KCNT1 gene. Several KCNT1 gain of function mutations have been linked to malignant migrating partial seizures of infancy. Quinidine is an anti-arrhythmic drug that functions as a moderately potent inhibitor of Slack channels; however, quinidine use is limited by its poor selectivity, safety and pharmacokinetic profile. Slack channels represent an interesting target for developing novel therapeutics for the treatment of malignant migrating partial seizures of infancy and other childhood epilepsies; thus, ongoing efforts are directed toward the discovery of small-molecules that inhibit Slack currents. This review summarizes patent applications published in 2020–2021 that describe the discovery of novel small-molecule Slack inhibitors.
The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10–15 μM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pKa, to identify compound 18, which combines low hERG activity (IC50 = 75 μM) with excellent kinome selectivity and favorable pharmacokinetic properties.
Cyclic α-aryl β-dicarbonyl derivatives are important scaffolds in medicinal chemistry. Palladium-catalyzed coupling reactions of haloarenes were conducted with diverse five- to seven-membered cyclic β-dicarbonyl derivatives including barbiturate, pyrazolidine-3,5-dione, and 1,4-diazepane-5,7-dione. The coupling reactions of various para- or meta-substituted aryl halides occurred efficiently when Pd(t-Bu3P)2, Xphos, and Cs2CO3 were used under 1,4-dioxane reflux conditions. Although the couplings of ortho-substituted aryl halides with pyrazolidine-3,5-dione and 1,4-diazepane-5,7-dione were moderate, the coupling with barbiturate was limited. Using the optimized reaction conditions, we synthesized several 5-aryl barbiturates as new scaffolds of CaV1.3 Ca2+ channel inhibitors. Among the synthesized molecules, 14e was the most potent CaV1.3 inhibitor with an IC50 of 1.42 μM.
T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at −25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to −70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.
Glioblastoma is a lethal brain cancer that commonly recurs after tumor resection and chemotherapy treatment. Depolarized resting membrane potentials and an acidic intertumoral extracellular pH have been associated with a proliferative state and drug resistance, suggesting that forced hyperpolarization and disruption of proton pumps in the plasma membrane could be a successful strategy for targeting glioblastoma overgrowth. We screened 47 compounds and compound combinations, most of which were ion-modulating, at different concentrations in the NG108-15 rodent neuroblastoma/glioma cell line. A subset of these were tested in the U87 human glioblastoma cell line. A FUCCI cell cycle reporter was stably integrated into both cell lines to monitor proliferation and cell cycle response. Immunocytochemistry, electrophysiology, and a panel of physiological dyes reporting voltage, calcium, and pH were used to characterize responses. The most effective treatments on proliferation in U87 cells were combinations of NS1643 and pantoprazole; retigabine and pantoprazole; and pantoprazole or NS1643 with temozolomide. Marker analysis and physiological dye signatures suggest that exposure to bioelectric drugs significantly reduces proliferation, makes the cells senescent, and promotes differentiation. These results, along with the observed low toxicity in human neurons, show the high efficacy of electroceuticals utilizing combinations of repurposed FDA approved drugs.
Authors David J.A. Wyllie and Derek Bowie give a brief history of ionotropic glutamate receptor research and an overview of 5 papers in the 15th January 2022 issue of the Journal of Physiology. This includes the Techniques in Physiology paper by Obergrussberger et al, 2022 highlighting the advances and applications of high throughput methods for automated electrophysiological studies and specifically patch-clamp recording. Automated patch clamp devices such as the SyncroPatch 384 are increasingly becoming workhorses in the pharmaceutical industry as well as small research labs/centres.
Transient Receptor Potential Melastatin 5 (TRPM5) is an intracellular calcium-activated cation-selective ion channel expressed in a variety of cell types. Dysfunction of this channel has recently been implied in a range of disease states including diabetes, enteric infections, inflammatory responses, parasitic infection and other pathologies. However, to date, agonists and positive modulators of this channel with sufficient selectivity to enable target validation studies have not been described, limiting the evaluation of TRPM5 biology and its potential as a drug target. We developed a high-throughput assay using a fluorescent membrane potential dye and a medium- and high-throughput electrophysiology assay using QPatch HTX and SyncroPatch 384PE. By employing these assays, we conducted a primary screening campaign and identified hit compounds as TRPM5 channel positive modulators. An initial selectivity profile confirmed hit selectivity to TRPM5 and is presented here. These small molecule TRPM5 compounds have a high potential both as early tool compounds to enable pharmacological studies of TRPM5 and as starting points for the development of potent, selective TRPM5 openers or positive modulators as novel drugs targeting several pathological states.
Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-concept, we develop HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium (NaV) channels and validate its activity in vitro in HEK293 cells, ex vivo in brain slices and in vivo on mice neuromuscular junctions. We find that HwTxIV-Nvoc enables precise spatiotemporal control of neuronal NaV channel function under all conditions tested. By creating multiple photoactivatable toxins, we demonstrate the broad applicability of this toxin-photoactivation technology.
Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-β, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.
Hundreds of KCNQ2 variants have been identified by genetic testing of children with early onset epilepsy and/or developmental disability. Voltage-clamp recording from heterologous cells has proved useful for establishing deleterious functional effects of KCNQ2 variants, but procedures adapting these assays for standardized, higher throughput data collection and reporting are lacking. In this study, we employed automated patch clamp recording to assess in parallel the functional and pharmacological properties of 79 missense and 2 in-frame deletion variants of KCNQ2. Among the variants we studied were a training set of 18 pathogenic variants previously studied by voltage-clamp recording, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. Variant KCNQ2 subunits were transiently expressed in a cell line stably expressing KCNQ3 to reconstitute the physiologically relevant channel complex. Variants with severe loss-of-function were also co-expressed 1:1 with WT KCNQ2 in the KCNQ3 cell line to mimic the heterozygous genotype and assess dominant-negative behavior. In total, we analyzed electrophysiological data recorded from 9,480 cells. The functional properties of WT KCNQ2/KCNQ3 channels and pharmacological responses to known blockers and activators determined by automated patch clamp recording were highly concordant with previous findings. Similarly, functional properties of 18 known pathogenic variants largely matched previously published results and the validated automated patch clamp assay. Many of the 39 previously unstudied disease-associated KCNQ2 variants exhibited prominent loss-of-function and dominant-negative effects, providing strong evidence in support of pathogenicity. All variants, exhibit response to retigabine (10 µM), although there were differences in maximal responses. Variants within the ion selectivity filter exhibited the weakest responses whereas retigabine had the strongest effect on gain-of-function variants in the voltage-sensor domain. Our study established a high throughput method to detect deleterious functional consequences of KCNQ2 variants. We demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants but this does not occur with rare population variation in this gene. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine.
The transient receptor potential cation channel 5 (TRPC5) plays an important role in numerous cellular processes. Due to this, it has gained considerable attention over the past few years as a potential therapeutic target. Recently, TRPC5 has been shown to be involved in the regulation of podocyte survival, indicating a potential treatment option for chronic kidney disease. In addition, a recent study has shown TRPC5 to be expressed in human sensory neurons and suggests that TRPC5 inhibition could be an effective treatment for spontaneous and tactile pain. To understand these processes more fully, potent and selective tool compounds are needed. Herein we report further exploration of the 2-aminobenzimidazole scaffold as a potent TRPC5 inhibitor, culminating in the discovery of 16 f as a potent and selective TRPC5 inhibitor.
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Impaired cerebellar Purkinje neuron firing resulting from reduced expression of large-conductance calcium-activated potassium (BK) channels is a consistent feature in models of inherited neurodegenerative Spinocerebellar Ataxia (SCA). Restoring BK channel expression improves motor function and delays cerebellar degeneration, indicating that BK channels are an attractive therapeutic target. Current BK channel activators lack specificity and potency and therefore are poor templates for future drug development. We implemented an automated patch-clamp platform for high throughput drug discovery of BK channel activators using the Nanion SyncroPatch 384PE system. We screened over 15,000 compounds for their ability to increase BK channel current amplitude under conditions of lower intracellular calcium that is present in disease. We identified several novel BK channels activators that were then re-tested on the SyncroPatch 384PE to generate concentration-response curves (CRCs). Compounds with favorable CRCs were subsequently tested for their ability to improve irregular cerebellar Purkinje neuron spiking, characteristic of BK channel dysfunction in SCA1 mice. We identified a novel BK channel activator, 4-chloro-N-(5-chloro-2-cyanophenyl)-3-(trifluoromethyl)benzene-1-sulfonamide (herein renamed BK-20), that activated BK currents more potently (pAC50 = 4.64) than NS-1619 (pAC50 = 3.7) at a free internal calcium concentration of 270 nM in a heterologous expression system and improved spiking regularity in SCA1 Purkinje neurons. BK-20 had no activity on SK1-3 channels but interestingly was a potent blocker of CaV3.1 (IC50 = 1.05 mM). Our work describes both a novel compound for further drug development in disorders with irregular Purkinje spiking and a unique platform for drug discovery in degenerative ataxias. Significance Statement Motor impairment associated with altered Purkinje cell spiking due to dysregulation of BK expression and function is a shared feature of disease in many degenerative ataxias. BK channel activators represent an outstanding therapeutic agent for ataxia. We have developed a high-throughput platform to screen for BK channel activators and identified a novel compound that can serve as a template for future drug-development for the treatment of these disabling disorders.
Purpose Up to 30% of patients with Brugada syndrome (BrS) carry loss-of-function (LoF) variants in the cardiac sodium channel gene SCN5A encoding for the protein NaV1.5. Recent studies suggested that NaV1.5 can dimerize, and some variants exert dominant negative effects. In this study, we sought to explore the generality of missense variant NaV1.5 dominant negative effects and their clinical severity. Results In heterozygous expression with WT, 32 of 35 LoF and 6 of 15 partial LoF variants showed reduction to 75% of WT-alone peak current, showing a dominant negative effect. Individuals with dominant negative LoF variants had an elevated disease burden compared with the individuals with putative haploinsufficient variants (2.7-fold enrichment in BrS cases, P = .019). Conclusion Most SCN5A missense LoF variants exert a dominant negative effect. This class of variant confers an especially high burden of BrS.
A major advancement has recently occurred in the ability to predict protein secondary structure from sequence using artificial neural networks. This new accessibility to high-quality predicted structures provides a big opportunity for the protein design community. It is particularly welcome for membrane protein design, where the scarcity of solved structures has been a major limitation of the field for decades. Here, we review the work done to date on the membrane protein design and set out established and emerging tools that can be used to most effectively exploit this new access to structures.
Cryptococcus neoformans and Cryptococcus gattii can cause fatal invasive infections, especially in immunocompromised patients. However, few antifungal drugs are available to help treat cryptococcosis. In this study, by compound library screening, we presented the first report of hit compound P163-0892, which had potent in vitro and in vivo antifungal activity against Cryptococcus spp. In vitro tests showed that P163-0892 was not cytotoxic and had highly selective and strong antifungal activities against Cryptococcus spp. with MIC values less than 1 μg/mL. Synergism of P163-0892 and fluconazole was also observed in vitro. The in vivo antifungal efficacy of P163-0892 was assessed in a wax moth larval fungal infection model, and treatment with 10 mg/kg P163-0892 caused a significant reduction in fungal burden and significant extension of the survival time. Taken together, our data indicate that the hit compound P163-0892 warrants further investigation as a novel anti-Cryptococcus agent.
α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only chemical synthesis allows easy insertion of non-natural amino acids or new chemical functionalities. Herein, we describe a procedure for the chemical synthesis of a fluorescent-tagged α-bungarotoxin. The full-length peptide was designed to include an alkyne function at the amino-terminus through the addition of a pentynoic acid linker. Chemical synthesis of α-bungarotoxin requires hydrazide-based coupling of three peptide fragments in successive steps. After completion of the oxidative folding, an azide-modified Cy5 fluorophore was coupled by click chemistry onto the toxin. Next, we determined the efficacy of the fluorescent-tagged α-bungarotoxin to block acetylcholine (ACh)-mediated currents in response to muscle nicotinic receptor activation in TE671 cells. Using automated patch-clamp recordings, we demonstrate that fluorescent synthetic α-bungarotoxin has the expected nanomolar affinity for the nicotinic receptor. The blocking effect of fluorescent α-bungarotoxin could be displaced by incubation with a 20-mer peptide mimicking the α-bungarotoxin binding site. In addition, TE671 cells could be labelled with fluorescent toxin, as witnessed by confocal microscopy, and this labelling was partially displaced by the 20-mer competitive peptide. We thus demonstrate that synthetic fluorescent-tagged α-bungarotoxin preserves excellent properties for binding onto muscle nicotinic receptors.
Cholesterol is a major regulator of multiple types of ion channels. While there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues, V265 and H222, and high throughput electrophysiology.
Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability.
Channelrhodopsins (ChRs) are proteins that guide phototaxis in protists and exhibit light-gated channel conductance when their genes are heterologously expressed in mammalian cells. ChRs are widely used as molecular tools to control neurons and cardiomyocytes with light (optogenetics). Cation- and anion-selective ChRs (CCRs and ACRs, respectively) enable stimulation and inhibition of neuronal activity by depolarization and hyperpolarization of the membrane, respectively. More than 400 natural ChR variants have been identified so far, and high-throughput polynucleotide sequencing projects add many more each year. However, electrophysiological characterization of new ChRs lags behind because it is mostly done by time-consuming manual patch clamp (MPC). Here we report using a high-throughput automated patch clamp (APC) platform, SyncroPatch 384i from Nanion Technologies, for ChR research. We find that this instrument can be used for determination of the light intensity dependence and current-voltage relationships in ChRs and discuss its advantages and limitations.
As a branch of quantitative systems toxicology, in silico simulations are of growing attractiveness to guide preclinical cardiosafety risk assessments. Traditionally, a cascade of in vitro/in vivo assays has been applied in pharmaceutical research to screen out molecules at risk for cardiac side effects and prevent subsequent risk for patients. Drug cardiosafety assessments typically employ early mechanistic, hazard-oriented in silico/in vitro assays for compound inhibition of cardiac ion channels, followed by induced pluripotent stem cells (iPSCs) or tissue-based models such as the rabbit Purkinje fiber assay, which includes the major mechanisms contributing to action potential (AP) genesis. Additionally, multiscale simulation techniques based on mathematical models have become available, which are performed in silico ‘at the heart’ of compound triage to substitute Purkinje tests and increase translatability through mechanistic interpretability. To adhere to the 3R principle and reduce animal experiments, we performed a comparative benchmark and investigated a variety of mathematical cardiac AP models, including a newly developed minimalistic model specifically tailored to the AP of rabbit Purkinje cells, for their ability to substitute experiments. The simulated changes in AP duration (dAPD90) at increasing drug concentrations were compared to experimental results from 588 internal Purkinje fiber studies covering 555 different drugs with diverse modes of action. Using our minimalistic model, 80% of the Purkinje experiments could be quantitatively reproduced. This result allows for significant saving of experimental effort in early research and justifies the embedding of electrophysiological simulations into the DMTA (Design, Make, Test, Analyze) cycle in pharmaceutical compound optimization.
Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.
High throughput genomics has greatly facilitated identification of genetic variants. However, determining which variants contribute to disease causation is challenging with more than half of all missense variants now classified as variants of uncertain significance (VUS). A VUS leaves patients and their clinicians unable to utilize the variant information in clinical decision-making. In long QT syndrome type 2, KCNH2 channel function is directly associated with disease presentation. Therefore, functional phenotyping of KCNH2 variants can provide direct evidence to aid variant classification. Here, we investigated the expression of all codon variants in exon 2 of KCNH2 using a massively parallel trafficking assay and for a subset of 458 single nucleotide variants compared the results with peak tail current density and gating using automated patch clamp electrophysiology. Trafficking could correctly classify loss of peak tail current density variants with an AUC reaching 0.94 compared to AUCs of 0.75 to 0.8 for in silico variant classifiers. We suggest massively parallel trafficking assays can provide prospective and accurate functional assessment for all missense variants in KCNH2 and most likely many other ion channels and membrane proteins.
Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of We identified 35 LoF variants (10% of wild type [WT] peak current) and 15 partial LoF variants (10%-50% of WT peak current) that we assessed for dominant negative effects. SCN5A variants were studied in HEK293T cells, alone or in heterozygous coexpression with WT SCN5A using automated patch clamp. To assess the clinical risk, we compared the prevalence of dominant negative vs putative haploinsufficient (frameshift, splice, or nonsense) variants in a BrS consortium and the Genome Aggregation Database population database. detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases.
Loss-of-function (LOF) variants in the KV11.1 potassium channel cause long QT syndrome (LQTS). Most variants disrupt intracellular channel transport (trafficking) to the cell membrane. Since some channel inhibitors improve trafficking of KV11.1 variants, a high-throughput screening (HTS) assay to detect trafficking enhancement would be valuable to the identification of drug candidates. The thallium (Tl+) flux assay technique, widely used for drug screening, was optimized using human embryonic kidney (HEK-293) cells expressing a trafficking-deficient KV11.1 variant in 384-well plates. Assay quality was assessed using Z prime (Z’) scores comparing vehicle to E-4031, a drug that increases KV11.1 membrane trafficking. The optimized assay was validated by immunoblot, electrophysiology experiments, and a pilot drug screen. The combination of: 1) truncating the trafficking-deficient variant KV11.1-G601S (KV11.1-G601S-G965*X) with the addition of 2) KV11.1 channel activator (VU0405601) and 3) cesium (Cs+) to the Tl+ flux assay buffer resulted in an outstanding Z’ of 0.83. To validate the optimized trafficking assay, we carried out a pilot screen that identified three drugs (ibutilide, azaperone, and azelastine) that increase KV11.1 trafficking. The new assay exhibited 100% sensitivity and specificity. Immunoblot and voltage-clamp experiments confirmed that all three drugs identified by the new assay improved membrane trafficking of two additional LQTS KV11.1 variants. We report two new ways to increase target-specific activity in trafficking assays—genetic modification and channel activation—that yielded a novel HTS assay for identifying drugs that improve membrane expression of pathogenic KV11.1 variants.
Many genes, including KCNH2, contain “hotspot” domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this “hotspot” domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.
Neuropsychiatric disorders such as schizophrenia are challenging to treat due to the biological complexity of the disease and the lack of knowledge of the underlying pathophysiology. Whole exome and genome sequencing studies have identified disease-linked rare variants in patients with large effect size. Here, we functionally characterize the schizophrenia linked variant V1282F in SCN2A, encoding the sodium channel NaV1.2. This variant was introduced into isogenic lines of hiPSCs using CRISPR/CAS9 genome editing tools. hiPSCs were then differentiated into cortical neurons to understand how the variant and gene may be contributing to disease. We observed a significant (~25%) decrease in sodium current in the V1282F neurons compared to control neurons, suggesting the mutation is causing a loss-of-channel function. These results were supported by recordings in recombinant cells overexpressing either the mutant or wildtype NaV1.2, with the mutant channel having significantly (~75%) lower current amplitude than wildtype. We hypothesize that this phenotype may contribute to disease either through the direct loss of neuronal activity or through subsequent abnormal neurodevelopment.
Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.
The insecticide deltamethrin of the pyrethroid class mainly targets voltage-gated sodium channels (NaVs). Deltamethrin prolongs the opening of NaVs by slowing down fast inactivation and deactivation. Pyrethroids are supposedly safe for humans, however, they have also been linked to the gulf-war syndrome, a neuropathic pain condition that can develop following exposure to certain chemicals. Inherited neuropathic pain conditions have been linked to mutations in the NaV subtypes NaV1.7, NaV1.8, and NaV1.9. Here, we examined the effect of deltamethrin on the human isoforms NaV1.7, NaV1.8, and NaV1.9_C4 (chimera containing the C-terminus of rat NaV1.4) heterologously expressed in HEK293T and ND7/23 cells using whole-cell patch-clamp electrophysiology. For all three NaV subtypes, we observed increased persistent and tail currents that are typical for NaV channels modified by deltamethrin. The most surprising finding was an enhanced slow inactivation induced by deltamethrin in all three NaV subtypes. An enhanced slow inactivation is contrary to the prolonged opening caused by pyrethroids and has not been described for deltamethrin or any other pyrethroid before. Furthermore, we found that the fraction of deltamethrin-modified channels increased use-dependently. However, for NaV1.8, the use-dependent potentiation occurred only when the holding potential was increased to −90 mV, a potential at which the tail currents decay more slowly. This indicates that use-dependent modification is due to an accumulation of tail currents. In summary, our findings support a novel mechanism whereby deltamethrin enhances slow inactivation of voltage-gated sodium channels, which may, depending on the cellular resting membrane potential, reduce neuronal excitability and counteract the well-described pyrethroid effects on channel activation.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid–based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.
Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown.
Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels.
Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state.
In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A–E (1–5), from the hypobranchial gland of the mollusk Conus geographus. Compounds 1–5 were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue 6 was used for a detailed pharmacological study. Compound 6 significantly increased the pain threshold in mice in the hot-plate test at 2 and 50 mg/kg. Compound 6 at 500 nM antagonizes type-A γ-aminobutyric acid receptors (GABAARs). In a patch-clamp experiment, out of the six subunit combinations tested, 6 exhibited subtype selectivity, most strongly antagonizing α1β1γ2 and α4β3γ2 receptors (IC50 1.5 and 1.0 μM, respectively). Although the structures of 1–6 differ from those of known neuroactive steroids, they are cell-type-selective modulators of GABAARs, expanding the known chemical space of neuroactive steroids.
The SCN5A R1623Q mutation is one of the most common genetic variants associated with severe congenital long QT syndrome 3 (LQT3) in fetal and neonatal patients. To investigate the properties of the R1623Q mutation, we established an induced pluripotent stem cell (iPSC) cardiomyocyte (CM) model from a patient with LQTS harboring a heterozygous R1623Q mutation. The properties and pharmacological responses of iPSC-CMs were characterized using a multi-electrode array system. The biophysical characteristic analysis revealed that R1623Q increased open probability and persistent currents of sodium channel, indicating a gain-of-function mutation. In the pharmacological study, mexiletine shortened FPDcF in R1623Q-iPSC-CMs, which exhibited prolonged field potential duration corrected by Fridericia’s formula (FPDcF, analogous to QTcF). Meanwhile, E4031, a specific inhibitor of human ether-a-go-go-related gene (hERG) channel, significantly increased the frequency of arrhythmia-like early after depolarization (EAD) events. These characteristics partly reflect the patient phenotypes. To further analyze the effect of neonatal isoform, which is predominantly expressed in the fetal period, on the R1623Q mutant properties, we transfected adult form and neonatal isoform SCN5A of control and R1623Q mutant SCN5A genes to 293T cells. Whole-cell automated patch-clamp recordings revealed that R1623Q increased persistent Na+ currents, indicating a gain-of-function mutation. Our findings demonstrate the utility of LQT3-associated R1623Q mutation-harboring iPSC-CMs for assessing pharmacological responses to therapeutic drugs and improving treatment efficacy. Furthermore, developmental switching of neonatal/adult NaV1.5 isoforms may be involved in the pathological mechanisms underlying severe long QT syndrome in fetuses and neonates.
Machine learning is widely used in drug development to predict activity in biological assays based on chemical structure. However, the process of transitioning from one experimental setup to another for the same biological endpoint has not been extensively studied. In a retrospective study, we here explore different modeling strategies of how to combine data from the old and new assays when training conformal prediction models using data from hERG and NaV assays. We suggest to continuously monitor the validity and efficiency of models as more data is accumulated from the new assay and select a modeling strategy based on these metrics. In order to maximize the utility of data from the old assay, we propose a strategy that augments the proper training set of an inductive conformal predictor by adding data from the old assay but only having data from the new assay in the calibration set, which results in valid (well-calibrated) models with improved efficiency compared to other strategies. We study the results for varying sizes of new and old assays, allowing for discussion of different practical scenarios. We also conclude that our proposed assay transition strategy is more beneficial, and the value of data from the new assay is higher, for the harder case of regression compared to classification problems.
Incorporation of noncanonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing human acid-sensing ion channel 1a (hASIC1a) variants in transiently transfected mammalian cells. We introduce 3 different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay, and live-cell crosslinking provides insight into the hASIC1a–psalmotoxin 1 (PcTx1) interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells.
Ion channels are attractive drug targets for many therapeutic applications. However, high-throughput screening (HTS) of drug candidates is difficult and remains very expensive. We thus assessed the suitability of the bioluminescence resonance energy transfer (BRET) technique as a new HTS method for ion-channel studies by taking advantage of our recently characterized intra- and intermolecular BRET probes targeting the transient receptor potential vanilloid type 1 (TRPV1) ion channel. These BRET probes monitor conformational changes during TRPV1 gating and subsequent coupling with calmodulin, two molecular events that are intractable using reference techniques such as automated calcium assay (ACA) and automated patch-clamp (APC). We screened the small-sized Prestwick chemical library, encompassing 1200 compounds with high structural diversity, using either intra- and intermolecular BRET probes or ACA. Secondary screening of the detected hits was done using APC. Multiparametric analysis of our results shed light on the capability of calmodulin inhibitors included in the Prestwick library to inhibit TRPV1 activation by capsaicin. BRET was the lead technique for this identification process. Finally, we present data exemplifying the use of intramolecular BRET probes to study other transient receptor potential (TRP) channels and non-TRPs ion channels. Knowing the ease of use of BRET biosensors and the low cost of the BRET technique, these assays may advantageously be included for extending ion-channel drug screening.
Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a nonselective monovalent cation channel activated by intracellular Ca2+ increase. Within the gastrointestinal system, TRPM5 is expressed in the stoma, small intestine, and colon. In the search for a selective agonist of TRPM5 possessing in vivo gastrointestinal prokinetic activity, a high-throughput screening was performed and compound 1 was identified as a promising hit. Hit validation and hit to lead activities led to the discovery of a series of benzo[d]isothiazole derivatives. Among these, compounds 61 and 64 showed nanomolar activity and excellent selectivity (>100-fold) versus related cation channels. The in vivo drug metabolism and pharmacokinetic profile of compound 64 was found to be ideal for a compound acting locally at the intestinal level, with minimal absorption into systemic circulation. Compound 64 was tested in vivo in a mouse motility assay at 100 mg/kg, and demonstrated increased prokinetic activity.
KCNH2 is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported KCNH2 variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally. Here, we report detailed methods for assessing the molecular phenotype of any KCNH2 missense variant. The key components of the assay include quick and cost-effective generation of a bicistronic vector to co-express WT and any KCNH2 variant allele, generation of stable Flp-In HEK293 cell lines and high-throughput automated patch-clamp electrophysiology analysis of channel function. Stable cell lines take 3-4 weeks to produce and can be generated in bulk, which will then allow up to 30 variants to be phenotyped per week after 48 hours of channel expression. This high throughput functional genomics assay will enable a much more rapid assessment of the extent of loss of function of any KCNH2 variant.
Protoxin II (ProTx II) is a high affinity gating modifier that is thought to selectively block the NaV1.7 voltage-dependent Na+ channel, a major therapeutic target for the control of pain. We aimed at producing ProTx II analogues entitled with novel functionalities for cell distribution studies and biochemical characterization of its NaV channel targets.
MAT2a is a methionine adenosyltransferase that synthesizes the essential metabolite S-adenosylmethionine (SAM) from methionine and ATP. Tumors bearing the co-deletion of p16 and MTAP genes have been shown to be sensitive to MAT2a inhibition, making it an attractive target for treatment of MTAP-deleted cancers. A fragment-based lead generation campaign identified weak but efficient hits binding in a known allosteric site. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a merging and growing strategy into an arylquinazolinone series of potent MAT2a inhibitors. The selected in vivo tool compound 28 reduced SAM-dependent methylation events in cells and inhibited proliferation of MTAP-null cells in vitro. In vivo studies showed that 28 was able to induce antitumor response in an MTAP knockout HCT116 xenograft model.
Gain-of-function (GOF) mutations in the KCNQ1 voltage-gated potassium channel can induce cardiac arrhythmia. Here it was tested whether any of the known human GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface—“super-trafficking”. Seven out of the 15 GOF mutants tested were seen to surface-traffic more efficiently than the wild type (WT) channel. Among these we found that levels of R231C KCNQ1 in the plasma membrane were 5-fold higher than the WT channel. This was shown to arise from the combined effects of enhanced efficiency of translocon-mediated membrane integration of the S4 voltage-sensor helix and from enhanced post-translational folding/trafficking that is related to energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with KCNE1 exhibits constitutive conductance, but also revealed that the single channel activity of this mutant is only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the effects of super-trafficking and constitutive channel activation, which together offset reduced channel activity. These investigations show that membrane protein super-trafficking can contribute to human disease.
Mutations in KCNQ2, which encodes a pore-forming K+ channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of KCNQ2 mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca2+-activated K+ channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.
The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major CaVeat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose–response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.
The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.
The rising interest in KV7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum KV7 agonists, flupirtine and retigabine. Since precise molecular structures of human KV7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective KV7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from three channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with the identical glutamate pattern as in cryptophyte ACRs are cation-selective. Desensitization is also broadly context-dependent, as in one branch of stramenopile ACRs and their metagenomic homologs its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, two prasinophyte CCRs exhibit red-shifted spectra to 585 nm, although their retinal-binding pockets do not match those of previously known similarly red-shifted channelrhodopsins. In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity.
Voltage-gated sodium channels (NaVs) are promising targets for analgesic and antiepileptic therapies. Although specificity between NaV subtypes may be desirable to target specific neural types, such as nociceptors in pain, many broadly acting NaV inhibitors are clinically beneficial in neuropathic pain and epilepsy. Here, we present the first systematic characterization of vixotrigine, a NaV blocker. Using recombinant systems, we find that vixotrigine potency is enhanced in a voltage- and use-dependent manner, consistent with a state-dependent block of NaVs. Furthermore, we find that vixotrigine potently inhibits sodium currents produced by both peripheral and central nervous system NaV subtypes, with use-dependent IC50 values between 1.76 and 5.12 μM. Compared with carbamazepine, vixotrigine shows higher potency and more profound state-dependent inhibition but a similar broad spectrum of action distinct from NaV1.7- and NaV1.8-specific blockers. We find that vixotrigine rapidly inhibits NaVs and prolongs recovery from the fast-inactivated state. In native rodent dorsal root ganglion sodium channels, we find that vixotrigine shifts steady-state inactivation curves. Based on these results, we conclude that vixotrigine is a broad-spectrum, state-dependent NaV blocker.
We applied a set of in silico and in vitro assays, compliant with the CiPA (Comprehensive In Vitro Proarrhythmia Assay) paradigm, to assess the risk of chloroquine or hydroxychloroquine‐mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin and azithromycin, drugs repurposed during the first wave of COVID‐19. Each drug or drug combination was tested in patch clamp assays on 7 cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay®) using control (healthy) or high‐risk cell populations, and in human induced pluripotent stem cell (hiPSC)‐derived cardiomyocytes. In each assay, concentration‐response curves encompassing and exceeding therapeutic free plasma levels were generated. Both chloroquine and hydroxychloroquine showed blocking activity against some potassium, sodium and calcium currents. Chloroquine and hydroxychloroquine inhibited IKr (IC50: 1µM and 3‐7 µM, respectively) and IK1 currents (IC50: 5 and 44 µM, respectively). When combining hydroxychloroquine with azithromycin, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50 > 300 ‐ 1000µM). Using Virtual Assay®, both antimalarials affected several TdP indicators, chloroquine being more potent than hydroxychloroquine. Effects were more pronounced in the high‐risk cell population. In hiPSC‐derived cardiomyocytes, all drugs showed early‐after‐depolarizations, except azithromycin. Combining chloroquine or hydroxychloroquine with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off‐label use in COVID‐19, chloroquine and hydroxychloroquine use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.
Protamine sulfate (PS) is the only available option to reverse the anticoagulant activity of unfractionated heparin (UFH), however it can cause cardiovascular and respiratory complications. We explored the toxicity of PS and its complexes with UFH in zebrafish, rats, and mice. The involvement of nitric oxide (NO) in the above effects was investigated. Concentration–dependent lethality, morphological defects, and decrease in heart rate (HR) were observed in zebrafish larvae. PS affected HR, blood pressure, respiratory rate, peak exhaled CO2, and blood oxygen saturation in rats. We observed hypotension, increase of HR, perfusion of paw vessels, and enhanced respiratory disturbances with increases doses of PS. We found no effects of PS on human hERG channels or signs of heart damage in mice. The hypotension in rats and bradycardia in zebrafish were partially attenuated by the inhibitor of endothelial NO synthase. The disturbances in cardiovascular and respiratory parameters were reduced or delayed when PS was administered together with UFH. The cardiorespiratory toxicity of PS seems to be charge–dependent and involves enhanced release of NO. PS administered at appropriate doses and ratios with UFH should not cause permanent damage of heart tissue, although careful monitoring of cardiorespiratory parameters is necessary.
Ion channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit. Historically, the effects of compounds onion channel biophysical properties and voltage-dependent activation/inactivation could only be assessed using low-throughput, manual patch clamp recording techniques. In recent years, automated patch clamp (APC) platforms have drastically increased throughput. In contrast to their broad utilization in compound screening, APC platforms have rarely been used for mechanism of action studies, in large part due to the lack of sophisticated, scalable analysis methods to process the large amount of data generated by APC platforms. In the current study, we developed a highly efficient and scalable software workflow to overcome this challenge. This method, to our knowledge the first of its kind, enables automated curve fitting and complex analysis of compound effects. Using voltage-gated sodium channels as an example, we were able to immediately assess the effects of test compounds on a spectrum of biophysical properties, including peak current, voltage-dependent steady state activation/inactivation, and time constants of activation and fast inactivation. Overall, this automated data analysis method provides a novel solution for in-depth analysis of large-scale APC data, and thus will significantly impact ion channel research and drug discovery.
CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus (TRN) and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10,000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore, and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher’s exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modeled the effect of the biophysical properties of CaV3.3 channel variants on TRN excitability and found that compared with common variants, ultrarare CaV3.3 coding variants derived from control subjects significantly decreased TRN excitability (P = 0.011). When all rare variants were analyzed, there was a nonsignificant trend between variants that reduced TRN excitability and variants that either had no effect or increased TRN excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a highthroughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
The novel coroNaVirus, SARS-CoV-2, has been identified as the causative agent for the current coroNaVirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.
In the recent years, the progress in genetic analysis and next-generation sequencing technologies have opened up exciting landscapes for diagnosis and study of molecular mechanisms, allowing the determination of a particular mutation for individual patients suffering from hereditary red blood cell-related diseases or anemia. However, the huge amount of data obtained makes the interpretation of the results and the identification of the pathogenetic variant responsible for the diseases sometime difficult. Moreover, there is increasing evidence that the same mutation can result in varying cellular properties and different symptoms of the disease. Even for the same patient, the phenotypic expression of the disorder can change over time. Therefore, on top of genetic analysis, there is a further request for functional tests that allow to confirm the pathogenicity of a molecular variant, possibly to predict prognosis and complications (e.g., vaso-occlusive pain crises or other thrombotic events) and, in the best case, to enable personalized theranostics (drug and/or dose) according to the disease state and progression. The mini-review will reflect recent and future directions in the development of diagnostic tools for red blood cell-related diseases and anemias. This includes point of care devices, new incarnations of well-known principles addressing physico-chemical properties, and interactions of red blood cells as well as high-tech screening equipment and mobile laboratories.
There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.
Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) which is not only corresponding to clinical disease manifestations, but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. Based on known gene-disease-mechanisms, we here infer LOF (518 variants) and GOF (309 variants) of likely pathogenic variants from disease phenotypes of variant carriers. We show regional clustering of inferred GOF and LOF variants, respectively, across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCN/CACNA1 genes. By training a machine learning model on sequence- and structure-based features we predict LOF- or GOF- associated disease phenotypes (ROC = 0.85) of likely pathogenic missense variants. We then successfully validate the GOF versus LOF prediction on 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and in exome-wide data from > 100.000 cases and controls. Ultimately, functional prediction of missense variants in clinically relevant genes will facilitate precision medicine in clinical practice.
Levodopa-induced dyskinesia (LID) poses a significant health care challenge for Parkinson's disease (PD) patients. Amantadine is currently the only drug proven to alleviate LID. Although its efficacy in treating LID is widely assumed to be mediated by blockade of N-methyl-D-aspartate (NMDA) glutamate receptors, our experiments demonstrate that at therapeutically relevant concentrations, amantadine preferentially blocks inward-rectifying K+ channel type 2 (Kir2) channels in striatal spiny projection neurons (SPNs) - not NMDA receptors. In so doing, amantadine enhances dendritic integration of excitatory synaptic potentials in SPNs and enhances - not antagonizes - the induction of long-term potentiation (LTP) at excitatory, axospinous synapses. Taken together, our studies suggest that the alleviation of LID in PD patients is mediated by diminishing the disparity in the excitability of direct- and indirect-pathway SPNs in the on state, rather than by disrupting LTP induction. This insight points to a pharmacological approach that could be used to effectively ameliorate LID and improve the quality of life for PD patients.
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to synaptic plasticity, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is upregulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs and non-canonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding induces ASIC1a conformational changes that are different from those induced by protonation and likely represent a distinct closed state. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is mediated through electrostatic interactions of basic amino acids in the BigDyn N-terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the non-canonical amino acid azido-phenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn and thus highlight this CaVity as an important site for the development of ASIC-targeting therapeutics. Significance: Neuropeptides such as big dynorphin (BigDyn) play important roles in the slow modulation of fast neurotransmission, which is mediated by membrane-embedded receptors. In fact, BigDyn is the most potent known endogenous modulator of one such receptor, the acid-sensing ion channel (ASIC), but the mode of action remains unknown. In this work, we employ a broad array of technologies to unravel the details of where big dynorphin binds to ASIC and how it modulates its activity. As both BigDyn and ASIC are implicated in pain pathways, this work might pave the way toward future analgesics.
The clinical administration of GABAergic medications leads to hypotension which has classically been attributed to the modulation of neuronal activity in the central and peripheral nervous systems. However, certain types of peripheral smooth muscle cells have been shown to express GABAA receptors, which modulate smooth muscle tone, by the activation of these chloride channels on smooth muscle cell plasma membranes. Limited prior studies demonstrate that non-human large-caliber capacitance blood vessels mounted on a wire myograph are responsive to GABAA ligands. We questioned whether GABAA receptors are expressed in human resistance arteries and whether they modulate myogenic tone. We demonstrate the novel expression of GABAA subunits on vascular smooth muscle from small-caliber human omental and mouse tail resistance arteries. We show that GABAA receptors modulate both plasma membrane potential and calcium responses in primary cultured cells from human resistance arteries. Lastly, we demonstrate functional physiologic modulation of myogenic tone via GABAA receptor activation in human and mouse arteries. Together, these studies demonstrate a previously unrecognized role for GABAA receptors in the modulation of myogenic tone in mouse and human resistance arteries.
Rationale: Partial or complete loss of function variants in SCN5A are the most common genetic cause of the arrhythmia disorder Brugada Syndrome (BrS1). However, the pathogenicity of SCN5A variants is often unknown or disputed; 80% of the 1,390 SCN5A missense variants observed in at least one individual to date are variants of uncertain significance (VUS). The designation of VUS is a barrier to the use of sequence data in clinical care. Objective: We selected 83 variants for study: 10 previously studied control variants, 10 suspected benign variants, and 63 suspected Brugada Syndrome-associated variants, selected on the basis of their frequency in the general population and in patients with Brugada Syndrome. We used high-throughput automated patch clamping to study the function of the 83 variants, with the goal of reclassifying variants with functional data. Methods and Results: Ten previously studied variants had functional properties concordant with published manual patch clamp data. All 10 suspected benign variants had wildtype-like function. 22 suspected BrS variants had loss of channel function (10% normalized peak current) and 23 variants had partial loss of function (10-50% normalized peak current). The 73 previously unstudied variants were initially classified as likely benign (n=2), likely pathogenic (n=11), or VUS (n=60). After the patch clamp studies, 16 variants were benign/likely benign, 47 were pathogenic/likely pathogenic, and only 10 were still VUS. 8/22 loss of function variants were partially rescuable by incubation at lower temperature or pretreatment with a sodium channel blocker. Structural modeling identified likely mechanisms for loss of function including altered thermostability, and disruptions to alpha helices, disulfide bonds, or the permeation pore. Conclusions: High-throughput automated patch clamping enabled the reclassification of the majority of tested VUS’s in SCN5A.
In this issue of SLAS Discovery, we present a special collection of manuscripts, including three original research papers and one review, that reflect recent advances and continuing challenges in the development and application of assay technologies to drug discovery for ion channel targets. First, though, we provide our perspectives on the specific challenges and opportunities in this field.
GS-967 and eleclazine (GS-6615) are novel sodium channel inhibitors exhibiting antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current (INaL). Here, we took advantage of a throughput automated electrophysiology platform (SyncroPatch 768PE) to investigate the molecular pharmacology of GS-967 and eleclazine on peak sodium current (INaP) recorded from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We compared GS-967 and eleclazine to the antiarrhythmic drug lidocaine, the prototype INaL inhibitor ranolazine, and the slow inactivation enhancing drug lacosamide. In human induced pluripotent stem cell-derived cardiomyocytes, GS-967 and eleclazine caused a reduction of INaP in a frequency-dependent manner consistent with use-dependent block (UDB). GS-967 and eleclazine had similar efficacy but evoked more potent UDB of INaP (IC50=0.07 and 0.6 μM, respectively) than ranolazine (7.8 μM), lidocaine (133.5 μM) and lacosamide (158.5 μM). In addition, GS-967 and eleclazine exerted more potent effects on slow inactivation and recovery from inactivation compared to the other sodium channel blocking drugs we tested. The greater UDB potency of GS-967 and eleclazine was attributed to the significantly higher association rates (KON) and moderate unbinding rate (KOFF) of these two compounds with sodium channels. We propose that substantial UDB contributes to the observed antiarrhythmic efficacy of GS-967 and eleclazine. Significance statement:We investigated the molecular pharmacology of GS-967 and eleclazine on sodium channels in human induced pluripotent stem cell derived cardiomyocytes using a high throughput automated electrophysiology platform. Sodium channel inhibition by GS-967 and eleclazine has unique features including accelerating the onset of slow inactivation and impairing recovery from inactivation. These effects combined with rapid binding and moderate unbinding kinetics explain potent use-dependent block, which we propose contributes to their observed antiarrhythmic efficacy.
Background: KCHN2 encodes the KV11.1 potassium channel responsible for IKr, a major repolarization current during the cardiomyocyte action potential. Variants in KCNH2 that decrease IKr can cause Type 2 Long QT syndrome, usually due to mistrafficking to the cell surface. Accurately discriminating between variants with normal and abnormal trafficking would help clinicians identify and treat individuals at risk of a major cardiac event. The volume of reported non-synonymous KCNH2 variants preclude the use of conventional electrophysiologic methods for functional study. Objective: To report a high-throughput, multiplexed screening method for KCNH2 genetic variants capable of measuring the cell surface abundance of hundreds of missense variants in KCNH2. Methods: We develop a method to quantitate KCNH2 variant trafficking on a pilot region of 11 residues in the S5 helix, and generate trafficking scores for 220/231 missense variants in this region. Results: For 5/5 variants, high-throughput trafficking scores validated when tested in single variant flow cytometry and confocal microscopy experiments. We additionally compare our results with planar patch electrophysiology and find that loss-of-trafficking variants do not produce IKr, but that some variants which traffic normally may still be functionally compromised. Conclusions: Here, we describe a new method for detecting trafficking-deficient variants in KCNH2 in a multiplexed assay. This new method accurately generates trafficking data for variants in KCNH2 and can be readily extended to all residues in KV11.1 and to other cell surface proteins. Clinical Implications: Hundreds of KCNH2 variants have been observed to date, and thousands more will be found as clinical and population sequencing efforts become increasingly widespread. The major mechanism of KV11.1 loss of function is misfolding and failure to traffic to the cell surface. Deep mutational scanning of KCNH2 trafficking is a scalable, high-throughput method that can help identify new loss of function variants and decipher the large number of KCNH2 variants being found in the population.
Voltage-gated Na+ (NaV) channels regulate homeostasis in bacteria and control membrane electrical excitability in mammals. Compared to their mammalian counterparts, bacterial NaV channels possess a simpler, fourfold symmetric structure and have facilitated studies of the structural basis of channel gating. However, the pharmacology of bacterial NaV remains largely unexplored. Here we systematically screened 39 NaV modulators on a bacterial channel (NaChBac) and characterized a selection of compounds on NaChBac and a mammalian channel (human NaV1.7). We found that while many compounds interact with both channels, they exhibit distinct functional effects. For example, the local anesthetics ambroxol and lidocaine block both NaV1.7 and NaChBac but affect activation and inactivation of the two channels to different extents. The voltage-sensing domain targeting toxin BDS-I increases NaV1.7 but decreases NaChBac peak currents. The pore binding toxins aconitine and veratridine block peak currents of NaV1.7 and shift activation (aconitine) and inactivation (veratridine) respectively. In NaChBac, they block the peak current by binding to the pore residue F224. Nonetheless, aconitine has no effect on activation or inactivation, while veratridine only modulates activation of NaChBac. The conservation and divergence in the pharmacology of bacterial and mammalian NaV channels provide insights into the molecular basis of channel gating and will facilitate organism-specific drug discovery.
Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the molecular architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (28). This compound was demonstrated to be a highly potent SERD that showed a pharmacological profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that 28 had favorable physicochemical and preclinical pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clinical trials.
The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.
Conventionally, manual patch-clamp electrophysiological approaches are the gold standard for studying ion channel function in neurons. However, these approaches are labor-intensive, yielding low-throughput results, and are therefore not amenable for compound profiling efforts during the early stages of drug discovery. The SyncroPatch 384PE has been successfully implemented for pharmacological experiments in heterologous overexpression systems that may not reproduce the function of voltage-gated ion channels in a native, heterogeneous environment. Here, we describe a protocol allowing the characterization of endogenous voltage-gated potassium (KV) and sodium (NaV) channel function in developing primary rat cortical cultures, allowing investigations at a significantly improved throughput compared with manual approaches. Key neuronal marker expression and microelectrode array recordings of electrophysiological activity over time correlated well with neuronal maturation. Gene expression data revealed high molecular diversity in KV and NaV subunit composition throughout development. Voltage-clamp experiments elicited three major current components composed of inward and outward conductances. Further pharmacological experiments confirmed the endogenous expression of functional KV and NaV channels in primary cortical neurons. The major advantages of this approach compared with conventional manual patch-clamp systems include unprecedented improvements in experimental ease and throughput for ion channel research in primary neurons. These efforts demonstrated feasibility for primary neuronal ion channel investigation with the SyncroPatch, providing the foundation for future studies characterizing biophysical changes in endogenous ion channels in primary systems associated with disease or development.
In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet.
Mathematical models of ion channels, which constitute indispensable components of action potential models, are commonly constructed by fitting to whole-cell patch-clamp data. In a previous study, we fitted cell-specific models to hERG1a (KV11.1) recordings simultaneously measured using an automated high-throughput system, and studied cell-cell variability by inspecting the resulting model parameters. However, the origin of the observed variability was not identified. Here, we study the source of variability by constructing a model that describes not just ion current dynamics, but the entire voltage-clamp experiment. The experimental artefact components of the model include: series resistance, membrane and pipette capacitance, voltage offsets, imperfect compensations made by the amplifier for these phenomena, and leak current. In this model, variability in the observations can be explained by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model parameters. This result suggests that most of the observed variability in patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing by using our model for the patch-clamp experiment. This study has implications for the question of the extent to which cell-cell variability in ion channel kinetics exists, and opens up routes for better correction of artefacts in patch-clamp data.
Using structure- and ligand-based design principles, a novel series of piperidyl chromane arylsulfonamide NaV1.7 inhibitors was discovered. Early optimization focused on improvement of potency through refinement of the low energy ligand conformation and mitigation of high in vivo clearance. An in vitro hepatotoxicity hazard was identified and resolved through optimization of lipophilicity and lipophilic ligand efficiency to arrive at GNE-616 (24), a highly potent, metabolically stable, subtype selective inhibitor of NaV1.7. Compound 24 showed a robust PK/PD response in a NaV1.7-dependent mouse model, and site-directed mutagenesis was used to identify residues critical for the isoform selectivity profile of 24.
The scorpion toxin AmmTx3 is a specific blocker of KV4 channels. It was shown to have interesting potential for neurological disorders. In this study, we report the first chemical synthesis of AmmTx3 by using the native chemical ligation strategy and validate its biological activity. We determined its 3D structure by nuclear magnetic resonance spectroscopy, and pointed out that AmmTx3 possesses the well-known CSαβ structural motif, which is found in a large number of scorpion toxins. Overall, this study establishes an easy synthetic access to biologically active AmmTx3 toxin.
Objective Pathogenic variants in KCNB1, encoding the voltage‐gated potassium channel KV2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell‐surface expression.Methods We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high‐throughput functional assays. Specifically, we investigated the biophysical properties and cell‐surface expression of variant KV2.1 channels expressed in heterologous cells using high‐throughput automated electrophysiology and immunocytochemistry–flow cytometry.Results Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild‐type KV2.1. Quantification of protein expression also identified variants with reduced total KV2.1 expression or deficient cell‐surface expression. Interpretation Our study establishes a platform for rapid screening of KV2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype.
Voltage-gated sodium (NaV) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human NaV1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from NaV1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the NaV1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective NaV channel antagonists.
Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug-development, and requires a deep understanding of a compound’s action on ion channels. In vitro hERG-channel current recordings are an important step in evaluating the pro-arrhythmic potential of small molecules, and are now routinely performed using automated high-throughput patch clamp platforms. These machines can execute traditional voltage clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterise a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced which have this capability, but they are not typically compatible with high-throughput platforms. We present a new high-information 15 s protocol to characterise hERG (KV11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384 well automated patch clamp platform, by applying it to CHO cells stably expressing hERG1a. From these recordings we construct 124 cell-specific variants/parameterisations of a hERG model at 25 °C. A further 8 independent protocols are run in each cell, and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell to cell, which we use to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty, and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly. Statement of Significance We present a method for high-throughput characterisation of hERG potassium channel kinetics, via fitting a mathematical model to results of over one hundred single cell patch clamp measurements collected simultaneously on an automated voltage clamp platform. The automated patch clamp data are used to parameterise a mathematical ion channel model fully, opening a new era of automated and rapid development of mathematical models from quick and cheap experiments. The method also allows ample data for independent validation of the models and enables us to study experimental variability and propose its origins. In future the method can be applied to characterise changes to hERG currents in different conditions, for instance at different temperatures (see Part II of the study) or under mutations or the action of pharmaceuticals; and should be easily adapted to study many other currents.
Ion channel behaviour can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing and inactivating) are commonly represented with Q10 coefficients or an Eyring relationship. In this paper we assess the validity of these representations by characterising channel kinetics at multiple temperatures. We focus on the hERG channel, which is important in drug safety assessment and commonly screened at room temperature, so that results require extrapolation to physiological temperature. In Part I of this study we established a reliable method for high-throughput characterisation of hERG1a (KV11.1) kinetics, using a 15 second information-rich optimised protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using CHO cells over-expressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch clamp platform, with temperature control. We characterise the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37 °C, and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients: it broadly follows a generalised, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol-dependent. Our results show that a direct fit using our 15 second protocol best represents hERG kinetics at any given temperature, and suggests that predictions from the Generalised Eyring theory may be preferentially used if no experimentally-derived data are available. Statement of Significance Ion channel currents are highly sensitive to temperature changes. Yet because many experiments are performed more easily at room temperature, it is common to extrapolate findings to physiological temperatures through the use of Q10 coefficients or Eyring rate theory. By applying short, information-rich protocols that we developed in Part I of this study we identify how kinetic parameters change over temperature. We find that the commonly-used Q10 and Eyring formulations are incapable of describing the parameters’ temperature dependence, a more Generalised Eyring relationship works well, but remeasuring kinetics and refitting a model is optimal. The findings have implications for the accuracy of the many applications of Q10 coefficients in electrophysiology, and suggest that care is needed to avoid misleading extrapolations in their many scientific and industrial pharmaceutical applications.
Background: Voltage-gated potassium channel KV4.2 (encoded by KCND2 gene) contributes to the cardiac transient outward potassium current (Ito1). This current is the main contributor to the repolarisation phase 1 of the cardiac action potential. The toxin AmmTx3, identified from the venom of the scorpion Androctonus mauretanicus, is a blocker of KV4.x channels, and have interesting therapeutic potential for neurological disorders due to its effect in cerebellar granule neurons. Its effects on cardiac KV4.2 channels remains unclear. Conclusion :AmmTx3 toxin can be chemically synthesized and used as a KV4.2 channel inhibitor to contributed to the better understanding of the exact role of Ito1 in cardiac electrophysiology. Those first results seem to be a promising evidence that AmmTx3 could a potential inhibitor of Ito current in early repolarisation syndrome.
AimsCurrent treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by KV11.1 channels. Small molecule activators of KV11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of KV11.1 that impairs transition to the inactivated state, to restore function to heterozygous KV11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. Methods and results ICA-105574 effectively restored KV11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective KV11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The KV11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. Conclusions KV11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the CaVeat that there may be a risk of overcorrection that could itself be pro-arrhythmic.
Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV2.1, are associated with developmental and epileptic encephalopathies (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. We evaluated a series of 17 KCNB1 variants associated with DEE or neurodevelopmental disorder (NDD) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage-dependence of activation and/or inactivation, as homotetramers or when co-expressed with wild-type KV2.1. Quantification of protein expression also identified variants with reduced total KV2.1 expression or deficient cell-surface expression. Our study establishes a platform for rapid screening of functional defects of KCNB1 variants associated with DEE and other NDDs, which will aid in establishing KCNB1 variant pathogenicity and may enable discovery of targeted strategies for therapeutic intervention based on molecular phenotype.
Background KCNH2 encodes the human ether-à-go-go-related gene (hERG) potassium channel, which passes the rapid delayed rectifier potassium current, IKr. Loss-of-function variants in KCNH2 cause long QT syndrome type 2 (LQTS2) which is associated with a markedly increased risk of cardiac arrhythmias. The majority of rare KCNH2 variants however are likely to be benign. Objective To develop a high-throughput assay for discriminating between pathogenic and benign KCNH2 variants. Methods Nonsynonymous homozygous KCNH2 variants stably expressed in Flp-In human embryonic kidney 293 (HEK293) cell lines were phenotyped using an automated patch-clamp platform (SyncroPatch 384PE) and a cell surface ELISA assay. Functional phenotyping of heterozygous KCNH2 variants stably expressed in Flp-In HEK293 using a bicistronic vector was performed using SyncroPatch 384PE. Results In homozygous KCNH2 variant cell lines, discrepancies between current density and cell surface expression levels measured by ELISA can be explained by changes in gating properties of the variant channels. Amongst 30 heterozygous KCNH2 variant cell lines studied, the assay correctly predicted the ClinVar ascribed classification for 17/17 pathogenic/likely pathogenic/benign variants. Of 13 pore-domain variants studied, 11 had a dominant-negative expression defect whilst the remaining two had enhanced inactivation gating resulting in a dominant-negative phenotype. Conclusions High-throughput electrophysiological phenotyping of heterozygous KCNH2 variants can accurately distinguish between dominant-negative, haploinsufficient loss-of-function, and benign variants. This assay will help with future classification of KCNH2 variants
Human ether-a-go-go-related gene (hERG) trafficking inhibition is known to be one of the mechanisms of indirect hERG inhibition, resulting in QT prolongation and lethal arrhythmia. Pentamidine, an antiprotozoal drug, causes QT prolongation/Torsades de Pointes (TdP) via hERG trafficking inhibition, but 17-AAG, a geldanamycin derivative heat shock protein 90 (Hsp90) inhibitor, has not shown torsadogenic potential clinically, despite Hsp90 inhibitors generally being hypothesized to cause TdP by hERG trafficking inhibition. In the present study, we investigated the underlying mechanisms of both drugs’ actions on hERG channels using hERG-overexpressing CHO cells (hERG-CHOs) and human embryonic stem cell-derived cardiomyocytes (hES-CMs). The effects on hERG tail current and protein levels were evaluated using population patch clamp and Western blotting in hERG-CHOs. The effects on field potential duration (FPD) were recorded by a multi-electrode array (MEA) in hES-CMs. Neither drug affected hERG tail current acutely. Chronic treatment with each drug inhibited hERG tail current and decreased the mature form of hERG protein in hERG-CHOs, whereas the immature form of hERG protein was increased by pentamidine but decreased by 17-AAG. In MEA assays using hES-CMs, pentamidine time-dependently prolonged FPD, but 17-AAG shortened it. The FPD prolongation in hES-CMs upon chronic pentamidine exposure is relevant to its clinically reported arrhythmic risk. CaV1.2 or NaV1.5 current were not reduced by chronic application of either drug at a relevant concentration to hERG trafficking inhibition in human embryonic kidney (HEK293) cells. Therefore, the reason why chronic 17-AAG shortened the FPD despite the hERG trafficking inhibition occur is still unknown.
Objective: We identified a novel de novo KCNT1 variant in a patient with early‐infantile epileptic encephalopathy (EIEE) and status dystonicus, a life‐threatening movement disorder. We determined the functional consequences of this variant on the encoded KNa1.1 channel to investigate the molecular mechanisms responsible for this disorder. Methods: A retrospective case review of the proband is presented. We performed manual and automated electrophysiologic analyses of the KCNT1‐L437F variant expressed heterologously in Chinese hamster ovary (CHO) cells in the presence of channel activators/blockers. Results: The KCNT1‐L437F variant, identified in a patient with refractory EIEE and status dystonicus, confers a gain‐of‐function channel phenotype characterized by instantaneous, voltage‐dependent activation. Channel openers do not further increase L437F channel function, suggesting maximal activation, whereas channel blockers similarly block wild‐type and variant channels. We further demonstrated that KCNT1 current can be measured on a high‐throughput automated electrophysiology platform with potential value for future screening of novel and repurposed pharmacotherapies. Interpretation: A novel pathogenic variant in KCNT1 associated with early‐onset, medication‐refractory epilepsy and dystonia causes gain‐of‐function with rapid activation kinetics. Our findings extend the genotype–phenotype relationships of KCNT1 variants to include severe dystonia.
The transient receptor potential cation channel 5 (TRPC5) has been previously shown to affect podocyte survival in the kidney. As such, inhibitors of TRPC5 are interesting candidates for the treatment of chronic kidney disease (CKD). Herein, we report the synthesis and biological characterization of a series of N-heterocyclic-1-benzyl-1H-benzo[d]imidazole-2-amines as selective TRPC5 inhibitors. Work reported here evaluates the benzimidazole scaffold and substituents resulting in the discovery of AC1903, a TRPC5 inhibitor that is active in multiple animal models of CKD.
Highlights: Development of six potent diazirine-containing photoprobes based on Huwentoxin-IV. Photoprobes specifically photolabel purified bacterial-NaV1.7 VSD2 chimeric channels. Proteomic mass spectrometry identifies binding site on S1-S2 loop and S3 helix. Proposed model of HwTx-IV binding reveals importance of K27 and R29. Summary: Voltage-gated sodium (NaV) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype NaV1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate NaV1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of NaV1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on NaV channels.
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (NaV) channel NaV1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human NaV1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural NaV1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate NaV1.7 involvement in cellular excitability and pain.
Background The voltage-gated K+-channel KV11.1 has a central role in cardiac repolarization. Blockage of KV11.1 has been linked to severe cardiovascular side effects, such as acquired long QT syndrome (aLQTS), torsade de pointes arrhythmia and sudden cardiac death (SCD). KV11.1 is susceptible to unspecific drug interactions due to the presence of two aromatic amino acids residing in the inner vestibule of the pore. These aromatic residues are also present in the equine orthologue of KV11.1. This suggests that equine KV11.1 may also be prone to high-affinity block by a range of different chemical entities, which potentially could cause severe cardiac side effects and SCD in horses. Aim To screen a series of commonly used drugs in equine medicine for interaction with KV11.1. Methods High-throughput screening of selected compounds on human KV11.1 expressed in a mammalian cell line was performed using an automated patch clamp system, the SyncroPatch 384PE (Nanion Technologies, Munich, Germany). Results were validated on equine KV11.1 expressed in CHO-K1 cells by manual patch clamp. Results Acepromazine maleat (IC50 = 0.5 μM) trimethoprim (IC50 = 100 μM), diphenhydramine hydrochloride (IC50 = 2 μM) and cyproheptadine hydrochloride (IC50 = 1.84 μM) inhibited equine KV11.1 current at clinically relevant drug concentrations. Conclusion The results suggest that drug interaction with KV11.1 can occur in horses and that some drugs potentially may induce repolarization disorders in horses.
Piezo1 is a mechanosensitive ion channel that is believed to be expressed in red blood cells (RBCs), mainly supported by the findings that mutations of PIEZO1 gene are associated with the RBC disease Hereditary Xerocytosis. So far several mutations have been reported, e.g. R2456H, T2127M and E2496ELE, to exhibit a partial gain-of-function phenotype with generation of mechanically activated currents that inactivate more slowly than wild type. However, characterisation of the mutated ion channel has almost exclusively been performed based on heterologous expression in cell lines and recordings in RBCs were rather of episodic character. Here we present a patient with a novel PIEZO1 mutation (R2110W) and a patch clamp based high-throughput screening assay for Piezo1 activity. It is the first electrophysiologic single-cell based screening ever performed on RBCs, demonstrating the Piezo1 gain-of-function mutation directly on RBCs. Thus we provide a putative routine approach for detecting functional (Piezo1) channel mutations as the molecular cause of rare anaemia that can become a standard method in specialised haematological centres.
The medical staff is often powerless to treat patients affected by drug abuse or misuse and poisoning. In the case of envenomation, the treatment of choice remains horse sera administration that poses a wealth of other medical conditions and threats. Previously, we have demonstrated that DNA-based aptamers represent powerful neutralizing tools for lethal animal toxins of venomous origin. Herein, we further pursued our investigations in order to understand whether all toxin-interacting aptamers possessed equivalent potencies to neutralize αC-conotoxin PrXA in vitro and in vivo. We confirmed the high lethality in mice produced by αC-conotoxin PrXA regardless of the mode of injection and further characterized myoclonus produced by the toxin. We used high-throughput patch-clamp technology to assess the effect of αC-conotoxin PrXA on ACh-mediated responses in TE671 cells, responses that are carried by muscle-type nicotinic receptors. We show that 2 out of 4 aptamers reduce the affinity of the toxin for its receptor, most likely by interfering with the pharmacophore. In vivo, more complex responses on myoclonus and mice lethality are observed depending on the type of aptamer and mode of administration (concomitant or differed). Concomitant administration always works better than differed administration indicating the stability of the complex in vivo. The most remarkable conclusion is that an aptamer that has no or a limited efficacy in vitro may nevertheless be functional in vivo probably owing to an impact on the biodistribution or pharmacokinetics of the toxin in vivo. Overall, the results highlight that a blind selection of aptamers against toxins leads to efficient neutralizing compounds in vivo regardless of the mode of action. This opens the door to the use of aptamer mixtures as substitutes to horse sera for the neutralization of life-threatening animal venoms, an important WHO concern in tropical areas.
Integral to the cell surface is channels, pumps, and exchanger proteins that facilitate the movement of ions across the membrane. Ion channels facilitate the passive movement of ions down an electrochemical gradient. Ion pumps actively use energy to actively translocate ions, often against concentration or voltage gradients, while ion exchangers utilize energy to couple the transport of different ion species such that one ion moves down its gradient and the released free energy is used to drive the movement of a different ion against its electrochemical gradient. Some ion pumps and exchangers may be electrogenic, i.e., the ion transport they support is not electrically neutral and generates a current. Functions of these pore-forming membrane proteins include the establishment of membrane potentials, gating of ions flows across the cell membrane to elicit action potentials and other electrical signals, as well as the regulation of cell volumes. The major forms of ion channels include voltage-, ligand-, and signal-gated channels. In this review, we describe mammalian voltage dependent Na (NaV) channels.
Sweating is a fundamental process required for human thermoregulation. In today’s modern society, however, extensive sweating is rather considered unpleasant or embarrassing, or can even cause severe psychosocial pressure. Sweat reduction by antiperspirants is therefore of huge cosmetic interest. Currently, the global use of aluminum salts as antiperspirants is controversial, but no alternatives exist so far. We developed a new concept for sweat reduction which is based on directly targeting primary fluid secretion in human sweat glands. We identified a long searched for key player in human sweat glands - the ion channel TMEM16A, also known as ANO1. We extensively characterized TMEM16A and its function in native human sweat glands and sweat gland tissue culture cells by using a wide variety of different techniques such as immunohistological staining, chloride flux assays, automated patch clamping as well as state-of-the-art CRISPR/ Cas9 genome editing technology. We generated a proprietary cell-based assay to emulate TMEM16A function in a cellular sweat gland environment. We combined this cell-based assay with our cherry-picked compound libraries and performed high-throughput screening campaigns which uncovered smallmolecule modulators of TMEM16A. In silico and in vitro toxicological assessments as well as stability and formulation tests were performed and yielded compounds that are currently being tested for their sweat reduction efficacy in vivo.
Many ion channels, including NaV1.7, CaV1.3, and KV1.3, are linked to human pathologies and are important therapeutic targets. To develop efficacious and safe drugs, subtype-selective modulation is essential, but has been extremely difficult to achieve. We postulate that this challenge is caused by the poor assay design, and investigate the NaV1.7 membrane potential assay, one of the most extensively employed screening assays in modern drug discovery. The assay uses veratridine to activate channels, and compounds are identified based on the inhibition of veratridine-evoked activities. We show that this assay is biased toward nonselective pore blockers and fails to detect the most potent, selective voltage-sensing domain 4 (VSD4) blockers, including PF-05089771 (PF-771) and GX-936. By eliminating a key binding site for pore blockers and replacing veratridine with a VSD-4 binding activator, we directed the assay toward non–pore-blocking mechanisms and discovered NaV1.7-selective chemical scaffolds. Hence, we address a major hurdle in NaV1.7 drug discovery, and this mechanistic approach to assay design is applicable to CaV3.1, KV1.3, and many other ion channels to facilitate drug discovery.
Background: SCN5A mutations can lead to different cardiac diseases. Recently, SCN5A mutations have been linked to the clinical entity multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by ventricular ectopy and dilated cardiomyopathy. Methods & Results: A family with a uniform MEPPC-like phenotype, associated with complex atrial and ventricular arrhythmias and dilated cardiomyopathy caused by a high frequency of ventricular ectopy was clinically assessed. Screening of the SCN5A gene revealed a missense mutation in the linker between segments 3 and 4 in domain 1 of the NaV1.5 protein, resulting in a glycine to aspartate substitution at position 213 (G213D). The phenotype co-segregated with the missense mutation. Electrophysiological studies of wild type (WT) hNaV1.5 and hNaV1.5_G213D expressed in CHO-K cells showed that the voltage of half-maximal activation (V½) was significantly more negative for hNaV1.5_G213D compared to WT (V½ = −38.7 ± 0.5 mV for WT and V½ = −42.4 ± 0.5 mV for G213D; P 0.001). This suggests activation of NaV1.5_G231D at more negative potentials. The V½ of steady-state inactivation was significantly shifted towards more positive values for NaV1.5_G213D (V½ = −86.7 ± 0.2 mV for WT and −82.2 ± 0.3 mV for G213D; P 0.001), also contributing to a gain-of-function phenotype. Flecainide and amiodarone markedly reduced premature atrial and ventricular contractions in four patients. Conclusion: The NaV1.5_G213D mutation is associated with a gain-of-function phenotype, multifocal atrial and ventricular ectopy and dilated cardiomyopathy. Since patients with a MEPPC-like phenotype may specifically benefit from Class-1 antiarrhythmic drugs or amiodarone, clinical identification of this disease entity is important. Note: Electrophysiological analysis of heteromers (NaV1.5 and NaV1.5_G213D mutation) were executed on the SyncroPatch 384PE. Data are not shown in the publication.
Ion channels represent nearly a quarter of all targets that currently available medications modulate, and their dysfunction underlies increasing number of human diseases. Functional analysis of ion channels have traditionally been a bottleneck in large-scale analyses. Recent technological breakthroughs in automated planar electrophysiology have democratized the technique to enable high-throughput patch clamping at scale. In this chapter, we describe the methodology to perform a phenotypic screen on voltage-gated calcium channels across many different genetic coding variations and against small-molecule modulators. We first describe the procedures to establish inducible heterologous ion channel expression in HEK293 cells, where each cell incorporates one copy of a target protein cDNA—a step that is critical for producing stable and consistent expression of ion channels. We then describe the experimental and analytical methods for analyzing the function of ion channels using high-throughput planar electrophysiology.
Background: The explosive growth in known human gene variation presents enormous challenges to current approaches for variant classification that have implications for diagnosis and treatment of many genetic diseases. For disorders caused by mutations in cardiac ion channels as in congenital arrhythmia syndromes, in vitro electrophysiological evidence has high value in discriminating pathogenic from benign variants, but these data are often lacking because assays are cost, time, and labor intensive. Methods: We implemented a strategy for performing high-throughput functional evaluations of ion channel variants that repurposed an automated electrophysiological recording platform developed previously for drug discovery. Results: We demonstrated the success of this approach by evaluating 78 variants in KCNQ1, a major gene involved in genetic disorders of cardiac arrhythmia susceptibility. We benchmarked our results with traditional electrophysiological approaches and observed a high level of concordance. This strategy also enabled studies of dominant-negative behavior of variants exhibiting severe loss-of-function. Overall, our results provided functional data useful for reclassifying >65% of the studied KCNQ1 variants. Conclusions: Our results illustrate an efficient and high-throughput paradigm linking genotype to function for a human cardiac ion channel that will enable data-driven classification of large numbers of variants and create new opportunities for precision medicine.
Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel NaV1.7. By testing a group of NaV1.7 reference compounds’ IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z’ factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel KV1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.
Voltage-gated KV1.3 and Ca2+-dependent KCa3.1 are the most prevalent K+ channels expressed by human and rat T cells. Despite the preferential upregulation of KV1.3 over KCa3.1 on autoantigen-experienced effector memory T cells, whether KV1.3 is required for their induction and function is unclear. Here we show, using KV1.3-deficient rats, that KV1.3 is involved in the development of chronically activated antigen-specific T cells. Several immune responses are normal in KV1.3 knockout (KO) rats, suggesting that KCa3.1 can compensate for the absence of KV1.3 under these specific settings. However, experiments with KV1.3 KO rats and KV1.3 siRNA knockdown or channel-specific inhibition of human T cells show that maximal T-cell responses against autoantigen or repeated tetanus toxoid stimulations require both KV1.3 and KCa3.1. Finally, our data also suggest that T-cell dependency on KV1.3 or KCa3.1 might be irreversibly modulated by antigen exposure.
GS-458967, 6-(4-(Trifluoromethoxy)phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (GS967) is a recently described, novel, sodium channel inhibitor exhibiting potent antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current. However, there has been no reported systematic investigation of the effects of this compound on isolated sodium channels. Here, we examined the effects of GS967 on peak (INaP) and late (INaL) sodium current recorded from cells that heterologously expressed human cardiac voltage-gated sodium channel, the principle cardiac sodium channel. As previously described, we observed that GS967 exerted tonic block of INaL (63%) to a significantly greater extent than INaP (19%). However, GS967 also caused a reduction of INaP in a frequency-dependent manner, consistent with use-dependent block (UDB). GS967 evoked more potent UDB of INaP (IC50 = 0.07 µM) than ranolazine (16 µM) and lidocaine (17 µM). Use-dependent block was best explained by a significant slowing of recovery from fast and slow inactivation with a significant enhancement of slow inactivation in the presence of GS967. Furthermore, GS967 was found to exert these same effects on a prototypical long QT syndrome mutation (delKPQ). An engineered mutation at an interaction site for local anesthetic agents (F1760A) partially attenuated the effect of GS967 on UDB, but had no effect on tonic INaL block. We conclude that GS967 is a preferential inhibitor of INaL, but it also exerts previously unreported strong effects on slow inactivation and recovery from inactivation, resulting in substantial UDB that is not entirely dependent on a known interaction site for local anesthetic agents.
Objective: To perform functional characterization of a potentially pathogenic KCNB1 variant identified by clinical exome sequencing of a proband with a neurodevelopmental disorder that included epilepsy and centrotemporal spikes on EEG. Methods: Whole-exome sequencing identified the KCNB1 variant c.595A.T (p.Ile199Phe). Biochemical and electrophysiologic experiments were performed to determine whether this variant affected protein expression, trafficking, and channel functional properties. Results: Biochemical characterization of the variant suggested normal protein expression and trafficking. Functional characterization revealed biophysical channel defects in assembled homotetrameric and heterotetrameric channels. Conclusions: The identification of the KCNB1 variant c.595A.T (p.Ile199Phe) in a neurodevelopmental disorder that included epilepsy with centrotemporal spikes expands the phenotypic spectrum of epilepsies associated with KCNB1 variants. The KCNB1-I199F variant exhibited partial loss of function relative to the wild-type channel. This defect is arguably less severe than previously reported KCNB1 variants, suggesting the possibility that the degree of KCNB1 protein dysfunction may influence disease severity.
We have developed an automated patch clamp module for high-throughput ion channel screening, recording from 384 cells simultaneously. The module is incorporated into a laboratory pipetting robot and uses a 384-channel pipettor head for application of cells and compounds. The module contains 384 amplifier channels for fully parallel recordings using a digital amplifier. Success rates for completed experiments (1- to 4-point concentration–response curves for cells satisfying defined quality control parameters) of greater than 85% have been routinely achieved with, for example, HEK, CHO, and RBL cell lines expressing hNaV1.7, hERG, Kir2.1, GABA, or glutamate receptors. Pharmacology experiments are recorded and analyzed using specialized software, and the pharmacology of hNaV1.7 and hERG is described. Fast external solution exchange rates of 50 ms are demonstrated using Kir2.1. Short exposure times are achieved by stacking the external solutions inside the pipette of the robot to minimize exposure of the ligand on the receptor. This ensures that ligand-gated ion channels, for example, GABA and glutamate described in this report, can be reproducibly recorded. Stem cell–derived cardiomyocytes have also been used with success rates of 52% for cells that have a seal resistance of >200 MΩ, and recordings of voltage-gated Na+ and Ca2+ are shown.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and new therapeutic targets are urgently needed. One of the hallmarks of cancer is changed pH-homeostasis and potentially pH-sensors may play an important role in cancer cell behavior. Two-pore potassium channels (K2P) are pH-regulated channels that conduct a background K+ current, which is involved in setting the plasma membrane potential (Vm). Some members of the K2P superfamily were reported as crucial players in driving tumor progression. The aim of this study was to investigate pH-regulated K+ currents in PDAC cells and determine possible effects on their pathological phenotype. Using a planar high-throughput patch-clamp system (SyncroPatch 384PE) we identified a pH-regulated K+ current in the PDAC cell line BxPC-3. The current was inhibited by extracellular acidification and intracellular alkalization. Exposure to a set of different K+ channel inhibitors, and the TREK-1 (K2P2.1)–specific activator BL1249, TREK-1 was identified as the main component of pH-regulated current. A voltage-sensor dye (VF2.1.Cl) was used to monitor effects of pH and BL1249 on Vm in more physiological conditions and TREK-1–mediated current was found as critical player in setting Vm. We assessed a possible role of TREK-1 in PDAC progression using cell proliferation and migration assays and observed similar trends with attenuated proliferation/migration rates in acidic (pH 7.0) and alkaline (pH > 7.4) conditions. Notably, BL1249 inhibited both PDAC cell proliferation and migration indicating that hyperpolarization of Vm attenuates cancer cell behavior. TREK-1 may therefore be a promising novel target for PDAC therapy.
Introduction From a drug discovery point of view, ion channels are very interesting and challenging targets. Over the past decade, great efforts have been made in developing platforms for patch clamp-based high-quality screening of ion channels in discovering new drug candidates as well for evaluating their safety profiles. Indeed, the automated patch clamp (APC) has recently reached the data throughput requirements of high-throughput screening (HTS) allowing for new screening strategies with ion channel active compounds. Areas covered This editorial article comments on the past and present developments of APC-based drug screening. Furthermore, it also looks at the implications of APC technology meeting HTS-standards as well as its use in compound safety evaluation. Expert opinion In the imminent future, we will see a paradigm shift in ion channel drug screening toward using APC-based platforms for primary drug library screens. This way, the redundancy of the drug discovery process and the risk of false-negatives could be drastically reduced. Furthermore, cardiac safety can be addressed early, avoiding late-phase withdrawals with promising drug candidates. It is our firm belief that APC-based ion channel HTS will facilitate the discovery of candidates, which otherwise would have not been found, and shorten the drug development cycle, saving time and cost.
Background An in vitro electrophysiological assay system, which can assess compound effects and thus show cardiotoxicity including arrhythmia risks of test drugs, is an essential method in the field of drug development and toxicology. Methods In this study, high-throughput electrophysiological recordings of human embryonic kidney (HEK 293) cells and Chinese hamster ovary (CHO) cells stably expressing human ether-a-go-go related gene (hERG) were performed utilizing an automated 384-well-patch-clamp system, which records up to 384 cells simultaneously. hERG channel inhibition, which is closely related to a drug-induced QT prolongation and is increasing the risk of sudden cardiac death, was investigated in the high-throughput screening patch-clamp system. Results In the automated patch-clamp measurements performed here, KV currents were investigated with high efficiency. Various hERG channel blockers showed concentration-dependent inhibition, the 50 % inhibitory concentrations (IC50) of those blockers were in good agreement with previous reports. Conclusions The high-throughput patch-clamp system has a high potential in the field of pharmacology, toxicology, and cardiac physiology, and will contribute to the acceleration of pharmaceutical drug development and drug safety testing.
SSM-based electrophysiology helps to understand the mechanisms of different transporters. The technique was used to characterize and compare different sugar transporters and their transport deficient mutants. Proton-coupled (LacY, XylE, FucP), sodium-coupled (MelB) and loosely coupled (GlcP) sugar transporters were analyzed. A general transport model was concluded from the electrophysiological data. Here we present the most intriguing results for these transporters as well as our conclusions regarding the transport mechanism. We will discuss (1) substrate specifity, (2) protonation and coupling mechanisms, (3) the impact of different driving forces, (4) sugar binding kinetics and (5) the significance of specific amino acids for the transport cycle. All together SSM-based electrophysiology helped to conclude a detailed kinetic model for sugar transporters.
Maria explains the solid supported membrane (SSM)-based methodology and gives a brief introduction on our two devices, the SURFE2R 96SE and the SURFE2R N1.
Sodium–calcium exchangers (NCXs) are membrane transporters that play an important role in Ca2+ homeostasis and Ca2+ signaling. The recent crystal structure of NCX_Mj, a member of the NCX family from the archaebacterium Methanococcus jannaschii, provided insight into the atomistic details of sodium–calcium exchange. Here, we extend these findings by providing detailed functional data on purified NCX_Mj using solid supported membrane (SSM)–based electrophysiology, a powerful but unexploited tool for functional studies of electrogenic transporter proteins. We show that NCX_Mj is highly selective for Na+, whereas Ca2+ can be replaced by Mg2+ and Sr2+ and that NCX_Mj can be inhibited by divalent ions, particularly Cd2+. By directly comparing the apparent affinities of Na+ and Ca2+ for NCX_Mj with those for human NCX1, we show excellent agreement, indicating a strong functional similarity between NCX_Mj and its eukaryotic isoforms. We also provide detailed instructions to facilitate the adaption of this method to other electrogenic transporter proteins. Our findings demonstrate that NCX_Mj can serve as a model for the NCX family and highlight several possible applications for SSM-based electrophysiology.
Solid-supported membrane (SSM)-based electrophysiology allows functional characterization of transporters which are otherwise difficult to investigate due to their slow transport conductivity or intracellular localization. The "SURFE2R 96SE" platform makes this technology suitable for compound characterization at higher throughputs.
For this case study, we prepared membrane vesicles from a PepT1-expressing cell line and screened an ion-channel/transporter-focused library of 237 bioactive compounds for substrate and inhibitory activity. With the SURFE2R 96SE, the screen was completed in less than 8 hours with a success rate of 98%, demonstrating utility of the technology for compound screening.
On the downside, application of SSM-based electrophysiology is limited to targets with an electrogenic net transport, assay setup is rather complex, and cost of ownership is significant. This may be an obstacle for implementing SURFE2R technology in-house. In response, Assay.Works entered into a partnership with Nanion, providing SURFE2R assays as a service. Backed by Nanions extensive expertise, we utilize our assay development and screening capabilities, including cell and membrane production, compound libraries, and sample management, to help clients realizing proof-of-concept, compound characterization, or profiling studies.
The human peptide transporter PepT1 is an uptake transporter responsible for initial absorption and renal reabsorption of dietary oligopeptides. It is primarily located in the plasma membranes of enterocytes of the small intestine as well as the renal proximal tubular cells. PepT1 functions as a co-transporter, coupling the uphill peptide transport into the cells to the electrochemical proton gradient. Due to the movement of protons, PepT1 is an electrogenic transporter. PepT1 shows a very high capacity but a low affinity and substrate specificity. Its ability to transport a large range of compounds has enabled the rational design of drugs and pro-drugs (e.g. penicillins, ACE inhibitors) which have good oral bio-availability using delivery via PepT1. Designing pro-drugs with higher affinity for PepT1 is a successful strategy to increase the bio-availability of poorly absorbed drugs. Here we present electric real-time PepT1 activity measurements on the SURFE2R instruments using purified plasma membranes of CHO cells overexpressing PepT1. Peptide transport was activated on the SURFE2R N1 using a sensor with attached PepT1- containing membrane fragments which was inserted into the device. This was perfused with a buffer containing the dipeptide glycyl-glycine as the substrate. The data presented here show activation of PepT1 by glyclyglycine and inhibition by Lys[Z(No2)]-Val on the SURFE2R N1 and scale-up of the assay on the SURFE2R N96.
The excitatory amino acid transporter 3 (EAAT3; also known as EAAC1) is a sodium-dependent neuronal uptake transporter encoded by the slc1a1 gene. It plays amajor role in the reuptake of glutamate from the synaptic cleft, thereby maintaining a low extra- cellular concentration of glutamate and regulating the excitatory neurotransmission. EAAT3 is also involved in the uptake of aspartate and cysteine into the cells. The transporter is highly expressed in mature neurons, where it is distributed in somata and dendrites. EAAT3 functions as a cotransporter, coupling the uphill substrate transport into the cells to the electrochemical gradients of sodium and potassium. The stoichiometry of transport is 1 glutamate with 3 Na+ and 1 H+ moving into the cell to 1 K+ moving out of the cell. Therefore EAAT3 is an electrogenic transporter, generating a net charge flow.Dysfunction of glutamate transporters leads to increased extracellular glutamate levels, thereby causing neuro- toxicity and neurodegeneration. Regulatory mechanisms facilitating EAAT3 function are, therefore, interesting as targets for the treatment of neurodegenerative diseases.Here we present EAAT3 activity measurements on the SURFE2R N1 instrument using purified plasma membrane of CHO cells expressing EAAT3.
GABA is the major inhibitory neurotransmitter in the brain and is important in controlling excitability. After release, GABA is removed from the extracellular space by GABA transporters (GATs), thus terminating inhibitory synaptic transmission. The GABA transporters belong to the family of neurotransmitter:sodium symporters referred to as the solute carrier 6 (SLC6) family in humans. GATs co-transport GABA, Na+ and Cl- with the proposed stiochiometry 1 GABA: 2 Na+: 1 Cl-, resulting in a net influx of 1 positive charge per cycle. So far, 4 GATs have been identified, GAT1, GAT2, GAT3 and BGT1.GAT1 is expressed throughout the brain in both GABAergic and non-GABAergic neurons, and is expressed in particularly high levels in the olfactory bulb, basal ganglia, cerebellum and retina. The physiological function of GAT1 is primarily to terminate synaptic transmission but also to ensure the fidelity of synaptic transmission by preventing the spread of neurotransmitter to neighbouring synapses. GABA transporters also play an important role in neurotransmitter reutilization. In certain circumstances, e.g. when the sodium gradient increases during ischemia or following seizures, GATs can act in reverse which may have a protective effect during seizures, by inhibiting electrical excitability. There is some evidence that GATs may play a role in neurodegenerative diseases such as Parkinson’s and Alzheimer’s and may provide a novel target for treating these conditions.Here we present human GAT1 activity measurements on the SURFE2R N1 instrument using purified plasma membranes from HEK cells. GABA affinity and effect of inhibitors were investigated.
ClCs are a family of chloride ion channels and transporters with important physiological roles including regulation of the membrane potential, transepithelial salt transport and ion homeostasis1,2. To date, 9 members of the ClC family have been identified in mammals1,2, the first 4 (ClC-1, ClC-2, ClC-Ka, and ClC-Kb) are located on the plasma membrane where they act as chloride ion channels whereas the remaining 5 are located in intracellular organelles (ClC-3-7) and are chloride-proton exchangers1-3. These transporters are important for endosome, lysosome and synaptic vesicle acidification1,2, and mutations in, e.g. ClC-5 underlie the rare chronic kidney disorder, Dent’s Disease, and mutations in ClC-7 underlie osteopetrosis 2,4, a rare inherited bone hardening disorder. Given their ubiquitous expression and importance in physiological processes, they are important potential drug targets.ClC from Escherichia coli (Ec-ClC or ClC-ec1) is closely ClC from Escherichia coli (Ec-ClC or ClC-ec1) is closely related to its mammalian counterparts and is a Cl-/H+ exchanger3,5. It transports 2 Cl- into the cell, coupled to the efflux of 1 H+3,5. Therefore Ec-ClC is an electrogenic transporter, generating a net charge flow. In E. coli, the Ec-ClC mediates acid resistance of enteric bacteria by promoting H+ extrusion1,5,6. Here we present Ec-ClC activity measurements on the SURFE2R N1 instrument using proteoliposomes reconstituted with purified Ec-ClC at different lipid-to-protein ratios.
The concentrative nucleoside transporter 1 (CNT1) is a sodium-dependent uptake transporter encoded by the SLC28A1 gene. CNT1 functions as a co-transporter, coupling the uphill nucleoside transport into the cells to the electrochemical gradient of sodium. The stoichiometry of transport is proposed to be 1:1, but a stoichiometry of 2 Na+: 1 nucleoside has also been suggested. CNT1 is an electrogenic transporter, generating a net charge flow. It plays a major role in the uptake of pyrimidines, including uridine and cytidine, from the extracellular milieu into the cytoplasm in nucleoside salvage pathways which is the first step of nucleoside biosynthesis. The transporter is expressed in epithelial tissues including liver, kidney and small intestine where it is localized to the apical membrane. CNTs are important targets for many antiviral and anticancer agents, and CNT1 has been proposed to play a role in tumor biology via a mechanism beyond nucleoside transport. In fact, tumors expressing high levels of CNT1 can indicate a higher risk of relapse for breast cancer patients, suggesting that nucleoside salvage may interfere with chemosensitivity. On the other hand, high expression of the CNT1 protein could promote drug- induced cytotoxicity if patients were treated with suitable hCNT substrates. In any case, hCNT1 is an important mediator in the transport of anticancer and antiviral nucleoside drugs by mechanisms that require further study.Here we present CNT1 activity measurements on the SURFE2R N1 instrument using purified plasma membrane of CHO cells expressing CNT1.
The Na+/H+ exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na+/Li+ exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion-exchange mechanism have been lacking. Here we report the cryo-EM structures of bison NHA2 in detergent and in nanodiscs, at 3.0 and 3.5 Å resolution, respectively. The bison NHA2 structure, together with solid-state membrane-based electrophysiology, establishes the molecular basis for electroneutral ion exchange. NHA2 consists of 14 transmembrane (TM) segments, rather than the 13 TMs previously observed in mammalian Na+/H+ exchangers (NHEs) and related bacterial antiporters. The additional N-terminal helix in NHA2 forms a unique homodimer interface with a large intracellular gap between the protomers, which closes in the presence of phosphoinositol lipids. We propose that the additional N-terminal helix has evolved as a lipid-mediated remodeling switch for the regulation of NHA2 activity.
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline–proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.
Here, we present a solid-supported membrane (SSM)-based electrophysiological approach to study sugar binding and Na+/glucose cotransport by SGLT1 in membrane vesicles. SSM-based electrophysiology delivers a cumulative real-time current readout from numerous SGLT1 proteins simultaneously using a gold-coated sensor chip.In contrast to conventional techniques, which mainly operate with voltage steps, currents are triggered by sugar or sodium addition. Sugar concentration jumps in the presence of sodium lead to transport currents between 5 and 10 nA. Remarkably, in the absence of sodium (i.e. no transport), we observed fast pre-steady-state (PSS) currents with time constants between 3 and 10 ms. These PSS currents mainly originate from sugar binding. Sodium binding does not induce PSS currents. Due to high time resolution, PSS currents were distinguished from transport and eventually correlated with conformational transitions within the sugar translocation pathway.In addition, we analyzed the impact of driving forces on transport and binding currents, showing that membrane voltage and sodium concentration gradients lead to an increased transport rate without affecting sugar binding kinetics. We also compared Na+/sugar efflux with physiologically relevant influx and found similar transport rates, but lower affinity in efflux mode.SSM-based electrophysiology is a powerful technique, which overcomes bottlenecks for transport measurements observed in other techniques such as the requirement of labels or the lack of real-time data. Rapid solution exchange enables the observation of substrate-induced electrogenic events like conformational transitions, opening novel perspectives for in-depth functional studies of SGLT1 and other transporters.
Na+/H+ exchangers catalyse an ion-exchange activity that is carried out in most, if not all cells. SLC9B2, also known as NHA2, correlates with the long-sought after sodium/lithium (Na+/Li+) exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite its functional importance, structural information and the molecular basis of its ion-exchange mechanism have been lacking. Here, we report the cryo EM structures of bison NHA2 in detergent and in nanodiscs at 3.0 and 3.5 Å resolution, respectively. NHA2 shares closest structural similarity to the bacterial electrogenic Na+/H+ antiporter NapA, rather than other mammalian SLC9A members. Nevertheless, SSM-based electrophysiology results with NHA2 show the catalysis of electroneutral rather than electrogenic ion exchange, and the ion-binding site is quite distinctive, with a tryptophan-arginine- glutamate triad separated from the well-established ion-binding aspartates. These triad residues fine-tune ion binding specificity, as demonstrated by a salt-bridge swap mutant that converts NHA2 into a Li+-specific transporter. Strikingly, an additional N-terminal helix in NHA2 establishes a unique homodimer with a large ∼ 25 Å intracellular gap between protomers. In the presence of phosphatidylinositol lipids, the N-terminal helix rearranges and closes this gap. We confirm that dimerization of NHA2 is required for activity in vivo, and propose that the N- terminal helix has evolved as a lipid-mediated remodelling switch for regulation of transport activity.
Phosphocholine molecules decorating bacterial cell wall teichoic acids and outer-membrane lipopolysaccharide have fundamental roles in adhesion to host cells, immune evasion, and persistence. Bacteria carrying the operon that performs phosphocholine decoration synthesize phosphocholine after uptake of the choline precursor by LicB, a conserved transporter among divergent species. Streptococcus pneumoniae is a prominent pathogen where phosphocholine decoration plays a fundamental role in virulence. Here, we present cryo–electron microscopy and crystal structures of S. pneumoniae LicB, revealing distinct conformational states and describing architectural and mechanistic elements essential to choline import. Together with in vitro and in vivo functional characterization, we found that LicB displays proton-coupled import activity and promiscuous selectivity involved in adaptation to choline deprivation conditions, and describe LicB inhibition by synthetic nanobodies (sybodies). Our results provide previously unknown insights into the molecular mechanism of a key transporter involved in bacterial pathogenesis and establish a basis for inhibition of the phosphocholine modification pathway across bacterial phyla.
Phosphocholine molecules decorating bacterial cell wall teichoic acids and outer-membrane lipopolysaccharide have significant roles in adhesion to host cells, immune evasion, and persistence. Bacteria carrying the operon that performs phosphocholine decoration, synthesize phosphocholine after uptake of the choline precursor by LicB, a conserved transporter among divergent species. Streptococcus pneumoniae is a prominent pathogen where phosphocholine decoration plays a fundamental role in virulence. Here we present cryo-electron microscopy and crystal structures of S. pneumoniae LicB, revealing distinct conformational states and describing architectural and mechanistic elements essential to choline import. Together with in vitro and in vivo functional characterization, we found that LicB displays proton-coupled import activity and promiscuous selectivity involved in adaptation to choline deprivation conditions, and describe LicB inhibition by synthetic nanobodies (sybodies) and hemicholinium-3. Our results provide novel insights into the molecular mechanism of a key transporter involved in bacterial pathogenesis and establish a basis for inhibition of the phosphocholine modification pathway across bacterial phyla.
ATP8A2 is a mammalian P4-ATPase (flippase) that translocates the negatively charged lipid substrate phosphatidylserine from the exoplasmic leaflet to the cytoplasmic leaflet of cellular membranes. Using an electrophysiological method based on solid supported membranes, we investigated the electrogenicity of specific reaction steps of ATP8A2 and explored a potential phospholipid translocation pathway involving residues with positively charged side chains. Changes to the current signals caused by mutations show that the main electrogenic event occurs in connection with release of the bound phosphatidylserine to the cytoplasmic leaflet and support the hypothesis that the phospholipid interacts with specific lysine and arginine residues near the cytoplasmic border of the lipid bilayer during the translocation and/or reorientation required for insertion into the cytoplasmic leaflet.
The human peptide transporter hPEPT1 (SLC15A1) is responsible for uptake of dietary di- and tripeptides and a number of drugs from the small intestine by utilizing the proton electrochemical gradient, and hence an important target for peptide-like drug design and drug delivery. hPEPT1 belongs to the ubiquitous major facilitator superfamily that all contain a 12TM core structure, with global conformational changes occurring during the transport cycle. Several bacterial homologues of these transporters have been characterized, providing valuable insight into the transport mechanism of this family. Here we report the overexpression and purification of recombinant hPEPT1 in a detergent-solubilized state. Thermostability profiling of hPEPT1 at different pH values revealed that hPEPT1 is more stable at pH 6 as compared to pH 7 and 8. Micro-scale thermophoresis (MST) confirmed that the purified hPEPT1 was able to bind di- and tripeptides respectively. To assess the in-solution oligomeric state of hPEPT1, negative stain electron microscopy was performed, demonstrating a predominantly monomeric state.
Ammonium translocation through biological membranes, by the ubiquitous Amt-Mep-Rh family of transporters, plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of the pore of these transporters, forming the family’s characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology on Escherichia coli AmtB, in silico molecular dynamics simulations, and in vivo yeast functional complementation assays, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs specificity in Amt-Mep-Rh transporters, but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We show that coexistence of both mechanisms in single Twin-His variants of yeast Mep2 transceptors disrupts the signaling function and so impairs fungal filamentation. These data support a signaling process driven by the transport mechanism of the fungal Mep2 transceptors.
Proteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the Escherichia coli transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.9 Å structure at low pH without substrate. We report five additional structures in complex with structurally diverse transported substrates, including quaternary phosphonium, quaternary ammonium, and planar polyaromatic compounds. These structures show that binding site tryptophan and glutamate residues adopt different rotamers to conform to disparate structures without requiring major rearrangements of the backbone structure. Structural and functional comparison to Gdx-Clo, an SMR protein that transports a much narrower spectrum of substrates, suggests that in EmrE, a relatively sparse hydrogen bond network among binding site residues permits increased sidechain flexibility.
The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using 19F and 1H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F4-TPP+). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F4-TPP+ lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb3-type cytochrome oxidase (cbb3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb3-Cox. CcoI and cbb3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb3-Cox assembly.
The sarco(endo)plasmic reticulum Ca2+−ATPase (SERCA) hydrolyzes ATP to transport Ca2+ from the cytoplasm to the sarcoplasmic reticulum (SR) lumen, thereby inducing muscle relaxation. Dysfunctional SERCA has been related to various diseases. The identification of small‐molecule drugs that can activate SERCA may offer a therapeutic approach to treat pathologies connected with SERCA malfunction. Herein, we propose a method to study the mechanism of interaction between SERCA and novel SERCA activators, i. e. CDN1163, using a solid supported membrane (SSM) biosensing approach. Native SR vesicles or reconstituted proteoliposomes containing SERCA were adsorbed on the SSM and activated by ATP concentration jumps. We observed that CDN1163 reversibly interacts with SERCA and enhances ATP‐dependent Ca2+ translocation. The concentration dependence of the CDN1163 effect provided an EC50=6.0±0.3 μM. CDN1163 was shown to act directly on SERCA and to exert its stimulatory effect under physiological Ca2+ concentrations. These results suggest that CDN1163 interaction with SERCA can promote a protein conformational state that favors Ca2+ release into the SR lumen.
KdpFABC is an oligomeric K+ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the Superfamily of K+ Transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryo-EM. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC and KdpF remain static. We observe a series of spherical densities that we assign as K+ or water and which define a pathway for K+ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K+ transfer between alternative sites in the membrane domain of KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K+ to the cytoplasm.
Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1. Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.
Single domain antibodies (nanobodies) have been extensively used in mechanistic and structural studies of proteins and they pose an enormous potential as tools for developing clinical therapies, many of which depend on the inhibition of membrane proteins such as transporters. However, most of the methods used to determine the inhibition of transport activity are difficult to perform in high-throughput routines and depend on labeled substrates availability thereby complicating the screening of large nanobody libraries. Solid-supported membrane (SSM) electrophysiology is a high-throughput method, used for characterizing electrogenic transporters and measuring their transport kinetics and inhibition. Here we show the implementation of SSM-based electrophysiology to select inhibitory and non-inhibitory nanobodies targeting an electrogenic secondary transporter and to calculate nanobodies inhibitory constants. This technique may be especially useful for selecting inhibitory nanobodies targeting transporters for which labeled substrates are not available.
Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.
Novel approaches in synthetic biology focus on the bottom-up modular assembly of natural, modified natural or artificial components into molecular systems with functionalities not found in nature. A possible application for such techniques is the bioremediation of natural water sources contaminated with small organic molecules (e.g., drugs and pesticides). A simple molecular system to actively accumulate and degrade pollutants could be a bionanoreactor composed of a liposome or polymersome scaffold combined with energizing- (e.g., light-driven proton pump), transporting- (e.g., proton-driven transporter) and degrading modules (e.g., enzyme). This work focuses on the engineering of a transport module specific for β-lactam antibiotics. We previously solved the crystal structure of a bacterial peptide transporter, which allowed us to improve the affinity for certain β-lactam antibiotics using structure-based mutagenesis combined with a bacterial uptake assay. We were able to identify specific mutations, which enhanced the affinity of the transporter for antibiotics containing certain structural features. Screening of potential compounds allowed for the identification of a β-lactam antibiotic ligand with relatively high affinity. Transport of antibiotics was evaluated using a solid-supported membrane electrophysiology assay. In summary, we have engineered a proton-driven β-lactam antibiotic translocation module, contributing to the growing toolset for bionanotechnological applications.
Ammonium translocation through biological membranes by the ubiquitous Amt-Mep-Rh family of transporters plays a key role in all domains of life. Two highly conserved histidine residues protrude into the lumen of these transporters, forming the family’s characteristic Twin-His motif. It has been hypothesized that the motif is essential to confer the selectivity of the transport mechanism. Here, using a combination of in vitro electrophysiology, in vivo yeast functional complementation and in silico molecular dynamics simulations, we demonstrate that variations in the Twin-His motif trigger a mechanistic switch between a specific transporter, depending on ammonium deprotonation, to an unspecific ion channel activity. We therefore propose that there is no selective filter that governs the specificity in Amt-Mep transporters but the inherent mechanism of translocation, dependent on the fragmentation of the substrate, ensures the high specificity of the translocation. We further show that both mechanisms coexist in fungal Mep2 Twin-His variants, disrupting the transceptor function and so inhibiting the filamentation process. These data strongly support a transport mechanism-mediated signalling process in the long-standing debate on the sensory function of Mep2-like transporters.
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor, and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
By providing broad resistance to environmental biocides, transporters from the small multidrug resistance (SMR) family drive the spread of multidrug resistance cassettes among bacterial populations. A fundamental understanding of substrate selectivity by SMR transporters is needed to identify the types of selective pressures that contribute to this process. Using solid-supported membrane electrophysiology, we find that promiscuous transport of hydrophobic substituted cations is a general feature of SMR transporters. To understand the molecular basis for promiscuity, we solved X-ray crystal structures of a SMR transporter Gdx-Clo in complex with substrates to a maximum resolution of 2.3 Å. These structures confirm the family’s extremely rare dual topology architecture and reveal a cleft between two helices that provides accommodation in the membrane for the hydrophobic substituents of transported drug-like cations.
Transport stoichiometry provides insight into the mechanism and function of ion-coupled transporters, but measuring transport stoichiometry is time-consuming and technically difficult. With the increasing evidence that many ion-coupled transporters employ multiple transport stoichiometries under different conditions, improved methods to determine transport stoichiometry are required to accurately characterize transporter activity. Reversal potential was previously shown to be a reliable, general method for determining the transport stoichiometry of ion-coupled transporters (Fitzgerald & Mindell, 2017). Here, we develop a new technique for measuring transport stoichiometry with greatly improved throughput using solid supported membrane electrophysiology (SSME). Using this technique, we are able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx. Our SSME method requires only small amounts of transporter and provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.
Those of a certain age may remember (and their younger colleagues can read) accounts of the vivid debate in the 1970s surrounding the coupling mechanism involved in oxidative and photo phosphorylation. By that time, Mitchell's chemiosmotic hypothesis had already gained credence, and the debated issue was how a transmembrane H+ potential difference drives ATP synthesis by Ftype ATP synthases. The major mechanisms that were considered assumed that the membrane (Fo) and peripheral (F1) parts were functionally connected in different ways. Peter Mitchell proposed a “direct coupling” mechanism in which protons are translocated through Fo into the catalytic site of F1, where they participate directly in ADP phosphorylation and form water as the second product (Mitchell, 1974). Paul Boyer, the proponent of the main competing mechanism, advocated an “indirect coupling” mechanism (successively termed “alternating site”, “binding change”, or “rotational”) that implied that protons transfer their energy to the catalytic site indirectly, via distant conformational strain (Boyer, 1997). The debate was resolved in favor of Boyer's mechanism when it became clear that the alternative mechanism is inconsistent with H+ /ATP stoichiometry and, finally, when the three-dimensional structure of the F-ATPase was determined (Abrahams et al., 1994).
Significance: Phospholipid flippases constitute the largest subfamily of P-type ATPases and have in eukaryotic organisms evolved as a central transport system for selective translocation of phospholipids across biological membranes to generate membrane lipid asymmetry, a property essential for numerous cellular processes. The importance of flippases is highlighted by severe neurological disorders and liver diseases caused by flippase dysfunction in humans. The electrogenicity of phospholipid transport by flippases has not previously been explored. We demonstrated that phosphatidylserine translocation by the flippase ATP8A2 generates electrical current, resulting from specific steps in the flippase reaction cycle moving the charged lipid head group between the membrane bilayer leaflets, and that no charged substrate is being countertransported. These findings unravel key features of phospholipid flippases. Abstract: Phospholipid flippases (P4-ATPases) utilize ATP to translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thus generating and maintaining transmembrane lipid asymmetry essential for a variety of cellular processes. P4-ATPases belong to the P-type ATPase protein family, which also encompasses the ion transporting P2-ATPases: Ca2+-ATPase, Na+/K+-ATPase, and H+,K+-ATPase. In comparison with the P2-ATPases, understanding of P4-ATPases is still very limited. The electrogenicity of P4-ATPases has not been explored, and it is not known whether lipid transfer between membrane bilayer leaflets can lead to displacement of charge across the membrane. A related question is whether P4-ATPases countertransport ions or other substrates in the opposite direction, similar to the P2-ATPases. Using an electrophysiological method based on solid supported membranes, we observed the generation of a transient electrical current by the mammalian P4-ATPase ATP8A2 in the presence of ATP and the negatively charged lipid substrate phosphatidylserine, whereas only a diminutive current was generated with the lipid substrate phosphatidylethanolamine, which carries no or little charge under the conditions of the measurement. The current transient seen with phosphatidylserine was abolished by the mutation E198Q, which blocks dephosphorylation. Likewise, mutation I364M, which causes the neurological disorder cerebellar ataxia, mental retardation, and disequilibrium (CAMRQ) syndrome, strongly interfered with the electrogenic lipid translocation. It is concluded that the electrogenicity is associated with a step in the ATPase reaction cycle directly involved in translocation of the lipid. These measurements also showed that no charged substrate is being countertransported, thereby distinguishing the P4-ATPase from P2-ATPases.
The transport of charged molecules across biological membranes faces the dual problem of accommodating charges in a highly hydrophobic environment while maintaining selective substrate translocation. This has been the subject of a particular controversy for the exchange of ammonium across cellular membranes, an essential process in all domains of life. Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the human Rhesus factors. Here, using a combination of electrophysiology, yeast functional complementation and extended molecular dynamics simulations, we reveal a unique two-lane pathway for electrogenic NH4+ transport in two archetypal members of the family, the transporters AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after NH4+ deprotonation. This mechanism defines a new principle of achieving transport selectivity against competing ions in a biological transport process.
The movement of ammonium across biological membranes is a fundamental process in all living organisms and is mediated by the ubiquitous Amt/Mep/Rh family of transporters. Recent structural analysis and coupled mass spectrometry studies have shown that the Escherichia coli ammonium transporter, AmtB, specifically binds phosphatidylglycerol (PG). Upon PG binding, several residues of AmtB undergo a small conformational change, which stabilizes the protein against unfolding. However, no studies have so far been conducted to explore if PG binding to AmtB has functional consequences. Here, we used an in vitro experimental assay with purified components together with molecular dynamics simulations to characterise the relation between PG binding and AmtB activity. Firstly, our results indicate that the function of Amt in archaebacteria and eubacteria may differ. Secondly, we show that PG is an essential cofactor for AmtB activity and that in the absence of PG AmtB cannot complete the full translocation cycle. Furthermore, our simulations reveal previously undiscovered PG binding sites on the intracellular side of the lipid bilayer between the AmtB subunits. The possible molecular mechanisms explaining the functional role of PG are discussed.
Bacterial NhaB Na+/H+ exchangers belonging to the Ion Transporter superfamily are poorly characterized in contrast to Na+/H+ exchangers of the Cation Proton Antiporter superfamily which have NhaA from Escherichia coli as a prominent member. For a more detailed understanding of the intricacies of the exchanger’s transport mechanism, mutational studies are essential. Therefore, we mutated two protonatable residues present in the putative transmembrane region of NhaB from Klebsiella pneumoniae (KpNhaB), which could serve as substrate binding sites, Asp146 and Asp404, to either glutamate or alanine and analyzed transport function and stability of the mutants using electrophysiological and fluorimetric techniques. While mutation of either Asp residue to Glu only had slight to moderate effects on the transport activity of the exchanger, the mutations D404A and D146A, in particular, had more profound effects on the transport function. Furthermore, a double mutant, D146A/D404A, exhibited a remarkable behavior at alkaline pH, where recorded electrical currents changed polarity, showing steady-state transport with a stoichiometry of H+:Na+ 1, as opposed to the H+:Na+ > 1 stoichiometry of the WT. Thus, we showed that Asp146 and Asp404 are part of the substrate binding site(s) of KpNhaB and engineered a Na+/H+ exchanger with a variable stoichiometry.
Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of pyrophosphate (PPi) to the pumping of Na+, H+, or both these ions across a membrane. Recently solved structures of the Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata mPPase revealed the basis of ion selectivity between these enzymes and provided evidence for the mechanisms of substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) simulations of TmPPase demonstrate that loop 5–6 is mobile in the absence of the substrate or substrate-analogue bound to the active site, explaining the lack of electron density for this loop in resting state structures. Furthermore, creating an apo model of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simulations resulted in increased dynamics in loop 5–6, which results in this loop moving to uncover the active site, suggesting that interactions between loop 5–6 and the imidodiphosphate and its associated Mg2+ are important for holding a loop-closed conformation. We also provide further evidence for the transport-before-hydrolysis mechanism by showing that the non-hydrolyzable substrate analogue, methylene diphosphonate, induces low levels of proton pumping by VrPPase.
ATP7A and ATP7B are Cu+ -transporting ATPases of subclass IB and play a fundamental role in intracellular copper homeostasis. ATP7A/B transfer Cu+ ions across the membrane from delivery to acceptor proteins without establishing a free Cu+ gradient. Transfer of copper across the membrane is coupled to ATP hydrolysis. Current measurements on solid supported membranes (SSM) were performed to investigate the mechanism of copper-related charge transfer across ATP7A and ATP7B. SSM measurements demonstrated that electrogenic copper displacement occurs within ATP7A/B following addition of ATP and formation of the phosphorylated intermediate. Comparison of the time constants for cation displacement in ATP7A/B and sarcoplasmic reticulum Ca2+ -ATPase is consistent with the slower phosphoenzyme formation in copper ATPases. Moreover, ATP-dependent copper transfer in ATP7A/B is not affected by varying the pH, suggesting that net proton counter-transport may not occur in copper ATPases. Platinum anticancer drugs activate ATP7A/B and are subjected to ATP-dependent vectorial displacement with a mechanism analogous to that of copper.
Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry.
Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+/K+-ATPase. Cisplatin-induced inhibition of Na+/K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+/K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+/K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+/K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+/K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+/K+-ATPase do not perform ATP-dependent cisplatin displacement.
Na+/H+ exchange is essential for survival of all organisms, having a role in the regulation of the intracellular Na+ concentration, pH and cell volume. Furthermore, Na+/H+ exchangers were shown to be involved in the virulence of the bacterium Yersinia pestis, indicating they might be potential targets for novel antibiotic treatments. The model system for Na+/H+ exchangers is the NhaA transporter from Escherichia coli, EcNhaA. Therefore, the general transport mechanism of NhaA exchangers is currently well characterized. However, much less is known about NhaB exchangers, with only a limited number of studies available. The pathogen Klebsiella pneumoniae, which is a major source of nosocomial infection, possesses three electrogenic Na+/H+ exchangers, KpNhaA1, KpNhaA2 and KpNhaB, none of which have been previously investigated. Our aim in this study was to functionally characterize KpNhaB using solid supported membrane-based electrophysiology as the main investigation technique, and thus provide the first electrophysiological investigation of an NhaB Na+/H+ exchanger. We found that NhaB can be described by the same competition-based mechanism that was shown to be valid for electrogenic NhaA and NapA, and for electroneutral NhaP Na+/H+ exchangers. For comparison we also characterized the activity of KpNhaA1 and KpNhaA2 and found that the three exchangers have complementary activity profiles, which is likely a survival advantage for K. pneumoniae when faced with environments of different salinity and pH. This underlines their importance as potential antibiotic drug targets.
The sarcoplasmic reticulum Ca2+-ATPase SERCA promotes muscle relaxation by pumping calcium ions from the cytoplasm into the sarcoplasmic reticulum. SERCA activity is regulated by a variety of small transmembrane peptides, most notably by phospholamban in cardiac muscle and sarcolipin in skeletal muscle. However, how phospholamban and sarcolipin regulate SERCA is not fully understood. In the present study, we evaluated the effects of phospholamban and sarcolipin on calcium translocation and ATP hydrolysis by SERCA under conditions that mimic environments in sarcoplasmic reticulum membranes. For pre-steady-state current measurements, proteoliposomes containing SERCA and phospholamban or sarcolipin were adsorbed to a solid-supported membrane and activated by substrate concentration jumps. We observed that phospholamban altered ATP-dependent calcium translocation by SERCA within the first transport cycle, whereas sarcolipin did not. Using pre-steady-state charge (calcium) translocation and steady-state ATPase activity under substrate conditions (various calcium and/or ATP concentrations) promoting particular conformational states of SERCA, we found that the effect of phospholamban on SERCA depends on substrate preincubation conditions. Our results also indicated that phospholamban can establish an inhibitory interaction with multiple SERCA conformational states with distinct effects on SERCA's kinetic properties. Moreover, we noted multiple modes of interaction between SERCA and phospholamban and observed that once a particular mode of association is engaged it persists throughout the SERCA transport cycle and multiple turnover events. These observations are consistent with conformational memory in the interaction between SERCA and phospholamban, thus providing insights into the physiological role of phospholamban and its regulatory effect on SERCA transport activity.
Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5–6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a ‘molecular mousetrap’, repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.
Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6-7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters.
Na+/H+ antiporters in the CPA1 branch of the cation proton antiporter family drive the electroneutral exchange of H+ against Na+ ions and ensure pH homeostasis in eukaryotic and prokaryotic organisms. Although their transport cycle is overall electroneutral, specific partial reactions are electrogenic. Here, we present an electrophysiological study of the PaNhaP Na+/H+ antiporter from Pyrococcus abyssi reconstituted into liposomes. Positive transient currents were recorded upon addition of Na+ to PaNhaP proteoliposomes, indicating a reaction where positive charge is rapidly displaced into the proteoliposomes with a rate constant of k >200 s-1 We attribute the recorded currents to an electrogenic reaction that includes Na+ binding and possibly occlusion. Subsequently, positive charge is transported out of the cell associated with H+ binding, so that the overall reaction is electroneutral. We show that the differences in pH profile and Na+ affinity of PaNhaP and the related MjNhaP1 from Methanocaldococcus jannaschii can be attributed to an additional negatively charged glutamate residue in PaNhaP. The results are discussed in the context of the physiological function of PaNhaP and other microbial Na+/H+ exchangers. We propose that both, electroneutral and electrogenic Na+/H+ antiporters, represent a carefully tuned self-regulatory system, which drives the cytoplasmic pH back to neutral after any deviation.
Solute carrier (SLC) 26 or sulfate permease (SulP) anion transporters, belong to a phylogenetically ancient family of secondary active transporters. Members of the family are involved in several human genetic diseases and cell physiological processes. Despite their importance, the substrates for transport by this family of proteins have been poorly characterized. In this study, recombinant StmYchM/DauA, a SulP from Salmonella typhimurium was purified to homogeneity and functionally characterized. StmYchM/DauA was found to be a dimer in solution as determined by size exclusion chromatography coupled to multiple angle light scattering. We report a functional characterization of the SulP proteins in two membrane mimetic systems and reveal a dual nature of anionic substrates for SulP. StmYchM/DauA functionally incorporated into nanodiscs could bind fumarate with millimolar affinities (KD = 4.6 ± 0.29 mM) as detected by intrinsic tryptophan fluorescence quench studies. In contrast, electrophysiological experiments performed in reconstituted liposomes indicate a strong bicarbonate transport in the presence of chloride but no detectable electrogenic fumarate transport. We hence suggest that while SulP acts as an electrogenic bicarbonate transporter, fumarate may serve as substrate under different conditions indicating multiple functions of SulP.
NirC is a pentameric transport system for monovalent anions that is expressed in the context of assimilatory nitrite reductase NirBD in a wide variety of enterobacterial species. A NirC pentamer contains individual pores in each protomer that mediate the passage of at least the nitrite (NO2-) and nitrate (NO3-) anions. As a member of the formate/nitrite transporter family of membrane transport proteins, NirC shares a range of structural and functional features with the formate channel FocA and the hydrosulfide channel AsrD (HSC). NirC from the enteropathogen Salmonella typhimurium has been studied by X-ray crystallography, proton uptake assays, and different electrophysiological techniques, and the picture that has emerged shows a fast and versatile transport system for nitrite that doubles as a defense system during the enteric life of the bacterium. Structural and functional assays are described, which shed light on the transport mechanism of this important molecular machine.
The charge translocation by purified reconstituted mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica was investigated after adsorption of proteoliposomes to solid-supported membranes. In presence of n-decylubiquinone (DBQ), pulses of NADH provided by rapid solution exchange induced charge transfer reflecting steady-state pumping activity of the reconstituted enzyme. The signal amplitude increased with time, indicating 'deactive→active' transition of the Yarrowia complex I. Furthermore, an increase of the membrane-conductivity after addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) was detected which questiones the use of EIPA as an inhibitor of the Na+/H+-antiporter-like subunits of complex I. This investigation shows that electrical measurements on solid-supported membranes are a suitable method to analyze transport events and 'active/deactive' transition of mitochondrial complex I.
Recent studies performed on a series of Na+/H+ exchangers have led us to postulate a general mechanism for Na+/H+ exchange in the monovalent cation/proton antiporter superfamily. This simple mechanism employs a single binding site for which both substrates compete. The developed kinetic model is self-regulatory, ensuring down-regulation of transport activity at extreme pH, and elegantly explains the pH-dependent activity of Na+/H+ exchangers. The mechanism was experimentally verified and shown to describe both electrogenic and electroneutral exchangers. Using a small number of parameters, exchanger activity can be modeled under different conditions, providing insights into the physiological role of Na+/H+ exchangers.
The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.
The Na+-coupled betaine symporter BetP shares a highly conserved fold with other sequence unrelated secondary transporters, for example, with neurotransmitter symporters. Recently, we obtained atomic structures of BetP in distinct conformational states, which elucidated parts of its alternating-access mechanism. Here, we report a structure of BetP in a new outward-open state in complex with an anomalous scattering substrate, adding a fundamental piece to an unprecedented set of structural snapshots for a secondary transporter. In combination with molecular dynamics simulations these structural data highlight important features of the sequential formation of the substrate and sodium-binding sites, in which coordinating water molecules play a crucial role. We observe a strictly interdependent binding of betaine and sodium ions during the coupling process. All three sites undergo progressive reshaping and dehydration during the alternating-access cycle, with the most optimal coordination of all substrates found in the closed state.
Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB‐type Cu+‐ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu+ across cellular membranes. Crystal structures of a copper‐free Cu+‐ATPase are available, but the mechanism of Cu+ recognition, binding, and translocation remains elusive. Through X‐ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid‐supported membranes using wild‐type and mutant forms of the Legionella pneumophila Cu+‐ATPase (LpCopA), we identify a sulfur‐lined metal transport pathway. Structural analysis indicates that Cu+ is bound at a high‐affinity transmembrane‐binding site in a trigonal‐planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high‐affinity site and subsequent release through the exit pathway.
pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70-95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.
Bacteria have adapted their NhaA Na+/H+ exchangers responsible for salt homeostasis to their different habitats. We present an electrophysiological and kinetic analysis of NhaA from Helicobacter pylori and compare it to the previously investigated exchangers from Escherichia coli and Salmonella typhimurium. Properties of all three transporters are described by a simple model using a single binding site for H+ and Na+. We show that H. pylori NhaA only has a small acidic shift of its pH-dependent activity profile compared to the other transporters and discuss why a more drastic change in its pH activity profile is not physiologically required.
Na+/H+ exchangers are essential for regulation of intracellular proton and sodium concentrations in all living organisms. We examined and experimentally verified a kinetic model for Na+/H+ exchangers, where a single binding site is alternatively occupied by Na+ or one or two H+ ions. The proposed transport mechanism inherently down-regulates Na+/H+ exchangers at extreme pH, preventing excessive cytoplasmic acidification or alkalinization. As an experimental test system we present the first electrophysiological investigation of an electroneutral Na+/H+ exchanger, NhaP1 from Methanocaldococcus jannaschii (MjNhaP1), a close homologue of the medically important eukaryotic NHE Na+/H+ exchangers. The kinetic model describes the experimentally observed substrate dependences of MjNhaP1, and the transport mechanism explains alkaline down-regulation of MjNhaP1. Because this model also accounts for acidic down-regulation of the electrogenic NhaA Na+/H+ exchanger from Escherichia coli (EcNhaA, shown in a previous publication) we conclude that it applies generally to all Na+/H+ exchangers, electrogenic as well as electroneutral, and elegantly explains their pH regulation. Furthermore, the electrophysiological analysis allows insight into the electrostatic structure of the translocation complex in electroneutral and electrogenic Na+/H+ exchangers.
Na+/H+ antiporters are integral membrane proteins that are present in almost every cell and in every kingdom of life. They are essential for the regulation of intracellular pH-value, Na+-concentration and cell volume. These secondary active transporters exchange sodium ions against protons via an alternating access mechanism, which is not understood in full detail. Na+/H+ antiporters show distinct species-specific transport characteristics and regulatory properties that correlate with respective physiological functions. Here we present the characterization of the Na+/H+ antiporter NhaA from Salmonella enterica serovar Thyphimurium LT2, the causing agent of food-born human gastroenteritis and typhoid like infections. The recombinant antiporter was functional in vivo and in vitro. Expression of its gene complemented the Na+-sensitive phenotype of an E. coli strain that lacks the main Na+/H+ antiporters. Purified to homogeneity, the antiporter was a dimer in solution as accurately determined by size-exclusion chromatography combined with multi-angle laser-light scattering and refractive index monitoring. The purified antiporter was fully capable of electrogenic Na+(Li+)/H+-antiport when reconstituted in proteoliposomes and assayed by solid-supported membrane-based electrophysiological measurements. Transport activity was inhibited by 2-aminoperimidine. The recorded negative currents were in agreement with a 1Na+(Li+)/2H+ stoichiometry. Transport activity was low at pH 7 and up-regulation above this pH value was accompanied by a nearly 10-fold decrease of KmNa (16 mM at pH 8.5) supporting a competitive substrate binding mechanism. K+ does not affect Na+ affinity or transport of substrate cations, indicating that selectivity of the antiport arises from the substrate binding step. In contrast to homologous E. coli NhaA, transport activity remains high at pH values above 8.5. The antiporter from S. Typhimurium is a promising candidate for combined structural and functional studies to contribute to the elucidation of the mechanism of pH-dependent Na+/H+ antiporters and to provide insights in the molecular basis of species-specific growth and survival strategies.
Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), a P-type ATPase that sustains Ca2+ transport and plays a major role in intracellular Ca2+ homeostasis, represents a therapeutic target for cancer therapy. Here, we investigated whether ruthenium-based anticancer drugs, namely KP1019 (indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)]), NAMI-A (imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)]) and RAPTA-C ([Ru(η6-p-cymene)dichloro(1,3,5-triaza-7-phosphaadamantane)]), and cisplatin (cis-diammineplatinum(II) dichloride) might act as inhibitors of SERCA. Charge displacement by SERCA adsorbed on a solid-supported membrane was measured after ATP or Ca2+ concentration jumps. Our results show that KP1019, in contrast tocancer the other metal compounds, is able to interfere with ATP-dependent translocation of Ca2+ ions. An IC50 value of 1 μM was determined for inhibition of calcium translocation by KP1019. Conversely, it appears that KP1019 does not significantly affect Ca2+ binding to the ATPase from the cytoplasmic side. Inhibition of SERCA at pharmacologically relevant concentrations may represent a crucial aspect in the overall pharmacological and toxicological profile of KP1019.
Significance: We have detected and analyzed electrogenic transport of ammonium and methylammonium by members of the ammonium transport (Amt) family of membrane proteins using solid-supported membrane electrophysiology. Amt transport is pH-dependent and occurs at a rate of 30–300 ions per s per trimer, well in the range of other transport proteins. The study establishes, to our knowledge, the first in vitro assay system for Amt transport in a fully controlled setup and settles debate about whether Amt proteins function as passive ammonia channels or active ammonium transporters.Abstract:Significance: We have detected and analyzed electrogenic transport of ammonium and methylammonium by members of the ammonium transport (Amt) family of membrane proteins using solid-supported membrane electrophysiology. Amt transport is pH-dependent and occurs at a rate of 30–300 ions per s per trimer, well in the range of other transport proteins. The study establishes, to our knowledge, the first in vitro assay system for Amt transport in a fully controlled setup and settles debate about whether Amt proteins function as passive ammonia channels or active ammonium transporters. Abstract: Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4+ sCaVengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4+/NH3 transport is used instead in acid–base and pH homeostasis in kidney or NH4+/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.
EcClC, a prokaryotic member of the ClC family of chloride channels and transporters, works as coupled H+/Cl- exchanger. With a known structure and the possibility of investigating its behavior with different biochemical and biophysical techniques, the protein has become an important model system for the family. Although many aspects of its function have been previously characterized, it was difficult to measure transport on the same sample under different environmental conditions. To overcome this experimental limitation, we have studied EcClC by solid-supported membrane electrophysiology. The large transport-related transient currents and a simple way of relating transport rates to the measured signal have allowed a thorough investigation of ion selectivity, inhibition, and the dependence of transport on changes in ion concentration and pH. Our results confirm that the protein transports larger anions with about similar rates, whereas the smaller fluoride is not a substrate. We also show that 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), a known inhibitor of other anion transport protein, irreversibly inhibits EcClC from the intracellular side. The chloride dependence shows an apparent saturation at millimolar concentrations that resembles a similar behavior in eukaryotic ClC channels. Our experiments have also allowed us to quantify the pH dependence of transport. EcClC shows a strong activation at low pH with an apparent pKa of 4.6. The pronounced pH dependence is lost by the mutation of a conserved glutamate facing the extracellular solution that was previously shown to be an acceptor for transported protons, whereas it is largely retained by the mutation of an equivalent residue at the intracellular side. Our results have provided a quantitative basis for the transport behavior of EcClC, and they will serve as a reference for future investigations of novel electrogenic transporters with still-uncharacterized properties.
Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.
In this study of the lactose permease of Escherichia coli (LacY), five functionally irreplaceable residues involved specifically in H+ translocation (Arg302 and Glu325) or in the coupling between protonation and sugar binding (Tyr236, Glu269, and His322) were mutated individually or together with mutant Glu325 → Ala. The wild type and each mutant were purified and reconstituted into proteoliposomes, which were then examined using solid-supported-membrane-based electrophysiology. Mutants Glu325 → Ala or Arg302 → Ala, in which H+ symport is abolished, exhibit a weakly electrogenic rapid reaction triggered by sugar binding. The reaction is essentially absent in mutant Tyr236 → Phe, Glu269 → Ala, and His322 → Ala, and each of these mutations blocks the electrogenic reaction observed in the Glu325 → Ala mutant. The findings are consistent with the interpretation that the electrogenic reaction induced by sugar binding is due to rearrangement of charged residues in LacY and that this reaction is blocked by mutation of each member of the Tyr236/Glu269/His322 triad. In addition, further support is provided for the conclusion that deprotonation is rate limiting for downhill lactose/H+ symport.
A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca2+ and Mg2+, the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.
In anaerobically grown bacteria, transport of nitrite is catalyzed by an integral membrane protein of the form ate–nitrite transporter family, NirC, which in Salmonella typhimurium plays a critical role in intracellular virulence. We present a functional characterization of the S. typhimurium nitrite transporter StmNirC in native membrane vesicles as well as purified and reconstituted into proteoliposomes. Using an electrophysiological technique based on solid supported membranes, we show nitrite induced translocation of negative charges into proteoliposomes reconstituted with purified StmNirC. These data demonstrate the electrogenicity of StmNirC and its substrate specificity for nitrite. Monitoring changes in ΔpH on everted membrane vesicles containing overexpressed StmNirC using acridine orange as a pH indicator we demonstrate that StmNirC acts as a secondary active transporter. It promotes low affinity transport of nitrite coupled to H+ antiport with a pH independent profile in the pH range from 6 to 8. In addition to nitrite also nitrate is transported by StmNirC, but with reduced flux and complete absence of proton antiport activity. Taken together, these data suggest a bispecific anion selectivity of StmNirC with an ion specific transport mode. This may play a role in regulating nitrite transport under physiological conditions.
Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed.
Ca2+ (sarco-endoplasmic reticulum Ca2+ ATPase (SERCA)) and Cu+ (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca2+, demonstrated by the addition of ATP and Ca2+ to SERCA deprived of Ca2+ (E2) as compared with ATP to Ca2+-activated enzyme (E1·2Ca2+). Activation by Ca2+ is slower at low pH (2H+·E2 to E1·2Ca2+) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca2+ translocation. A “H+-gated pathway,” demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca2+ release by H+/Ca2+ exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu+/H+ exchange. As opposed to SERCA after Ca2+ chelation, ATP7A/B does not undergo reverse phosphorylation with Pi after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.
Sodium-coupled substrate transport plays a central role in many biological processes. However, despite knowledge of the structures of several sodium-coupled transporters, the location of the sodium-binding site(s) often remains unclear. Several of these structures have the five transmembrane-helix inverted-topology repeat, LeuT-like (FIRL) fold, whose pseudosymmetry has been proposed to facilitate the alternating-access mechanism required for transport. Here, we provide biophysical, biochemical, and computational evidence for the location of the two cation-binding sites in the sodium-coupled betaine symporter BetP. A recent X-ray structure of BetP in a sodium-bound closed state revealed that one of these sites, equivalent to the Na2 site in related transporters, is located between transmembrane helices 1 and 8 of the FIRL-fold; here, we confirm the location of this site by other means. Based on the pseudosymmetry of this fold, we hypothesized that the second site is located between the equivalent helices 6 and 3. Molecular dynamics simulations of the closed-state structure suggest this second sodium site involves two threonine sidechains and a backbone carbonyl from helix 3, a phenylalanine from helix 6, and a water molecule. Mutating the residues proposed to form the two binding sites increased the apparent Km and Kd for sodium, as measured by betaine uptake, tryptophan fluorescence, and 22Na+ binding, and also diminished the transient currents measured in proteoliposomes using solid supported membrane-based electrophysiology. Taken together, these results provide strong evidence for the identity of the residues forming the sodium-binding sites in BetP.
Using an electrophysiological assay the activity of NhaA was tested in a wide pH range from pH 5.0 to 9.5. Forward and reverse transport directions were investigated at zero membrane potential using preparations with inside-out and right side-out-oriented transporters with Na+ or H+ gradients as the driving force. Under symmetrical pH conditions with a Na+ gradient for activation, both the wt and the pH-shifted G338S variant exhibit highly symmetrical transport activity with bell-shaped pH dependences, but the optimal pH was shifted 1.8 pH units to the acidic range in the variant. In both strains the pH dependence was associated with a systematic increase of the Km for Na+ at acidic pH. Under symmetrical Na+ concentration with a pH gradient for NhaA activation, an unexpected novel characteristic of the antiporter was revealed; rather than being down-regulated, it remained active even at pH as low as 5. These data allowed a transport mechanism to advance based on competing Na+ and H+ binding to a common transport site and a kinetic model to develop quantitatively explaining the experimental results. In support of these results, both alkaline pH and Na+ induced the conformational change of NhaA associated with NhaA cation translocation as demonstrated here by trypsin digestion. Furthermore, Na+ translocation was found to be associated with the displacement of a negative charge. In conclusion, the electrophysiological assay allows the revelation of the mechanism of NhaA antiport and sheds new light on the concept of NhaA pH regulation.
The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.
Replacement of the glycine at position 117 by a cysteine in the melibiose permease creates an interesting phenotype: while the mutant transporter shows still transport activity comparable to the wild type its pre steady-state kinetic properties are drastically altered. The transient charge displacements after substrate concentration jumps are strongly reduced and the fluorescence changes disappear. Together with its maintained transport activity this indicates that substrate translocation in G117C melibiose permease is not impaired but that the initial conformation of the mutant transporter differs from that of the wild type permease. A kinetic model for the G117C melibiose permease based on a rapid dynamic equilibrium of the substrate free transporter is proposed. Implications of the kinetic model for the transport mechanism of the wild type permease are discussed.
An electrophysiological assay platform based on solid supported membranes (SSM) for the organic cation transporter (OCT) is presented. Stable Chinese hamster ovary (CHO) cell lines overexpressing the human (hOCT2) and rat transporters (rOCT2) were generated and validated. Membrane preparations from the cell lines were investigated using SSM-based electrophysiology. Baculovirus transfected insect cells (HighFive and Mimic Sf9) were also tested with the same assay but yielded less than optimal results. The assays were validated by the determination of substrate affinities and inhibition by standard inhibitors. The study demonstrates the suitability of the SSM-based electrophysiological OCT assay for rapid and automatic screening of drug candidates.
The sodium/iodide symporter is an intrinsic membrane protein that actively transports iodide into thyroid follicular cells. It is a key element in thyroid hormone biosynthesis and in the radiotherapy of thyroid tumours and their metastases. Sodium/iodide symporter is a very hydrophobic protein that belongs to the family of sodium/solute symporters. As for many other membrane proteins, particularly mammalian ones, little is known about its biochemistry and structure. It is predicted to contain 13 transmembrane helices, with an N-terminus oriented extracellularly. The C-terminal, cytosolic domain contains approximately one hundred amino acid residues and bears most of the transporter's putative regulatory sites (phosphorylation, sumoylation, di-acide, di-leucine or PDZ-binding motifs). In this study, we report the establishment of eukaryotic cell lines stably expressing various human sodium/iodide symporter recombinant proteins, and the development of a purification protocol which allowed us to purify milligram quantities of the human transporter. The quaternary structure of membrane transporters is considered to be essential for their function and regulation. Here, the oligomeric state of human sodium/iodide symporter was analysed for the first time using purified protein, by size exclusion chromatography and light scattering spectroscopy, revealing that the protein exists mainly as a dimer which is stabilised by a disulfide bridge. In addition, the existence of a sodium/iodide symporter C-terminal fragment interacting with the protein was also highlighted. We have shown that this fragment exists in various species and cell types, and demonstrated that it contains the amino-acids [512-643] from the human sodium/iodide symporter protein and, therefore, the last predicted transmembrane helix. Expression of either the [1-512] truncated domain or the [512-643] domain alone, as well as co-expression of the two fragments, was performed, and revealed that co-expression of [1-512] with [512-643] allowed the reconstitution of a functional protein. These findings constitute an important step towards an understanding of some of the post-translational mechanisms that finely tune iodide accumulation through human sodium/iodide symporter regulation.
Membrane-bound transporter proteins are involved in cell signal transduction and metabolism as well as influencing key pharmacological properties such as drug bioavailability. The functional activity of transporters that belong to the group of electrically active membrane proteins can be directly monitored using the solid-supported membrane-based SURFE(2)R™ technology (SURFace Electrogenic Event Reader; Scientific Devices Heidelberg GmbH, Heidelberg, Germany). The method makes use of membrane fragments or vesicles containing transport proteins adsorbed onto solid-supported membrane-covered electrodes and allows the direct measurement of their activity. This technology has been used to develop a robust screening compatible assay for Complex I/Complex III, key components of the respiratory chain in 96-well microtiter plates. The assay was screened against 1,000 compounds from the ComGenex Lead-like small molecule library to ascertain whether mitochondrial liabilities might be an underlying, although undesirable feature of typical commercial screening libraries. Some 105 hits (compounds exhibiting >50% inhibition of Complex I/Complex III activity at 10 μM) were identified and their activities were subsequently confirmed in duplicate, yielding a confirmation rate of 68%. Analysis of the confirmed hits also provided evidence of structure-activity relationships and two compounds from one structural class were further evaluated in dose-response experiments. This study provides evidence that profiling of compounds for potential mitochondrial liabilities, even at an early stage of drug discovery, may be a necessary additional quality filter that should be considered during the compound screening and profiling cascade.
Influenza A virus encodes an integral membrane protein, A/M2, that forms a pH-gated proton channel that is essential for viral replication. The A/M2 channel is a target for the anti-influenza drug amantadine, although the effectiveness of this drug has been diminished by the appearance of naturally occurring point mutations in the channel pore. Thus, there is a great need to discover novel anti-influenza therapeutics, and, since the A/M2 channel is a proven target, approaches are needed to screen for new classes of inhibitors for the A/M2 channel. Prior in-depth studies of the activity and drug sensitivity of A/M2 channels have employed labor-intensive electrophysiology techniques. In this study, we tested the validity of electrophysiological measurements with solid-supported membranes (SSM) as a less labor-intensive alternative technique for the investigation of A/M2 ion channel properties and for drug screening. By comparing the SSM-based measurements of the activity and drug sensitivity of A/M2 wild-type and mutant channels with measurements made with conventional electrophysiology methods, we show that SSM-based electrophysiology is an efficient and reliable tool for functional studies of the A/M2 channel protein and for screening compounds for inhibitory activity against the channel.
BACKGROUND:ClC-7 is a ubiquitous transporter which is broadly expressed in mammalian tissues. It is implied in the pathogenesis of lysosomal storage disease and osteopetrosis. Because of its endosomal/lysosomal localization it is still poorly characterized.METHODOLOGY/PRINCIPAL FINDINGS:An electrophysiological characterization of rat ClC-7 using solid-supported membrane-based electrophysiology is presented. The measured currents show the characteristics of ClC-7 and confirm its function as a Cl-/H+-antiporter. We have used rat ClC-7 in CHO cells as a model system to investigate the functionality and cellular localization of the wt transporter and its variant G213R ClC-7 which is the analogue of human G215R ClC-7 responsible for autosomal dominant osteopetrosis type II. Our study shows that rat G213R ClC-7 is functional but has a localization defect in CHO cells which prevents it from being correctly targeted to the lysosomal membrane. The electrophysiological assay is tested as a tool for drug discovery. The assay is validated with a number of drug candidates. It is shown that ClC-7 is inhibited by DIDS, NPPB and NS5818 at micromolar concentrations.CONCLUSIONS/SIGNIFICANCE:It is suggested that the scenario found in the CHO model system also applies to the human transporter and that mislocalization rather than impaired functionality of G215R ClC-7 is the primary cause of the related autosomal dominant osteopetrosis type II. Furthermore, the robust solid-supported membrane-based electrophysiological assay is proposed for rapid screening for potential ClC-7 inhibitors which are discussed for treatment of osteoporosis.
Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes.
Transport of protons and solutes across mitochondrial membranes is essential for many physiological processes. However, neither the proton-pumping respiratory chain complexes nor the mitochondrial secondary active solute transport proteins have been characterized electrophysiologically in their native environment. In this study, solid-supported membrane (SSM) technology was applied for electrical measurements of respiratory chain complexes CI, CII, CIII, and CIV, the F(O)F(1)-ATPase/synthase (CV), and the adenine nucleotide translocase (ANT) in inner membranes of pig heart mitochondria. Specific substrates and inhibitors were used to validate the different assays, and the corresponding K(0.5) and IC(50) values were in good agreement with previously published results obtained with other methods. In combined measurements of CI-CV, it was possible to detect oxidative phosphorylation (OXPHOS), to measure differential effects of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the respective protein activities, and to determine the corresponding IC(50) values. Moreover, the measurements revealed a tight functional coupling of CI and CIII. Coenzyme Q (CoQ) analogues decylubiquinone (DBQ) and idebenone (Ide) stimulated the CII- and CIII-specific electrical currents but had inverse effects on CI-CIII activity. In summary, the results describe the electrophysiological and pharmacological properties of respiratory chain complexes, OXPHOS, and ANT in native mitochondrial membranes and demonstrate that SSM-based electrophysiology provides new insights into a complex molecular mechanism of the respiratory chain and the associated transport proteins. Besides, the SSM-based approach is suited for highly sensitive and specific testing of diverse respiratory chain modulators such as inhibitors, CoQ analogues, and uncoupling agents.
ATP7B is a copper dependent P-type ATPase, required for copper homeostasis. Taking advantage of high yield heterologous expression of recombinant protein, we investigated charge transfer in ATP7B. We detected charge displacement within a single catalytic cycle upon ATP addition and formation of phosphoenzyme intermediate. We attribute this charge displacement to movement of bound copper within ATP7B. Based on specific mutations, we demonstrate that enzyme activation by copper requires occupancy of a site in the N-terminus extension which is not present in other transport ATPases, as well as of a transmembrane site corresponding to the cation binding site of other ATPases.
Electrogenic reactions accompanying downhill lactose/H+ symport catalyzed by the lactose permease of Escherichia coli (LacY) have been assessed using solid-supported membrane-based electrophysiology with improved time resolution. Rates of charge translocation generated by purified LacY reconstituted into proteoliposomes were analyzed over a pH range from 5.2 to 8.5, which allows characterization of two electrogenic steps in the transport mechanism: (i) a weak electrogenic reaction triggered by sugar binding and observed under conditions where H+ translocation is abolished either by acidic pH or by a Glu325 → Ala mutation in the H+ binding site (this step with a rate constant of ∼200 s−1 for wild-type LacY leads to an intermediate proposed to represent an “occluded” state) and (ii) a major electrogenic reaction corresponding to 94% of the total charge translocated at pH 8, which is pH-dependent with a maximum rate of ∼30 s−1 and a pK of 7.5. This partial reaction is assigned to rate-limiting H+ release on the cytoplasmic side of LacY during turnover. These findings together with previous electrophysiological results and biochemical−biophysical studies are included in an overall kinetic mechanism that allows delineation of the electrogenic steps in the reaction pathway.
The effect of Pb2+ on the transport cycle of the Na+/K+-ATPase was characterized in detail at a molecular level by combining electrical and biochemical measurements. Electrical measurements were performed by adsorbing purified membrane fragments containing Na+/K+-ATPase on a solid-supported membrane. Upon adsorption, the Na+/K+-ATPase was activated by carrying out concentration jumps of different activating substrates, for example, Na+ and ATP. Charge movements following Na+/K+-ATPase activation were measured in the presence of various Pb2+ concentrations to investigate the effect of Pb2+ on different ion translocating steps of the pump cycle. These charge measurements were then compared to biochemical measurements of ATPase activity in the presence of increasing Pb2+ concentration. Our results indicate that Pb2+ inhibits cycling of the enzyme, but it does not affect cytoplasmic Na+ binding and release of Na+ ions at the extracellular side at concentrations below 10 μM. To explain the inhibitory effect of Pb2+ on the Na+/K+-ATPase, we propose that Pb2+ may interfere with the hydrolytic cleavage of the phosphorylated intermediate E2P, which occurs in the K+-related branch of the pump cycle.
Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied. Transient currents representing ion channel transport activity are recorded via capacitive coupling. We demonstrate the application of the technique to liposomes reconstituted with the peptide cation channel gramicidin, vesicles from native tissue containing the nicotinic acetylcholine receptor, and membranes from a recombinant cell line expressing the ionotropic P2X2 receptor. It is shown that stable ion gradients, both inside as well as outside directed, can be applied and currents are recorded with an excellent signal/noise ratio. For the nicotinic acetylcholine receptor and the P2X2 receptor excellent assay quality factors of Z′ = 0.55 and Z′ = 0.67, respectively, are obtained. This technique opens up new possibilities in cases where conventional electrophysiology fails like the functional characterization of ion channels from intracellular compartments. It also allows for robust fully automatic assays for drug screening.
Current and voltage measurements were performed on Na,K-ATPase and sarcoplasmic reticulum (SR) Ca-ATPase. Measurements of current transients under short-circuit conditions and of voltage transients under open-circuit conditions were carried out by employing a solid supported membrane (SSM). Purified membrane fragments containing Na,K-ATPase or native SR vesicles were adsorbed on a SSM and were activated by performing substrate concentration jumps. Current and voltage transients were recorded in the external circuit. They are related to pump activity and can be attributed to electrogenic events in the reaction cycles of the two enzymes. While current transients of very small amplitude are difficult to detect, the corresponding voltage transients can be measured with higher accuracy because of a much more favorable signal-to-noise ratio. Therefore, voltage measurements are preferable for the investigation of slow processes generating low current signals, e.g., for the analysis of low turnover transporters.
Electrogenic events due to the activity of wild-type lactose permease from Escherichia coli (LacY) were investigated with proteoliposomes containing purified LacY adsorbed on a solid-supported membrane electrode. Downhill sugar/H+ symport into the proteoliposomes generates transient currents. Studies at different lipid-to-protein ratios and at different pH values, as well as inactivation by N-ethylmaleimide, show that the currents are due specifically to the activity of LacY. From analysis of the currents under different conditions and comparison with biochemical data, it is suggested that the predominant electrogenic event in downhill sugar/H+ symport is H+ release. In contrast, LacY mutants Glu-325→Ala and Cys-154→Gly, which bind ligand normally, but are severely defective with respect to lactose/H+ symport, exhibit only a small electrogenic event on addition of LacY-specific substrates, representing 6% of the total charge displacement of the wild-type. This activity is due either to substrate binding per se or to a conformational transition after substrate binding, and is not due to sugar/H+ symport. We propose that turnover of LacY involves at least 2 electrogenic reactions: (i) a minor electrogenic step that occurs on sugar binding and is due to a conformational transition in LacY; and (ii) a major electrogenic step probably due to cytoplasmic release of H+ during downhill sugar/H+ symport, which is the limiting step for this mode of transport.
A rapid and robust electrophysiological assay based on solid supported membranes (SSM) for the murine neuronal glutamate transporter mEAAC1 is presented. Measurements at different concentrations revealed the EAAC1 specific affinities for l-glutamate (Km = 24 μM), l-aspartate (Km = 5 μM) and Na+ (Km = 33 mM) and an inhibition constant Ki for dl-threo-β-benzyloxyaspartic acid (TBOA) of 1 μM. Inhibition by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid (HIP-B) was not purely competitive with an IC50 of 13 μM. Experiments using SCN− concentration jumps yielded large transient currents in the presence of l-glutamate showing the characteristics of the glutamate-gated anion conductance of EAAC1. Thus, SSM-based electrophysiology allows the analysis of all relevant transport modes of the glutamate transporter on the same sample.K+ and Na+ gradients could be applied to the transporter. Experiments in the presence and absence of Na+ and K+ gradients demonstrated that the protein is still able to produce a charge translocation when no internal K+ is present. In this case, the signal amplitude is smaller and a lower apparent affinity for l-glutamate of 144 μM is found.Finally the assay was adapted to a commercial fully automatic system for SSM-based electrophysiology and was validated by determining the substrate affinities and inhibition constants as for the laboratory setup. The combination of automatic function and its ability to monitor all transport modes of EAAC1 make this system an universal tool for industrial drug discovery.
The genome of Escherichia coli contains four genes assigned to the peptide transporter (PTR) family. Of these, only tppB (ydgR) has been characterized, and named tripeptide permease, whereas protein functions encoded by the yhiP, ybgH and yjdL genes have remained unknown. Here we describe the overexpression of yhiP as a His-tagged fusion protein in E. coli and show saturable transport of glycyl-sarcosine (Gly-Sar) with an apparent affinity constant of 6.5 mm. Overexpression of the gene also increased the susceptibility of cells to the toxic dipeptide alafosfalin. Transport was strongly decreased in the presence of a protonophore but unaffected by sodium depletion, suggesting H+-dependence. This was confirmed by purification of YhiP and TppB by nickel affinity chromatography and reconstitution into liposomes. Both transporters showed Gly-Sar influx in the presence of an artificial proton gradient and generated transport currents on a chip-based sensor. Competition experiments established that YhiP transported dipeptides and tripeptides. Western blot analysis revealed an apparent mass of YhiP of 40 kDa. Taken together, these findings show that yhiP encodes a protein that mediates proton-dependent electrogenic transport of dipeptides and tripeptides with similarities to mammalian PEPT1. On the basis of our results, we propose to rename YhiP as DtpB (dipeptide and tripeptide permease B), by analogy with the nomenclature in other bacteria. We also propose to rename TppB as DtpA, to better describe its function as the first protein of the PTR family characterized in E. coli.
This paper identifies the first arginine/ornithine antiporter ArcD from the domain of archea. The functional role of ArcD is demonstrated by transport assays with radioactive labelled arginine, by its necessity to enable arginine fermentation under anaerobic growth conditions and by the consumption of arginine from the medium during growth. All three experimentally observables are severely disturbed when the deletion strain ΔArcD is used. The isolated protein is verified by mass spectrometry and reconstituted in vesicles. The proteoliposomes are attached to a membrane and capacitive currents are recorded which appear upon initiation of the transport process by change from arginine‐free to arginine‐containing buffer. This clearly demonstrates that the purified 34 kD protein is the functional unit.
Rapid solution exchange on a solid-supported membrane (SSM) is investigated using fluidic structures and a solid-supported membrane of 1 mm diameter in wall jet geometry. The flow is analyzed with a new technique based on specific ion interactions with the surface combined with an electrical measurement. The critical parameters affecting the time course of the solution exchange and the transfer function describing the time resolution of the SSM system are determined. The experimental data indicate that solution transport represents an intermediate situation between the plug flow and the Hagen−Poiseuille laminar flow regime. However, to a good approximation the rise of the surface concentration can be described by Hagen−Poiseuille flow with ideal mixing at the surface of the SSM. Using an improved cuvette design, solution exchange as fast as 2 ms was achieved at the surface of a solid-supported membrane. As an application of the technique, the rate constant of a fast electrogenic reaction in the melibiose permease MelB, a bacterial (Escherichia coli) sugar transporter, is determined. For comparison, the kinetics of a conformational transition of the same transporter was measured using stopped-flow tryptophan fluorescence spectroscopy. The relaxation time constant obtained for the charge displacement agrees with that determined in the stopped-flow experiments. This demonstrates that upon sugar binding MelB undergoes an electrogenic conformational transition with a rate constant of k ≈ 250 s−1.
The ydgR gene of Escherichia coli encodes a protein of the proton-dependent oligopeptide transporter (POT) family. We cloned YdgR and overexpressed the His-tagged fusion protein in E. coli BL21 cells. Bacterial growth inhibition in the presence of the toxic phosphonopeptide alafosfalin established YgdR functionality. Transport was abolished in the presence of the proton ionophore carbonyl cyanide p-chlorophenylhydrazone, suggesting a proton-coupled transport mechanism. YdgR transports selectively only di- and tripeptides and structurally related peptidomimetics (such as aminocephalosporins) with a substrate recognition pattern almost identical to the mammalian peptide transporter PEPT1. The YdgR protein was purified to homogeneity from E. coli membranes. Blue native-polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized YdgR suggest that it exists in monomeric form. Transmission electron microscopy revealed a crown-like structure with a diameter of approximately 8 nm and a central density. These are the first structural data obtained from a proton-dependent peptide transporter, and the YgdR protein seems an excellent model for studies on substrate and inhibitor interactions as well as on the molecular architecture of cell membrane peptide transporters.
The effect of the antimycotic drug clotrimazole (CLT) on the Na,K-ATPase was investigated using fluorescence and electrical measurements. The results obtained by steady-state fluorescence experiments with the electrochromic styryl dye RH421 were combined with those achieved by a pre-steady-state method based on fast solution exchange on a solid supported membrane that adsorbs the protein. Both techniques are suitable for monitoring the electrogenic steps of the pump cycle and are in general complementary, yielding distinct kinetic information. The experiments show clearly that CLT affects specific partial reactions of the pump cycle of the Na,K-ATPase with an affinity in the low micromolar range and in a reversible manner. All results can be consistently explained by proposing the CLT-promoted formation of an ion-occluded-CLT-bound conformational E2 state E2CLT(X2), that acts as a “dead-end” side track of the pump cycle, where X stands for H+ or K+. Na+ binding, enzyme phosphorylation, and Na+ transport were not affected by CLT, and at high CLT concentrations ~1/3 of the enzyme remained active in the physiological transport mode. The presence of Na+ and K+ destabilized the inactivated form of the Na,K-ATPase.
Cytoplasmic loop 4-5 of the melibiose permease from Escherichia coli is essential for the process of Na+-sugar translocation (Abdel-Dayem, M., Basquin, C., Pourcher, T., Cordat, E., and Leblanc, G. (2003) J. Biol. Chem. 278, 1518-1524). In the present report, we analyze functional consequences of mutating each of the three acidic amino acids in this loop into cysteines. Among the mutants, only the E142C substitution impairs selectively Na+-sugar translocation. Because R141C has a similar defect, we investigated these two mutants in more detail. Liposomes containing purified mutated melibiose permease were adsorbed onto a solid supported lipid membrane, and transient electrical currents resulting from different substrate concentration jumps were recorded. The currents evoked by a melibiose concentration jump in the presence of Na+, previously assigned to an electrogenic conformational transition (Meyer-Lipp, K., Ganea, C., Pourcher, T., Leblanc, G., and Fendler, K. (2004) Biochemistry 43, 12606-12613), were much smaller for the two mutants than the corresponding signals in cysteineless MelB. Furthermore, in R141C the stimulating effect of melibiose on Na+ affinity was lost. Finally, whereas tryptophan fluorescence spectroscopy revealed impaired conformational changes upon melibiose binding in the mutants, fluorescence resonance energy transfer measurements indicated that the mutants still show cooperative modification of their sugar binding sites by Na+. These data suggest that: 1) loop 4-5 contributes to the coordinated interactions between the ion and sugar binding sites; 2) it participates in an electrogenic conformational transition after melibiose binding that is essential for the subsequent obligatory coupled translocation of substrates. A two-step mechanism for substrate translocation in the melibiose permease is suggested.
Transporters are important targets in drug discovery. However, high throughput-capable assays for this class of membrane proteins are still missing. Here we present a novel drug discovery platform technology based on solid supported membranes. The functional principles of the technology are described, and a sample selection of transporter assays is discussed: the H+-dependent peptide transporter PepT1, the gastric proton pump, and the Na+/Ca2+ exchanger. This technology promises to have an important impact on the drug discovery process.
Ion transporters are emerging targets of increasing importance to the pharmaceutical industry because of their relevance to a wide range of numerous indications of cardiovascular, metabolic, and inflammatory diseases. However, traditional iontransporter assay technologies using radioactive or fluorescent ligands and substrates or manual patch clamping suffer from several problems: limited sensitivity and robustness, significant numbers of false positives and false negatives, and cost. The authors describe a novel method for the measurement of ion transporters using cell-free electrophysiology based on the SURFE2R (surface electrogenic event reader) technology platform. The main advantages of the method described here are high sensitivity and simple handling. Material for assays is mainly a simplemembrane preparation, which can be stored over weeks and months. Thus, the application of the method does not depend on a permanently running cell-culture lab. The application of the technology itself uses a bench-top system and chips loaded with membrane fragments. The SURFE2R technology was used to establish an Na+/Ca2+-exchanger assay. The assay performance, as judged by the Z' value of 0.73 and the signal-to-background ratio of 7.6, suggests that this is a reliable and robust assay. The authors compared the technology with patch-clamp experiments: Themeasurement of activity of 17 different inhibitors and the determination of an IC 50value indicated a good correlation between SURFE2R technology and patch clamp results. Using the SURFE2R technology, results were obtainedwith 20 times higher throughput and required less-qualified personnel compared with manual patch clamping.
The glutamate transporters GltPEc from Escherichia coli and GltPPh from Pyrococcus horikoshii were overexpressed in E. coli and purified to homogeneity with a yield of 1-2 mg/L of culture. Single-particle analysis and electron microscopy indicate that GltP(Ph) is a trimer in detergent solution. Electron microscopy of negatively stained GltPPh two-dimensional crystals shows that the transporter is a trimer also in the membrane. Gel filtration of GltPEc indicates a reversible equilibrium of two oligomeric states in detergent solution that we identified as a trimer and hexamer by blue-native gel electrophoresis and cross-linking. The purified transporters were fully active upon reconstitution into liposomes, as demonstrated by the uptake of radioactively labeled L-aspartate or L-glutamate. L-aspartate/L-glutamate transport of GltPEc involves the cotransport of protons and depends only on pH, whereas GltP(Ph) catalyzes L-glutamate transport with a cotransport of H+ or Na+. L-glutamate induces a fast transient current in GltP(Ph) proteoliposomes coupled to a solid supported membrane (SSM). We show that the electric signal depends on the concentration of Na+ or H+ outside the proteoliposomes and that GltP(Ph) does not require K+ inside the proteoliposomes. In addition, the electrical currents are inhibited by TBOA and HIP-B. The half-saturation concentration for activation of GltPPh glutamate transport (K0.5glut) is 194 µM.
Sarcoplasmic reticulum vesicles were adsorbed on an octadecanethiol/phosphatidylcholine mixed bilayer anchored to a gold electrode, and the Ca-ATPase contained in the vesicles was activated by ATP concentration jumps both in the absence and in the presence of K(+) ions and at different pH values. Ca2+ concentration jumps in the absence of ATP were also carried out. The resulting capacitive current transients were analyzed together with the charge under the transients. The relaxation time constants of the current transients were interpreted on the basis of an equivalent circuit. The current transient after ATP concentration jumps and the charge after Ca2+ concentration jumps in the absence of ATP exhibit almost the same dependence upon the Ca2+ concentration, with a half-saturating value of approximately 1.5 µM. The pH dependence of the charge after Ca2+ translocation demonstrates the occurrence of one H+ per one Ca2+ countertransport at pH 7 by direct charge-transfer measurements. The presence of K+ decreases the magnitude of the current transients without altering their shape; this decrease is explained by K+ binding to the cytoplasmic side of the pump in the E1 conformation and being released to the same side during the E1-E2 transition.
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).
Sarcoplasmic reticulum (SR) native vesicles incorporating Ca-ATPase are adsorbed on a solid-supported lipid membrane (SSM). Upon adsorption, the ion pumps are chemically activated by concentration jumps of ATP and the capacitive current transients generated by SR Ca-ATPase are measured under potentiostatic conditions. The Michaelis-Menten constant, KM, for ATP is evaluated by varying the concentration of ATP in the activating solution. This preliminary result shows that ion transport by SR Ca-ATPase can be suitably investigated by a technique based on concentration jumps on an SSM.
Charge translocation associated with the activity of the Na+/proline cotransporter PutP of Escherichia coli was analyzed for the first time. Using a rapid solution exchange technique combined with a solid-supported membrane (SSM), it was demonstrated that Na+ and/or proline individually or together induce a displacement of charge. This was assigned to an electrogenic Na+ and/or proline binding process at the cytoplasmic face of the enzyme with a rate constant of k>50 s−1 which preceeds the rate-limiting step. Based on the kinetic analysis of our electrical signals, the following characteristics are proposed for substrate binding in PutP. (1) Substrate binding is electrogenic not only for Na+, but also for the uncharged cosubstrate proline. The charge displacement associated with the binding of both substrates is of comparable size and independent of the presence of the respective cosubstrate. (2) Both substrates can bind individually to the transporter. Under physiological conditions, an ordered binding mechanism prevails, while at sufficiently high concentrations, each substrate can bind in the absence of the other. (3) Both substrate binding sites interact cooperatively with each other by increasing the affinity and/or the speed of binding of the respective cosubstrate. (4) Proline binding proceeds in a two-step process: low affinity (∼1 mM) electroneutral substrate binding followed by a nearly irreversible electrogenic conformational transition.
The kinetics of light-driven proton transport by bacteriorhodopsin (bR) were investigated over a broad pH range upon adsorbing purple membrane (PM) fragments on a mercury-supported mixed alkanethiol/phospholipid bilayer. The light-on and light-off capacitive photocurrents were measured under short-circuit conditions in the absence of photoartifacts. Using dioleoylphosphatidylcholine as the lipid monolayer, a bell-shaped curve of the peak current versus pH, with a maximum in the proximity of 6, was obtained. The analysis of the biphasic decay kinetics of the light-on and light-off currents allows an estimate of the pKa values for the steps releasing protons to, and taking up protons from, the bathing solution. In particular, the pKa values obtained from the light-off current (pK1 = 3.5, pK2 = 5.3, pK3 = 7.5, and pK4 = 9.0) suggest a mechanism similar to that proposed by Balashov et al. for dark adaptation, albeit in the opposite direction (Balashov, S. P.; Imasheva, E. S.; Govindjee, R.; Sheves, M.; Ebrey, T. G. Biophys. J. 1996, 70, 473). The time dependence of the light-on and light-off currents in the proximity of pH 6 is interpreted on the basis of both a simple equivalent circuit and a kinetic model making use of spectroscopic data available in the literature. When using dioleoylphosphatidylserine (DOPS) as the lipid monolayer, an inversion in the sign of both light-on and light-off currents, as well as a change in their shape and magnitude, was observed by increasing the pH above 9 and then, at all pH values from 9 to 1, by subsequently decreasing the pH on the same mercury-supported mixed alkanethiol/DOPS bilayer. The normal situation was restored only by adding sodium azide. This inversion in current and the notable hysteresis observed under these conditions are critically discussed.
Transient electrical currents generated by the Na+-transporting FoF1-ATPase of Ilyobacter tartaricus were observed in the hydrolytic and synthetic mode of the enzyme. Two techniques were applied: a photochemical ATP concentration jump on a planar lipid membrane and a rapid solution exchange on a solid supported membrane. We have identified an electrogenic reaction in the reaction cycle of the FoF1-ATPase that is related to the translocation of the cation through the membrane bound Fo subcomplex of the ATPase. In addition, we have determined rate constants for the process: For ATP hydrolysis this reaction has a rate constant of 15–30 s−1 if H+ is transported and 30–60 s−1 if Na+ is transported. For ATP synthesis the rate constant is 50–70 s−1.
The electrogenic transport of ATP and ADP by the mitochondrial ADP/ATP carrier (AAC) was investigated by recording transient currents with two different techniques for performing concentration jump experiments: 1) the fast fluid injection method: AAC-containing proteoliposomes were adsorbed to a solid supported membrane (SSM), and the carrier was activated via ATP or ADP concentration jumps. 2) BLM (black lipid membrane) technique: proteoliposomes were adsorbed to a planar lipid bilayer, while the carrier was activated via the photolysis of caged ATP or caged ADP with a UV laser pulse. Two transport modes of the AAC were investigated, ATPex-0in and ADPex-0in. Liposomes not loaded with nucleotides allowed half-cycles of the ADP/ATP exchange to be studied. Under these conditions the AAC transports ADP and ATP electrogenically. Mg2+ inhibits the nucleotide transport, and the specific inhibitors carboxyatractylate (CAT) and bongkrekate (BKA) prevent the binding of the substrate. The evaluation of the transient currents yielded rate constants of 160 s−1 for ATP and ≥400 s−1 for ADP translocation. The function of the carrier is approximately symmetrical, i.e., the kinetic properties are similar in the inside-out and right-side-out orientations. The assumption from previous investigations, that the deprotonated nucleotides are exclusively transported by the AAC, is supported by further experimental evidence. In addition, caged ATP and caged ADP bind to the carrier with similar affinities as the free nucleotides. An inhibitory effect of anions (200–300 mM) was observed, which can be explained as a competitive effect at the binding site. The results are summarized in a transport model.
Electrogenic activity associated with the activity of the melibiose permease (MelB) of Escherichia coli was investigated by using proteoliposomes containing purified MelB adsorbed onto a solid-supported membrane. Transient currents were selectively recorded by applying concentration jumps of Na+ ions (or Li+) and/or of different sugar substrates of MelB (melibiose, thio-methyl galactoside, raffinose) using a fast-flow solution exchange system. Characteristically, the transient current response was fast, including a single decay exponential component (τ ≈ 15 ms) on applying a Na+ (or Li+) concentration jump in the absence of sugar. On imposing a Na+ (or Li+) jump on proteoliposomes preincubated with the sugar, a sugar jump in a preparation preincubated with the cation, or a simultaneous jump of the cation and sugar substrates, the electrical transients were biphasic and comprised both the fast and an additional slow (τ ≈ 350 ms) decay components. Finally, selective inactivation of the cosubstrate translocation step by acylation of MelB cysteins with N-ethyl maleimide suppressed the slow response components and had no effect on the fast transient one. We suggest that the fast transient response reflects charge transfer within MelB during cosubstrate binding while the slow component is associated with charge transfer across the proteoliposome membrane. From the time course of the transient currents, we estimate a rate constant for Na+ binding in the absence and presence of melibiose of k > 50 s-1 and one for melibiose binding in the absence of Na+ of k ≈ 10 s-1.
Adsorption of Na+/K+-ATPase containing membrane fragments from pig kidney to lipid membranes allows the detection of electrogenic events during the Na+/K+-ATPase reaction cycle with high sensitivity and time resolution. High stability preparations can be obtained using solid supported membranes (SSM) as carrier electrodes for the membrane fragments. The SSMs are prepared using an alkanethiol monolayer covalently linked to a gold surface on a glass substrate. The hydrophobic surface is covered with a lipid monolayer (SAM, self-assembled monolayer) to obtain a double layer system having electrical properties similar to those of unsupported bilayer membranes (BLM). As we have previously shown (, Biophys. J. 64:384-391), the Na+/K+-ATPase on a SSM can be activated by photolytic release of ATP from caged ATP. In this publication we show the first results of a new technique which allows rapid solution exchange at the membrane surface making use of the high mechanical stability of SSM preparations. Especially for substrates, which are not available as a caged substance-such as Na+ and K+-this technique is shown to be capable of yielding new results. The Na+/K+-ATPase was activated by rapid concentration jumps of ATP and Na+ (in the presence of ATP). A time resolution of up to 10 ms was obtained in these experiments. The aim of this paper is to present the new technique together with the first results obtained from the investigation of the Na+/K+-ATPase. A comparison with data taken from the literature shows considerable agreement with our experiments.
In the preceding publication (Pintschovius and Fendler, 1999. Biophys. J. 76:000–000) a new technique was described that was able to produce concentration jumps of arbitrary ion species at the surface of a solid supported membrane (SSM). This technique can be used to investigate the kinetics of ion translocating proteins adsorbed to the SSM. Charge translocation of the Na+/K+-ATPase in the presence of ATP was investigated. Here we describe experiments carried out with membrane fragments containing Na+/K+-ATPase from pig kidney and in the absence of ATP. Electrical currents are measured after rapid addition of Na+. We demonstrate that these currents can be explained only by a cation binding process on the cytoplasmic side, most probably to the cytoplasmic cation binding site of the Na+/K+-ATPase. An electrogenic reaction of the protein was observed only with Na+, but not with other monovalent cations (K+, Li+, Rb+, Cs+). Using Na+ activation of the enzyme after preincubation with K+ we also investigated the K+-dependent half-cycle of the Na+/K+-ATPase. A rate constant for K+ translocation in the absence of ATP of 0.2–0.3 s−1 was determined. In addition, these experiments show that K+ deocclusion, and cytoplasmic K+ release are electroneutral.
A new method for the investigation of ion translocating membrane proteins is presented. Protein containing membrane fragments or vesicles are adsorbed to a solid supported membrane. The solid supported membrane consists of a lipid monolayer on a gold evaporated or gold sputtered glass substrate which is coated with a long chained mercaptan (CH3(CH2)mSH, m = 15, 17). Specific conductance and specific capacitance of the solid supported membrane are comparable to those of a black lipid membrane. However, the solid supported membrane has the advantage of a much higher mechanical stability. The electrical activity of bacteriorhodopsin, Na,K-ATPase, H,K-ATPase, and Ca-ATPase on the solid supported membrane is measured and compared to signals obtained on a conventionally prepared black lipid membrane. It is shown that both methods yield similar results. The solid supported membrane therefore represents an alternative method for the investigation of electrical properties of ion translocating transmembrane proteins.
Maria will introduce SSM-based Electrophysiology going over basic features and principles of the method and have a look at experimental workflows.
Nathan Thomas
"Unlocking the (Reversal) Potential of SSM Electrophysiology: Transporter Stoichiometry with the SURFE2R N1”
Camillo Perez:
"Characterization of a choline uniporter by SSM-based electrophysiology" disclaimer: due to a pending manuscript submission, this presentation will be made available in full in the coming weeks. Please stay tuned.
Auxins are central hormones in all plants and controls virtually all aspects of growth and development. The PIN-FORMED (PIN) protein family is a key player in this process. Here we present biophysical analysis and structures of Arabidopsis thaliana PIN8 at 2.9-3.4 Å resolution; two outward facing conformations with and without auxin bound, and one inward facing conformation with the known inhibitor and herbicide naphthylphthalamic acid (NPA) bound. The structure forms a homo-dimer with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show by biophysical analysis to be independent of proton and ion gradients and likely driven by the negative charge of the auxin. Our results provide the first comprehensive molecular model for auxin recognition and transport by PINs.
SSM (solid supported membrane)-based electrophysiology employed by the SURFE2R instruments is a capacitive sensor-based method to detect membrane currents generated by low turnover proteins such as transporters and membrane pumps. By resolving protein activity in real time and label free it introduces the advantages of electrophysiology to the field of membrane transporters. During this webinar you will learn all about SSM-based electrophysiology and its applications.
First, we discuss the basics and principles behind this technology in depth. Then we focus on practical topics, like preparation of samples and experimental workflows, and finally introduce some datasets to highlight the potential and possibilities for membrane transporter studies.aria will introduce SSM-based Electrophysiology going over basic features and principles of the method and have a look at experimental workflows.
Title: Determining transport stoichiometry using SSME
Randy Stockbridge
(Assistant Professor, Department of Molecular, Cellular, and Developmental Biology - University of Michigan)
Abstract: Transporters from the small multidrug resistance (SMR) family provide broad resistance to environmental biocides, driving the spread of multidrug resistance cassettes among bacterial populations. Understanding substrate specificity is essential to understand this process. Using solid-supported membrane electrophysiology, we measure the transport of different substrates by SMR family members, and show that promiscuous transport of hydrophobic substituted cations is a general feature of all SMR transporters, including those whose primary physiological role is in bacterial nitrogen metabolism.
Title: Basis of promiscuity in small multidrug resistance transporters
Katherine Henzler-Wildman
(Professor Biochemistry, Department of Biochemistry - University of Wisconsin-Madison)
Abstract: Transport stoichiometry can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Our prior work on EmrE has demonstrated that it is not a tightly coupled transporter and that the net transport stoichiometry is likely to vary with pH and substrate identity. This has motivated us to develop an SSME-based assay for assessing transport stoichiometry that is rapid and easily adaptable to different substrates and pH conditions. Here we present results for Gdx and CLC-Ec1, two well-characterized transporters that demonstrate the success of our approach. Our SSME-based method reproduces the fixed 2H+:1 guanidinium+ antiport stoichiometry of Gdx, the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and loose proton:nitrate coupling for CLC-ec1. This method requires only small amounts of transporter and provides a fast, easy method to characterize transport stoichiometry under varied conditions, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Title: The K+ switch in BetP: from coupling to regulation
Professor Dr. Christine Ziegler
(University of Regensburg, Faculty of Biology and Pre-Clinics, Institute of Biophysics and physical Biochemistry, Structural Biology-Biophysics II)
Abstract: The bacterial betaine transporter BetP is a prime example for an efficient osmotic stress sensor and regulated secondary transporter, respectively. BetP’s full activation depends on the presence of 300mM internal K+, however, K+ is not transported. Several K+ binding sites were identified at the osmo-sensor, but also close to a Na+ site. We introduced a point mutation based in one of the two sodium binding sites in order to switch BetP from Na+ to K+ coupling. Using cryoEM/X-ray crystallography combined with SSM/Stopped-Flow Trp-fluorescence we discovered an intriguing competition between Na+ and K+ binding in BetP, which hints towards a change in the functional role of K+ in LeuT-fold transporter during evolution. BetP shares its overall fold with SLC6 neurotransmitter transporters, which also show differences in their ability to facilitate K+-coupled antiport. Therefore, our structure-function study provides new insights into an evolutionary switching of K+ between coupling to regulatory ion.
Title: Selection of transporter-targeted inhibitory nanobodies by SSM-based electrophysiology
Professor Dr. Camilo Perez
(University of Basel, Biozentrum, Center for Molecular Life Sciences)
Abstract: Single domain antibodies (nanobodies) have been extensively used in machanistic and structural studies of protein and pose an enormous potential as tools for developing clinical therapies, many of which depend on inhibition of membrane proteins such as transporters.However, most of the methods used to determine inhibition of transport activity are difficult to perform in high-throughput routines and depend on labeled substrates availability. This complicates the screening of large nanobody libraries. Solid-supported membrane (SSM) electrophysiology to select inhibitory and non-inhibitory nanobodies targeting an electrogenic secondary transporter and to calculate nanobodies inhibitory constants. This technique may be especially useful for selecting inhibitory nanobodies targeting transporters for which labeled substrates are not available.
My lab has been focusing on the study of ion-dependent transporters with special emphasis on Na+ or H+-coupled symporters. Whereas flux studies with radiolabeled solutes using the target protein reconstituted in proteoliposomes provided a wealth of information, the determination of the thermodynamically-coupled solute transport-associated flux of H+ or Na+ has been challenging. This can be attributed in part to the low transport turnover numbers of these transporters and difficulties associated with their functional expression in suitable model systems that allow for their characterization with traditional electrophysiological methods (e.g., two-electrode voltage clamp or patch-clamp methods).
By using the SURFE2R N1 SSM platform, our team was able to quickly collect data of solute transport-associated flux of co-transported ions across the membrane of proteoliposomes containing different target proteins. With this technology it is possible to collect data for a full kinetic characterization of a target protein such as its dependence on substrate and ion concentrations, pH, and potential essential additives, as well as its substrate recognition profile. The SURFE2R system also enables the use of a wide range of substrates that are readily commercially available, avoiding the use of radiolabeled compounds.
Olga Boudker, Professor of Physiology and Biophysics
(Weill Cornell Medical College)
Abstract:
Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. We have determined cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.
Title: SSM-based electrophysiological characterization of a metal transporter
Lars Jeuken, Professor of Molecular Biophysics,
(Faculty of Biological Sciences, University of Leeds)
Abstract:
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterized using metal-sensitive fluorescent dyes encapsulated in proteoliposomes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with the solid-supported membrane (SSM) technology. SSM uptake assays confirm transport of Mn(II), Co(II), Zn(II), and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) nor Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Although E. faecalis MntH2 is hypothesized to be a proton-metal symporter, no proton symport could be detected with either SSM or fluorescence assays. These data are discussed with respect to fluorescence uptake assays with Mn(II) and Ni(II), where transport was measured on the time scale of minutes, in sharp contrast to the sub-second timescale of the SSM technology.
Title: Structure and mechanism of the Na+/H+ exchanger NHA2
Professor David Drew
(Stockholm University, Professor in Biochemistry)
Abstract: SLC9B2, also known as NHA2, correlates with the long-sought after sodium/lithium (Na+/Li+) exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite its functional importance, structural information and the molecular basis of its ion-exchange mechanism have been lacking. Here, we I briefly present the cryo EM structures of bison NHA2 in detergent and in nanodiscs at 3.0 and 3.5 Å resolution, respectively. I will then show how SSM-based electrophysiology has enabled us to conclude that NHA2 catalyses the electroneutral rather than electrogenic exchange of ions. The ion-binding site is quite distinctive, with a tryptophan-arginine-glutamate triad separated from the well-established ion-binding aspartates. These triad residues fine-tune ion binding specificity, as demonstrated by a salt-bridge swap mutant that converts NHA2 into a Li+-specific transporter.
Title: The molecular mechanism of the Na+/H+ antiporter NhaA – from binding to flux
Associate Professor Dr. Matthias Quick
(Columbia University Irving Medical Center, Departments of Psychiatry and Physiology and Cellular Biophysics, Associate Professor of Neurobiology)
Abstract: The Na+/H+ antiporter NhaA represents the archetype of Na+/H+ exchangers, evolutionarily conserved proteins in all kingdoms of life that are essential in cellular ion homeostasis. While structural information has provided excellent starting points in developing mechanistic models of NhaA-mediated transport, the correlation between the correlation of Na+ and H+ binding and flux remains still enigmatic. Since structural information about the composition of the Na+ and H+ sites in NhaA is missing, functional assays are required to gain insight into the molecular events that regulate NhaA activity. By using the SURFE2R N1 SSM platform, our team was able to collect data of NhaA-mediated ion flux across the membrane of NhaA-containing proteoliposomes. Direct Na+ binding studies in conjunction with flux studies reveal that, whereas Na+ transport is impaired at low pH, NhaA can bind Na+ in pH-independent fashion, providing new insight into the interplay of the two cations during transport.
Label free, real time measurements - electrophysiological approach. Record the action of billion transporters simultaneously.
The solute carrier (SLC) superfamily represents the biggest family of transporters with important roles in health and disease. Despite being attractive and druggable targets, the majority of SLCs remains understudied. One major hurdle in research on SLCs is the lack of tools, such as cell-based assays to investigate their biological role and for drug discovery. Another challenge is the disperse and anecdotal information on assay strategies that are suitable for SLCs. This review provides a comprehensive overview of state-of-the-art cellular assay technologies for SLC research and discusses relevant SLC characteristics enabling the choice of an optimal assay technology. The Innovative Medicines Initiative consortium RESOLUTE intends to accelerate research on SLCs by providing the scientific community with high-quality reagents, assay technologies and data sets, and to ultimately unlock SLCs for drug discovery.
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Classical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization. Direct assay technologies for transporter proteins are electrophysiology-based, but are also complex, time-consuming, and not well applicable for automated profiling purposes. In contrast to conventional patch clamp systems, solid supported membrane (SSM)-based electrophysiology is a sensitive, membrane-based method for transporter analysis, and current technical developments target the demand for automated, accelerated, and sensitive assays for transporter-directed compound screening. In this study, the suitability of the SSM based technique for pharmacological compound identification and optimization was evaluated performing cell-free SSMbased measurements with the electrogenic amino acid transporter B0AT1 (SLC6A19). Electrophysiological characterization of leucine-induced currents demonstrated that the observed signals were specific to B0AT1. Moreover, B0 AT1-dependent responses were successfully inhibited using an established in-house tool compound. Evaluation of current stability and data reproducibility verified the robustness and reliability of the applied assay. Active compounds from primary screens of large compound libraries were validated, and false-positive hits were identified. These results clearly demonstrate the suitability of the SSM-based technique as a direct electrophysiological method for rapid and automated identification of small molecules that can inhibit B0AT1 activity
Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide. More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy plays a central role for treating cancer. The development of new anticancer drugs or new uses for existing drugs is an exciting and increasing research area. This is particularly important since drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods, the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the usefulness of such methods for the characterization of the mechanism of action of anticancer drugs that are targeted against various biomolecules.
Functional characterization of transport proteins using conventional electrophysiology can be challenging, especially for low turnover transporters or transporters from bacteria and intracellular compartments. Solid-supported membrane (SSM)-based electrophysiology is a sensitive and cell-free assay technique for the characterization of electrogenic membrane proteins. Purified proteins reconstituted into proteoliposomes or membrane vesicles from cell culture or native tissues are adsorbed to the sensor holding an SSM. A substrate or a ligand is applied via rapid solution exchange. The electrogenic transporter activity charges the sensor, which is recorded as a transient current. The high stability of the SSM allows cumulative measurements on the same sensor using different experimental conditions. This allows the determination of kinetic properties including EC50, IC50, Km, KD, and rate constants of electrogenic reactions. About 100 different transporters have been measured so far using this technique, among them symporters, exchangers, uniporters, ATP-, redox-, and light-driven ion pumps, as well as receptors and ion channels. Different instruments apply this technique: the laboratory setups use a closed flow-through arrangement, while the commercially available SURFE2R N1 resembles a pipetting robot. For drug screening purposes high-throughput systems, such as the SURFE2R 96SE enable the simultaneous measurement of up to 96 sensors.
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
The excitatory amino acid transporter 3 (EAAT3; also known as EAAC1) is a sodium-dependent neuronal uptake transporter encoded by the SLC1A1 gene. It plays a major role in the reuptake of glutamate from the synaptic cleft, thereby maintaining a low extracellular concentration of glutamate and regulating excitatory neurotransmission. EAAT3 is also involved in the uptake of aspartate and cysteine into the cells. The transporter is highly expressed in mature neurons, where it is distributed in somata and dendrites.EAAT3 functions as a co-transporter, coupling the uphill substrate transport into the cells to the electrochemical gradients of sodium and potassium. The stoichiometry of transport is 1 glutamate with 3 Na+ and 1 H+ moving into the cell to 1 K+ moving out of the cell. Therefore EAAT3 is an electrogenic transporter, generating a net charge flow.Dysfunction of glutamate transporters leads to increased extracellular glutamate levels, thereby causing neurotoxicity and neurodegeneration. Regulatory mechanisms facilitating EAAT3 function are, therefore, interesting as targets for the treatment of neurodegenerative diseases.Here we present EAAT3 activity measurements on the SURFE2R 96SE instrument using purified plasma membrane of CHO cells expressing EAAT3. The transporter was activated by glutamate and blocked by six different known inhibitors with IC50 values similar to those found in the literature.
The primary toxic mechanism of organophosphorus compounds, i.e. nerve agents or pesticides, is based on the irreversible inhibition of acetylcholinesterase. In consequence of the impaired hydrolysis, the neurotransmitter acetylcholine accumulates in cholinergic synapses and disturbs functional activity of nicotinic and muscarinic acetylcholine receptors by overstimulation and subsequent desensitization. The resulting cholinergic syndrome will become acute life-threatening, if not treated adequately. The current standard treatment, consisting of administration of a competitive mAChR antagonist (e.g. atropine) and an oxime (e.g. obidoxime, pralidoxime), is not sufficient in the case of soman or tabun intoxications. Consequently, alternative therapeutic options are necessary. An innovative approach comprises the use of compounds selectively targeting nAChRs, especially positive allosteric modulators, which increase the population of the conducting receptor state. MB327 (1,1′-(propane-1,3-diyl)bis(4-tert-butylpyridinium) di(iodide)) is able to restore soman-blocked muscle-force in preparations of various species including human and was recently identified as “resensitizer”. In contrast to the well-studied MB327, the pharmacological efficacy of the 2- and 3-tert-butylpyridinium propane regioisomers is unknown. As a first step, MB327 and its 3-regioisomer (PTM0001) and 2-regioisomer (PTM0002) were pharmacologically characterized using [3H]epibatidine binding assays, functional studies by solid supported membranes based electrophysiology, and in vitro muscle-force investigations of soman-poisoned rat hemidiaphragm preparations by indirect field stimulation technique. The results obtained from targets of different complexity (receptor, muscle tissue) showed that the pharmacological profiles of the 2- and 3-regioisomers were relatively similar to those of MB327. Furthermore, high concentrations showed inhibitory effects, which might critically influence the application as an antidote. Thus, more effective drugs have to be developed. Nevertheless, the combination of the methods presented is an effective tool for clarifying structure-activity relationships.
Na-dependent amino acid transporters play an essential role in the uphill transport of amino acids across the plasma membrane. In this study, a novel transporter target was used for which few specific pharmacological tools are available. The aim of this study was to establish a secondary screening assay using the direct electrophysiological measurement of the transporter to identify inhibitors. Using the SURFE2R 96SE, substrate specificity was determined and inhibitors could be identified.
Organophosphorus compounds (OPC), i.e. nerve agents or pesticides, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). Inhibited AChE results in accumulation of acetylcholine in the synaptic cleft and thus the desensitisation of the nicotinic acetylcholine receptor (nAChR) in the postsynaptic membrane is provoked. Direct targeting of nAChR to reduce receptor desensitisation might be an alternative therapeutic approach. For drug discovery, functional properties of potent therapeutic candidates need to be investigated in addition to affinity properties. Solid supported membrane (SSM)-based electrophysiology is useful for functional characterisation of ligand-gated ion channels like nAChRs, as charge translocations via capacitive coupling of the supporting membrane can be measured. By varying the agonist (carbamoylcholine) concentration, different functional states of the nAChR were initiated. Using plasma membrane preparations obtained from Torpedo californica electric organ, functional properties of selected nAChR ligands and non-oxime bispyridinium compounds were investigated. Depending on overall-size, the bispyridinium compounds enhanced or inhibited cholinergic signals induced by 100 μM carbamoylcholine. Applying excessive concentrations of the agonist carbamoylcholine provoked desensitisation of the nAChRs, whereas addition of bispyridinium compounds bearing short alkyl linkers exhibited functional recovery of previously desensitised nAChRs. The results suggest that these non-oxime bispyridinium compounds possibly interacted with nAChR subtypes in a manner of a positive allosteric modulator (PAM). The described newly developed functional assay is a valuable tool for the assessment of functional properties of potential compounds such as nAChR modulating ligands, which might be a promising approach in the therapeutically treatment of OPC-poisonings.
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is an intracellular membrane transporter that utilizes the free energy provided by ATP hydrolysis for active transport of Ca2+ ions from the cytoplasm to the lumen of sarco(endo)plasmic reticulum. SERCA plays a fundamental role for cell calcium homeostasis and signaling in muscle cells and also in cells of other tissues. Because of its prominent role in many physiological processes, SERCA dysfunction is associated to diseases displaying various degrees of severity. SERCA transport activity can be inhibited by a variety of compounds with different chemical structures. Specific SERCA inhibitors were identified which have been instrumental in studies of the SERCA catalytic and transport mechanism. It has been proposed that SERCA inhibition may represent a novel therapeutic strategy to cure certain diseases by targeting SERCA activity in pathogens, parasites and cancer cells. Recently, novel small molecules have been developed that are able to stimulate SERCA activity. Such SERCA activators may also offer an innovative and promising therapeutic approach to treat diseases, such as heart failure, diabetes and metabolic disorders. In the present review the effects of pharmacologically relevant compounds on SERCA transport activity are presented. In particular, we will discuss the interaction of SERCA with specific inhibitors and activators that are potential therapeutic agents for different diseases.
The electron transport chain (ETC) couples electron transfer between donors and acceptors with proton transport across the inner mitochondrial membrane. The resulting electrochemical proton gradient is used to generate chemical energy in the form of adenosine triphosphate (ATP). Proton transfer is based on the activity of complex I–V proteins in the ETC. The overall electrical activity of these proteins can be measured by proton transfer using Solid Supported Membrane technology. We tested the activity of complexes I, III, and V in a combined assay, called oxidative phosphorylation assay (oxphos assay), by activating each complex with the corresponding substrate. The oxphos assay was used to test in-house substances from different projects and several drugs currently available on the market that have reported effects on mitochondrial functions. The resulting data were compared to the influence of the respective compounds on mitochondria as determined by oxygen consumption and to data generated with an ATP depletion assay. The comparison shows that the oxidative phosphorylation assay provides both a rapid approach for detecting interaction of compounds with respiratory chain proteins and information on their mode of interaction. Therefore, the oxphos assay is a useful tool to support structure activity relationship studies by allowing early identification of mitotoxicity and for analyzing the outcome of phenotypic screens that are susceptible to the generation of mitotoxicity-related artifacts.
Multi‐drug resistance in Gram‐negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics here, we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer, which moreover allows also characterization of membrane protein channels in their native environment. Two major membrane channels from E. coli , OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only a few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution method, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution and significantly lower permeation. We suggest using outer membrane vesicles as a fast and easy approach for functional and structural studies of membrane channels in the native membrane.
ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue (“fast gate”) known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClCK and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-β-synthase (CBS) domains and the intracellular vestibule (“slow gating”). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1–related diseases. Author summary Chloride transporting CLC proteins are expressed in a wide range of organisms, and the family encompasses several members with numerous roles in human health and disease by allowing movement of chloride ions across the membranes that encapsulate cells and cellular organelles. Structurally, CLCs form dimers possessing a separate ion translocation pathway in each monomer, and they can operate as either channels or transporters that exchange chloride for protons. The CLC channel ClC-1 is critical to skeletal muscle excitability and has been proposed as a target to alleviate neuromuscular disorders. Here, we have analyzed the structure of human ClC-1 and revealed the high similarity of its ion conducting pathway to those observed in other CLC members, including prokaryotic and algal transporters. Our data suggest how ClC-1 is regulated by environmental cues to allow opening and closure, thereby permitting attenuation of muscle function. Our results help with understanding the principal determinants that govern CLC proteins and may guide downstream translational applications to combat muscle pathologies.
Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) positioned by suction on the apertures of our patch clamp chips made from borosilicate glass substrate. Incubation of GUVs with purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation.
Solvent-free planar lipid bilayers were formed in an automated manner using suction to attract a giant unilamellar vesicle (GUV) to the patch clamp chip which subsequently bursts across the aperture. Incubation of GUV's with purified KcsA channel protein yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. The rapid formation of protein-containing planar lipid bilayers is of potential use for the efficient electrophysiological characterization of KcsA as shown here and also other ion channel proteins of interest.
Solvent-free planar lipid bilayers were formed in an automated manner using suction to attract a giant unilamellar vesicle (GUV) to the patch clamp chip which subsequently bursts across the aperture. Incubation of GUVs with purified MscL channel protein yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. The rapid formation of protein-containing planar lipid bilayers is of potential use for the efficient electrophysiological characterization of MscL as shown here and also other ion channel proteins of interest.In order to study the effect of pressure, the functional MscL purified was reconstituted in our system. The reconstitution was done in GUVs and then bilayers were formed on a chip (Kreir, Farre et al. 2008). The Port-a-Patch system has a pump controlled by a computer and could apply from +300 to -300 mBar and is controlled via software allowing accurate pressure control. All pressure applications could be visualized and recorded at the same time as the recordings.
The pharmacodynamic profile of antimicrobial peptides (AMPs) and their in vivo synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog Rana temporaria secretes a family of closely related AMPs, temporins A-L, as an effective chemical dermal defence. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A but this is modest. Here we show that the less potent temporin B enhances the cooperativity of the in vitro antibacterial activity of the more potent temporin L against EMRSA-15 and that this may be associated with an altered interaction with the bacterial plasma membrane, a feature critical for the antibacterial activity of most AMPs. Addition of buforin II, a histone H2A fragment, can further increase the cooperativity. Molecular dynamics simulations indicate temporins B and L readily form hetero-oligomers in models of Gram-positive bacterial plasma membranes. Patch-clamp studies show transmembrane ion conductance is triggered with lower amounts of both peptides and more quickly, when used in combination, but conductance is of a lower amplitude and pores are smaller. Temporin B may therefore act by forming temporin L/B hetero-oligomers that are more effective than temporin L homo-oligomers at bacterial killing and/or by reducing the probability of the latter forming until a threshold concentration is reached. Exploration of the mechanism of synergy between AMPs isolated from the same organism may therefore yield antibiotic combinations with advantageous pharmacodynamic properties.
The human TRPA1 (hTRPA1) is an intrinsic thermosensitive ion channel responding to both cold and heat, depending on the redox environment. Here, we have studied purified hTRPA1 truncated proteins to gain further insight into the temperature gating of hTRPA1. We found in patch-clamp bilayer recordings that ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1 that is also lacking the S1-S4 voltage sensing-like domain (VSLD) gained sensitivity to cold but lost its heat sensitivity. The thiol reducing agent TCEP abolished the temperature sensitivity of both ∆1-688 hTRPA1 and ∆1-854 hTRPA1. Cold and heat activity of ∆1-688 hTRPA1 and ∆1-854 hTRPA1 were associated with different structural conformational changes as revealed by intrinsic tryptophan fluorescence measurements. Heat evoked major structural rearrangement of the VSLD as well as the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD), whereas cold only caused minor conformational changes. As shown for Δ1-854 hTRPA1, a sudden drop in tryptophan fluorescence occurred within 25-20°C indicating a transition between heat and cold conformations of the CTD, and thus it is proposed that the CTD contains a bidirectional temperature switch priming hTRPA1 for either cold or heat. In whole-cell patch clamp electrophysiology experiments, replacement of the cysteines 865, 1021 and 1025 with alanine modulated the cold sensitivity of hTRPA1 when heterologously expressed in HEK293T cells. It is proposed that the hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.
This review introduces the recent advances in the nanopore sensing platform, ion channel probes (ICPs), with a particular focus on the different probe design (2011–2022). The use of ion channel proteins has emerged in different applications to understand the dynamics of many biological processes and characterize or detect biomolecules. The development of utilizing protein channels in nanopore sensing has led to diverse platforms in which the ion channels, or biological nanopores, can be embedded in a lipid membrane. Ion channel probes, where the ion channels are integrated at the tip of a solid probe, enable higher spatially-resolved detection of small molecules and extend the applications of ion channels to map different surfaces and perform chemical imaging. Different probe materials and designs have been exploited throughout the last decade, which opens the door for multiple probe architecture and applications. We provide more insights into the advances of ICP designs that render them well-suited for further applications.
Synthetic ionophores are promising therapeutic targets, yet current limitations associated with their lipophilicity and poor water solubility prevent the translation of this molecular technology into the clinic. In this work we report investigations into the cation transport ability of a series of antimicrobial supramolecular, self-associating amphiphiles (SSAs). We identify a member of this class of compounds to function as a K+ transporter in cooperative action with a known anionophore. This SSA is soluble in a range of organic solvents and in 100% water, retaining its transport activity when delivered from a purely aqueous solution – therefore overcoming current molecular delivery limitations. These findings shed light on a potential antimicrobial mechanism of action and inform the design of future therapeutic targets that can balance water solubility and membrane penetration
12-Bis-THA Cl2 [12,12′-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride] is a cationic bolalipid adapted from dequalinium chloride (DQC), a bactericidal anti-infective indicated for bacterial vaginosis (BV). Here, we used a structure-activity-relationship study to show that the factors that determine effective killing of bacterial, fungal, and mycobacterial pathogens differ, to generate new analogues with a broader spectrum of activity, and to identify synergistic relationships, most notably with aminoglycosides against Acinetobacter baumannii and Pseudomonas aeruginosa, where the bactericidal killing rate was substantially increased. Like DQC, 12-bis-THA Cl2 and its analogues accumulate within bacteria and fungi. More hydrophobic analogues with larger headgroups show reduced potential for DNA binding but increased and broader spectrum antibacterial activity. In contrast, analogues with less bulky headgroups and stronger DNA binding affinity were more active against Candida spp. Shortening the interconnecting chain, from the most lipophilic twelve-carbon chain to six, improved the selectivity index against Mycobacterium tuberculosis in vitro, but only the longer chain analogue was therapeutic in a Galleria mellonella infection model, with the shorter chain analogue exacerbating the infection. In vivo therapy of Escherichia coli ATCC 25922 and epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) infections in Galleria mellonella was also achieved with longer-chain analogues, as was therapy for an A. baumannii 17978 burn wound infection with a synergistic combination of bolaamphiphile and gentamicin. The present study shows how this class of bolalipids may be adapted further to enable a wider range of potential applications.
The human cathelicidin LL-37 serves a critical role in the innate immune system defending bacterial infections. LL-37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL-37 and bacterial cell wall components we crystallized LL-37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core. The formation of a tetramer was further studied by cross-linking in the presence of detergents and lipids. Using planar lipid membranes a small but defined conductivity of this channel could be demonstrated. Molecular dynamic simulations underline the stability of this channel in membranes and demonstrate pathways for the passage of water molecules. Time lapse studies of E. coli cells treated with LL-37 show membrane discontinuities in the outer membrane followed by cell wall damage and cell death. Collectively, our results open a venue to the understanding of a novel AMP killing mechanism and allows the rational design of LL-37 derivatives with enhanced bactericidal activity.
The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.
The selective transport of ions across cell membranes, controlled by membrane proteins, is critical for a living organism. DNA-based systems have emerged as promising artificial ion transporters. However, the development of stable and selective artificial ion transporters remains a formidable task. We herein delineate the construction of an artificial ionophore using a telomeric DNA G-quadruplex (h-TELO) and a lipophilic guanosine (MG). MG stabilizes h-TELO by non-covalent interactions and, along with the lipophilic side chain, promotes the insertion of h-TELO within the hydrophobic lipid membrane. Fluorescence assays, electrophysiology measurements and molecular dynamics simulations reveal that MG/h-TELO preferentially transports K+-ions in a stimuli-responsive manner. The preferential K+-ion transport is presumably due to conformational changes of the ionophore in response to different ions. Moreover, the ionophore transports K+-ions across CHO and K-562 cell membranes. This study may serve as a design principle to generate selective DNA-based artificial transporters for therapeutic applications.
Resistance towards known antimalarial drugs poses a significant problem, urging for novel drugs that target vital proteins in the malaria parasite Plasmodium falciparum. However, recombinant production of malaria proteins is notoriously difficult. To address this, we have investigated two putative K+channels, PfKch1 and PfKch2, identified in the P.falciparum genome. We show that PfKch1 and PfKch2 and a C-terminally truncated version of PfKch1 (PfKch11−1094)could indeed be functionally expressed in vivo, since a K+-uptake deficient Saccharomyces cerevisiae strain was complemented by the P. falciparum cDNAs. PfKch11−1094-GFP and GFP-PfKch2 fusion proteins were overexpressedin yeast, purified and reconstituted in lipid bilayers to determine their electrophysiological activity. Single channel conductance amounted to 16 ± 1 pS for PfKch11−1094-GFP and 28 ± 2 pS for GFP-PfKch2. We predicted regulator of K+-conductance (RCK) domains in the C-terminals of both channels, and we accordingly measured channel activity in the presence of Ca2+.
Hepatitis C virus (HCV) p7 is known to be a nonselective cation channel for HCV maturation. Because the interaction of HCV proteins with host lipids in the endoplasmic reticulum membrane is crucial for the budding process, the identification of p7–lipid interactions could be important for understanding the HCV life cycle. Here, we report that p7 interacts with phosphatidylserine (PS) to induce membrane permeabilization. The interaction of p7 with PS was not inhibited by Gd3+ ions, which have been known to interact with negatively charged lipids, but channel activity and p7-induced mitochondrial depolarization were inhibited by Gd3+ ions. From the present results, we suggest that the p7–PS interaction plays an essential role in regulating its ion channel function and could be a potential molecular target for anti-HCV therapy.
The role of mammalian Transient Receptor Potential Ankyrin 1 (TRPA1) as a mechanosensor is controversial. Here, we report that purified human TRPA1 (hTRPA1) with and without its N-terminal ankyrin repeat domain responded with pressure-dependent single-channel current activity when reconstituted into artificial lipid bilayers. The hTRPA1 activity was abolished by the thiol reducing agent TCEP. Thus, depending on its redox state, hTRPA1 is an inherent mechanosensitive ion channel gated by force-from-lipids.
Extracellular influx of calcium or release of calcium from intracellular stores have been shown to activate mammalian TRPA1 as well as to sensitize and desensitize TRPA1 electrophilic activation. Calcium binding sites on both intracellular N- and C-termini have been proposed. Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). Thus, calcium alone activates hTRPA1 by a direct interaction with binding sites outside the N-ARD.
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations.
Frogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and such properties are commonly ascribed to their ability to form secondary amphipathic, α-helix conformations in membrane mimicking milieu. Nevertheless, despite the high similarity in physical properties and preference for adopting such conformations, the spectrum of activity and potency of AMPs often varies considerably. Hence distinguishing apparently similar AMPs according to their behaviour in, and effects on, model membranes will inform understanding of primary-sequence-specific antimicrobial mechanisms. Here we use a combination of molecular dynamics simulations, circular dichroism and patch-clamp to investigate the basis for differing anti-bacterial activities in representative AMPs from each species; temporin L and aurein 2.5. Despite adopting near identical, α-helix conformations in the steady-state in a variety of membrane models, these two AMPs can be distinguished both in vitro and in silico based on their dynamic interactions with model membranes, notably their differing conformational flexibility at the N-terminus, ability to form higher order aggregates and the characteristics of induced ion conductance. Taken together, these differences provide an explanation of the greater potency and broader antibacterial spectrum of activity of temporin L over aurein 2.5. Consequently, while the secondary amphipathic, α-helix conformation is a key determinant of the ability of a cationic AMP to penetrate and disrupt the bacterial plasma membrane, the exact mechanism, potency and spectrum of activity is determined by precise structural and dynamic contributions from specific residues in each AMP sequence.
Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide–lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.
Antimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMP activity. Relatively modest modifications to AMP primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane. Here we use a combination of molecular dynamics simulations, circular dichroism, liquid- and solid-state NMR and patch clamp to investigate the extent to which temporin B and its analogues can be distinguished both in vitro and in silico on the basis of their interactions with model membranes. Enhancing the hydrophobicity of the N-terminus and cationicity of the C-terminus in temporin B improves its membrane activity and potency against both Gram-negative and Gram-positive bacteria. In contrast, enhancing the cationicity of the N-terminus abrogates its ability to trigger channel conductance and renders it ineffective against Staphylococcus aureus while nevertheless enhancing its potency against Escherichia coli. Our findings suggest even closely related AMPs may target the same bacterium with fundamentally differing mechanisms of action.
The Orai channel is characterized by voltage independence, low conductance, and high Ca2+ selectivity and plays an important role in Ca2+ influx through the plasma membrane (PM). How the channel is activated and promotes Ca2+ permeation is not well understood. Here, we report the crystal structure and cryo-electron microscopy (cryo-EM) reconstruction of a Drosophila melanogaster Orai (dOrai) mutant (P288L) channel that is constitutively active according to electrophysiology. The open state of the Orai channel showed a hexameric assembly in which 6 transmembrane 1 (TM1) helices in the center form the ion-conducting pore, and 6 TM4 helices in the periphery form extended long helices. Orai channel activation requires conformational transduction from TM4 to TM1 and eventually causes the basic section of TM1 to twist outward. The wider pore on the cytosolic side aggregates anions to increase the potential gradient across the membrane and thus facilitate Ca2+ permeation. The open-state structure of the Orai channel offers insights into channel assembly, channel activation, and Ca2+ permeation.
Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria.
Programmed cell death regulates developmental and stress responses in eukaryotes. Golgi anti-apoptotic proteins (GAAPs) are evolutionarily conserved cell death regulators. Human and viral GAAPs inhibit apoptosis and modulate intracellular Ca2+ fluxes, and viral GAAPs form cation selective channels. Although most mammalian cell death regulators are not conserved at the sequence level in plants, the GAAP gene family shows expansion, with five paralogues (AtGAAP1-5) in the Arabidopsis genome. We pursued molecular and physiological characterization of AtGAAPs making use of the advanced knowledge of their human and viral counterparts. Structural modeling of AtGAAPs predicted the presence of a channel-like pore, and electrophysiological recordings from purified AtGAAP3 reconstituted into lipid bilayers confirmed that plant GAAPs can function as ion channels. AtGAAP1 and AtGAAP4 localized exclusively to the Golgi within the plant cell, while AtGAAP2, AtGAAP3 and AtGAAP5 also showed tonoplastic localization. Gene expression analysis revealed differential spatial expression and abundance of transcript for AtGAAP paralogues in Arabidopsis tissues. We demonstrate that AtGAAP1-5 inhibit Bax-induced cell death in yeast. However, overexpression of AtGAAP1 induces cell death in Nicotiana benthamiana leaves and lesion mimic phenotype in Arabidopsis. We propose that AtGAAPs function as Golgi-localized ion channels that regulate cell death by affecting ionic homeostasis within the cell.
Detergent‐solubilized purified ion channels can be reconstituted into lipid bilayers for electrophysiological analysis. Traditionally, ion channels were inserted into vesicles and subsequently fused with planar “black lipid membranes” formed from lipids dissolved in a hydrophobic solvent such as decane. Provided in this article is a step‐by‐step guide to reconstitute purified ion channel proteins into giant unilamellar vesicles (GUVs). This procedure results in the formation of proteoliposomes that can be used for planar bilayer formation and electrophysiological characterization of single‐channel currents. By using preformed GUVs it is possible to omit the membrane solvent. Compared to traditional preparations, the lipid bilayers formed from GUVs provide an environment that more closely resembles the native cell membrane. Also described is an alternate protocol that entails the production of planar lipid bilayers from GUVs onto which proteins in detergent are added.
Reactive oxygen species (ROS) modulator 1 (Romo1) is a nuclear-encoded mitochondrial inner membrane protein known to regulate mitochondrial ROS production and to act as an essential redox sensor in mitochondrial dynamics. Although its physiological roles have been studied for a decade, the biophysical mechanisms that explain these activities of Romo1 are unclear. In this study, we report that Romo1 is a unique mitochondrial ion channel that differs from currently identified eukaryotic ion channels. Romo1 is a highly conserved protein with structural features of class II viroporins, which are virus-encoded nonselective cation channels. Indeed, Romo1 forms a nonselective cation channel with its amphipathic helical transmembrane domain necessary for pore-forming activity. Notably, channel activity was specifically inhibited by Fe2+ ions, an essential transition metal ion in ROS metabolism. Using structural bioinformatics, we designed an experimental data-guided structural model of Romo1 with a rational hexameric structure. We propose that Romo1 establishes a new category of viroporin-like nonselective cation channel in eukaryotes.
Frogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Despite the high similarity in physical properties and preference for adopting secondary amphipathic, α-helix conformations in membrane mimicking milieu, their spectrum of activity and potency often varies considerably. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and hence distinguishing apparently similar AMPs according to their behaviour in, and effects on, model membranes will inform understanding of species specific effective antimicrobial mechanisms. Here we use a combination of molecular dynamics simulations, circular dichroism and patch-clamp to investigate the basis for differing anti-bacterial activities in representative AMPs from each species; temporin L and aurein 2.5. Despite adopting near identical, α-helix conformations in the steady-state in a variety of membrane models, these two AMPs can be distinguished both in vitro and in silico based on their dynamic interactions with model membranes; the greater conformational flexibility and the higher amplitude channel conductance induced offers a rationale for the greater potency and broader spectrum of activity of temporin L over aurein 2.5. Specific contributions from individual residues are identified that define the mechanisms of action of each AMP. Our findings suggest AMPs in frogs are examples of parallel evolution whose utility is based on apparently similar but subtly distinct mechanisms of action.
A major bottleneck in the development of small molecule antibiotics is to achieve good permeability across the outer membrane in Gram-negative bacteria. Optimization with respect to permeability surprisingly lacks appropriate methods. Recently we proposed to use the diffusion potential for charged molecules created by their difference in electrophoretic mobility while crossing the outer membrane channel under a concentration gradient. The latter provides semi-quantitative values but the current available setups require large volumes and thus exclude several classes of molecules. Here we propose a simple approach capturing proteoliposomes at aperture of glass surface (planar aperture or conical glass capillary) decreasing the necessary volume below 50 µL. We measured the transport of two charged molecules sulbactam and ceftazidime across the two major porins in E.coli. Both molecules permeate through these porins were observed with sulbactam owes higher permeability.
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. Based on structural alignments with other toxins, an aromatic cluster in the C-terminal domain of BinB (termed here BC) has been proposed to be important for toxicity. We tested this experimentally using BinB mutants bearing single mutations in this aromatic cluster. Consistent with the hypothesis, two of these mutations, F311A and F315A, were not toxic to Culex quinquefasciatus larvae and were unable to permeabilize liposomes or elicit ion channel activity, in contrast to wild-type BinB. Despite these effects, none of these mutations altered significantly the interaction between the activated forms of the two subunits in solution. These results indicate that these aromatic residues on the C-terminal domain of BinB are critical for toxin insertion in membranes. The latter can be by direct contact of these residues with the membrane surface, or by facilitating the formation a membrane-inserting oligomer.
The Orai channel is characterized by voltage independence, low conductance and high Ca2+ selectivity and plays an important role in Ca2+ influx through the plasma membrane. How the channel is activated and promotes Ca2+ permeation are not well understood. Here, we report the crystal structure and cryo-electron microscopy reconstruction of a Drosophila melanogaster Orai mutant (P288L) channel that is constitutively active according to electrophysiology. The open state of the Orai channel showed a hexameric assembly in which six TM1 helices in the center form the ion-conducting pore, and six TM4 helices in the periphery form extended long helices. Orai channel activation requires conformational transduction from TM4 to TM1 and eventually causes the basic section of TM1 to twist outward. The wider pore on the cytosolic side aggregates anions to increase the potential gradient across the membrane and thus facilitate Ca2+ permeation. The open-state structure of the Orai channel offers insights into channel assembly, channel activation and Ca2+ permeation.
The rapid spread of multi-drug resistant pathogens represents a serious threat to public health, considering factors such as high mortality rates, treatment restrictions and high prevalence of multi-drug resistant bacteria in the hospital environment. Antimicrobial peptides (AMPs) may exhibit powerful antimicrobial activity against different and diverse microorganisms, also presenting the advantage of absence or low toxicity towards animal cells. In this study, the evaluation of the antimicrobial activity against multi-drug resistant bacteria of a recently described AMP from wasp, Polydim-I, was performed. Polydim-I presented activity against standard strains (non-carriers of multi-resistant genes) that are susceptible to commercial antimicrobials, and also against multi-drug resistant strains at concentrations bellow 1μg/ml (0.41 μM). This is a rather low concentration among those reported for AMPs. At this concentration we found out that Polydim-I inhibits almost 100% of the tested pathogens growth, while with the ATCC strains the minimum inhibitory concentration (MIC100) is 400 times higher. Also, in relation to in vitro activity of conventional drugs against multi-drug resistant bacteria strains, Polydim-I is almost 10 times more efficient and with broader spectrum. Cationic AMPs are known as multi-target compounds and specially for targeting the phospholipid matrix of bacterial membranes. Exploring the interactions of Polydim-I with lipid bilayers, we have confirmed that this interaction is involved in the mechanism of action. Circular dichroism experiments showed that Polydim-I undergoes a conformational transition from random coil to a mostly helical conformation in the presence of membrane mimetic environments. Zeta potential measurements confirmed the binding and partial charge neutralization of anionic asolectin vesicles, and also suggested a possible aggregation of peptide molecules. FTIR experiments confirmed that some peptide aggregation occurs, which is minimized in the presence of strongly anionic micelles of sodium dodecyl sulfate. Also, Polydim-I induced channel-like structures formation to asolectin lipid bilayers, as demonstrated in the electrophysiology experiments. We suggest that cationic Polydim-I targets the membrane lipids due to electrostatic attraction, partially accumulates, neutralizing the opposite charges and induces pore formation. Similar mechanism of action has already been suggested for other peptides from wasp venoms, especially mastoparans.
Viroporins are small virus-encoded ion channel proteins. Most viroporins are monovalent selective cation channels, with few showing the ability to conduct divalent cations, like calcium (Ca2+). Nevertheless, some viroporins are known to disrupt host cell Ca2+ homeostasis, which is critical for virus replication and pathogenesis. Rotavirus nonstructural protein 4 (NSP4) is an endoplasmic reticulum transmembrane glycoprotein that has a viroporin domain (VPD), and NSP4 viroporin activity elevates cytosolic Ca2+ in mammalian cells. The goal of this study was to demonstrate that the NSP4 VPD forms an ion channel and determine whether the channel can conduct Ca2+. Using planar lipid bilayer and liposome patch clamp electrophysiology, we show that a synthetic peptide of the NSP4 VPD has ion channel activity. The NSP4 VPD was selective for cations over anions and channel activity was observed to have both well-defined “square top” openings as well as fast current fluctuations, similar to other viroporins. Importantly, the NSP4 VPD showed similar conductance of divalent cations (Ca2+ and Ba2+) as monovalent cations (K+), but a viroporin defective mutant lacked Ca2+ conductivity. These data demonstrate that the NSP4 VPD is a Ca2+-conducting viroporin and establish the mechanism by which NSP4 disturbs host cell Ca2+ homeostasis.
Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of micro-organisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 µM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 µM). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 µM and 2.90 µM, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 µM and 15.3 µM, respectively, for C. albicans, and 11 µM and 22.70 µM, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.
Intracellular ion channels are involved in multiple signaling processes, including such crucial ones as regulation of cellular motility and fate. With 95% of the cellular membrane belonging to intracellular organelles, it is hard to overestimate the importance of intracellular ion channels. Multiple studies have been performed on these channels over the years, however, a unified approach allowing not only to characterize their activity but also to study their regulation by partner proteins, analogous to the patch clamp “golden standard”, is lacking. Here, we present a universal approach that combines the extraction of intracellular membrane fractions with the preparation of patchable substrates that allows to characterize these channels in endogenous protein environment and to study their regulation by partner proteins. We validate this method by characterizing activity of multiple intracellular ion channels localized to different organelles and by providing detailed electrophysiological characterization of the regulation of IP3R activity by endogenous Bcl-2. Thus, after synthesis and reshaping of the well-established approaches, organelle membrane derived patch clamp provides the means to assess ion channels from arbitrary cellular membranes at the single channel level.
Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli. Significance: One important way in which living organisms are able to detect and respond to their environment is via the conversion of mechanical forces into electrical signals. However, the molecular mechanisms that enable mammalian “mechanosensitive” ion channels to detect a wide profile of forces within the membrane remain unclear. By studying the functional activity of individual TREK-2 K2P channels inserted in different directions into a lipid bilayer, we are now able to describe how the asymmetric structure of this channel enables it to sense such a broad profile of forces. These results help us understand how eukaryotic ion channels respond to a rich variety of sensory stimuli.
The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the “down” to “up” conformation in direct response to membrane stretch, and examine the role of the transmembrane pressure profile in this process. Furthermore, we show how state-dependent interactions with lipids affect the movement of TREK-2, and how stretch influences both the inner pore and selectivity filter. Finally, we present functional studies that demonstrate why direct pore block by lipid tails does not represent the principal mechanism of mechanogating. Overall, this study provides a dynamic structural insight into K2P channel mechanosensitivity and illustrates how the structure of a eukaryotic mechanosensitive ion channel responds to changes in forces within the bilayer.
The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.
Temperature sensors are crucial for animals to optimize living conditions. The temperature response of the ion channel transient receptor potential A1 (TRPA1) is intriguing, some orthologs have been reported to be activated by cold and others by heat, but the molecular mechanisms responsible for its activation remain elusive. Single-channel electrophysiological recordings of heterologously expressed and purified Anopheles gambiae TRPA1 (AgTRPA1), with and without the N-terminal ankyrin repeat domain, demonstrate that both proteins are functional as they responded to the electrophilic compounds allyl isothiocyanate (AITC) and cinnamaldehyde as well as heat. The proteins similar intrinsic fluorescence properties and corresponding quenching when activated by AITC or heat, suggest lipid bilayer-independent conformational changes outside the N-terminal domain. The results show that AgTRPA1 is an inherent temperature- and chemoreceptor, and analogous to what has been reported for the human TRPA1 ortholog the N-terminal domain may tune the response but is not required for the activation by these stimuli.
Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. Significance Statement: Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.
Intracellular Ca2+ signalling processes are fundamental to muscle contraction, neurotransmitter release, cell growth and apoptosis. Release of Ca2+ from the intracellular stores is supported by a series of ion channels in sarcoplasmic or endoplasmic reticulum (SR/ER). Among them, two isoforms of the trimeric intracellular cation (TRIC) channel family, named TRIC-A and TRIC-B, modulate the release of Ca2+ through the ryanodine receptor or inositol triphosphate receptor, and maintain the homeostasis of ions within SR/ER lumen. Genetic ablations or mutations of TRIC channels are associated with hypertension, heart disease, respiratory defects and brittle bone disease. Despite the pivotal function of TRIC channels in Ca2+ signalling, their pore architectures and gating mechanisms remain unknown. Here we present the structures of TRIC-B1 and TRIC-B2 channels from Caenorhabditis elegans in complex with endogenous phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P2, also known as PIP2) lipid molecules. The TRIC-B1/B2 proteins and PIP2 assemble into a symmetrical homotrimeric complex. Each monomer contains an hourglass-shaped hydrophilic pore contained within a seven-transmembrane-helix domain. Structural and functional analyses unravel the central role of PIP2 in stabilizing the cytoplasmic gate of the ion permeation pathway and reveal a marked Ca2+-induced conformational change in a cytoplasmic loop above the gate. A mechanistic model has been proposed to account for the complex gating mechanism of TRIC channels.
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA). Fourier transformed infrared spectroscopy (FTIR) experiments further showed that when p7 was inserted into synthetic liposomes, the protein displayed a native-like conformation similar to p7 obtained from other sources. Photoactivatable amino acid analogs used for p7 protein synthesis enabled oligomerization state analysis in liposomes by cross-linking. Therefore, these findings emphasize the quality of the cell-free produced p7 proteoliposomes which can benefit the field of the hepatitis C virus (HCV) protein production and characterization and also provide tools for the development of new inhibitors to reinforce our therapeutic arsenal against HCV.
Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat. Here we show that redox modification and ligands affect human TRPA1 (hTRPA1) cold and heat sensing properties in lipid bilayer and whole-cell patch-clamp recordings as well as heat-evoked TRPA1-dependent calcitonin gene-related peptide (CGRP) release from mouse trachea. Studies of purified hTRPA1 intrinsic tryptophan fluorescence, in the absence of lipid bilayer, consolidate hTRPA1 as an intrinsic bidirectional thermosensor that is modified by the redox state and ligands. Thus, the heat sensing property of TRPA1 is conserved in mammalians, in which TRPA1 may contribute to sensing warmth and uncomfortable heat in addition to noxious cold.
Decreased drug accumulation is a common cause of antibiotic resistance in microorganisms. However, there are few reliable general techniques capable of quantifying drug uptake through bacterial membranes. We present a semiquantitative optofluidic assay for studying the uptake of autofluorescent drug molecules in single liposomes. We studied the effect of the Escherichia coli outer membrane channel OmpF on the accumulation of the fluoroquinolone antibiotic, norfloxacin, in proteoliposomes. Measurements were performed at pH 5 and pH 7, corresponding to two different charge states of norfloxacin that bacteria are likely to encounter in the human gastrointestinal tract. At both pH values, the porins significantly enhance drug permeation across the proteoliposome membranes. At pH 5, where norfloxacin permeability across pure phospholipid membranes is low, the porins increase drug permeability by 50-fold on average. We estimate a flux of about 10 norfloxacin molecules per second per OmpF trimer in the presence of a 1 mM concentration gradient of norfloxacin. We also performed single channel electrophysiology measurements and found that the application of transmembrane voltages causes an electric field driven uptake in addition to concentration driven diffusion. We use our results to propose a physical mechanism for the pH mediated change in bacterial susceptibility to fluoroquinolone antibiotics.
Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. However, it is well established that parameters of the lipid matrix are modifying the function of proteins. Additionally, electrical capacity and conductance of the plain lipid matrix of membranes are contributing directly to cellular functions as there is, for example, the propagation of action potentials. Accordingly the dependence of these parameters on changes of gravity might be important in the field of life sciences under space conditions. In this study consequently we have performed experiments in parabolic flight campaigns utilizing the patch-clamp technology to investigate conductance and capacity of plain lipid vesicle membranes under conditions of changing gravity. Both capacity and conductance were found to be gravity dependent. The changes in capacity could be contributed to changes in membrane geometry. Significant permeability in plain lipid membranes could be only observed at high potentials, where spontaneous current fluctuations occurred. The probability of these fluctuations was gravity dependent.
TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane protein c are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.
Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca(2+) content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently.
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.
Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic NaVs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1–S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic NaVs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.
CoroNaVirus envelope (CoV E) proteins are ~100-residue polypeptides with at least one channel-forming α-helical transmembrane (TM) domain. The extramembrane C terminal tail contains a completely conserved proline, at the center of a predicted β coil β motif. This hydrophobic motif has been reported to constitute a Golgi-targeting signal, or a second TM domain. However, no structural data for this, or other extramembrane domains in CoV E proteins, is available. Herein, we show that the E protein in the severe acute respiratory syndrome (SARS) virus has only one TM domain in micelles, whereas the predicted β coil β motif forms a short membrane-bound α helix connected by a disordered loop to the TM domain. However, complementary results suggest that this motif is potentially poised for conformational change, or in dynamic exchange with other conformations.
Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.
We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1–688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ9-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1–688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca2+, or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).
The potassium channel KcsA was heterologously expressed in a eukaryotic cell-free system. Both, the expression yields and functional analysis of the protein were reported. Qualitative and quantitative analyses of KcsA expression were performed by using 14C-labeled leucine as one of the amino acids supplemented in the cell-free reaction mixture. There was a time dependent increase in the protein yield as well as the intensity of the native tetramer band in insect cell derived microsomes. Electrophysiology measurements demonstrated the functional activity of the microsomes harboring KcsA showing single-channel currents with the typical biophysical characteristics of the ion channel. The channel behavior was asymmetric and showed positive rectification with larger currents towards positive voltages. KcsA channel currents were effectively blocked by potassium selective barium (Ba2+). This functional demonstration of an ion channel in eukaryotic cell-free system has a large potential for future applications including drug screening, diagnostic applications and functional assessment of complex membrane proteins like GPCRs by coupling them to ion channels in cell-free systems. Furthermore, membrane proteins can be expressed directly from linear DNA templates within 90 min, eliminating the need for additional cloning steps, which makes this cell-free system fast and efficient.
In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.
The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis.
Many voltage-gated ion channel (VGIC) superfamily members contain six-transmembrane segments in which the first four form a voltage-sensing domain (VSD) and the last two form the pore domain (PD). Studies of potassium channels from the VGIC superfamily together with identification of voltage-sensor only proteins have suggested that the VSD and the PD can fold independently. Whether such transmembrane modularity is common to other VGIC superfamily members has remained untested. Here we show, using protein dissection, that the Silicibacter pomeroyi voltage-gated sodium channel (NaVSp1) PD forms a stand-alone, ion selective pore (NaVSp1p) that is tetrameric, α-helical, and that forms functional, sodium-selective channels when reconstituted into lipid bilayers. Mutation of the NaVSp1p selectivity filter from LESWSM to LDDWSD, a change similar to that previously shown to alter ion selectivity of the bacterial sodium channel NaVBh1 (NaChBac), creates a calcium-selective pore-only channel, CaVSp1p. We further show that production of PDs can be generalized by making pore-only proteins from two other extremophile NaVs: one from the hydrocarbon degrader Alcanivorax borkumensis (NaVAb1p), and one from the arsenite oxidizer Alkalilimnicola ehrlichei (NaVAe1p). Together, our data establish a family of active pore-only ion channels that should be excellent model systems for study of the factors that govern both sodium and calcium selectivity and permeability. Further, our findings suggest that similar dissection approaches may be applicable to a wide range of VGICs and, thus, serve as a means to simplify and accelerate biophysical, structural, and drug development efforts.
We report herein the design, total synthesis, and functional analysis of a novel artificial ion channel molecule, designated as dansylated polytheonamide mimic (3). The channel 3 was designed based on an exceptionally potent cytotoxin, polytheonamide B (1). Our strategy for the development of synthetic ion channels, which could be easily derivatized for various functions, involved two key features. First, the structure of 1 was simplified by replacing many of nonproteinogenic amino acid residues which required multistep synthesis by commercially available amino acids while retaining those residues necessary for folding. It significantly reduced the number of synthetic steps and facilitated a practical chemical construction of 3. Second, the introduction of propargyl glycine at residue 44 enabled facile installation of dansyl group as a reporter of the membrane localization of 3. Application of a newly designed protective group strategy provided efficient construction of the 37 amino acid sequence of residues 12–48 through one automatic solid-phase peptide synthesis. After peptide cleavage from the resin, 3 was synthesized via dansyl group introduction and one fragment-coupling reaction with residues 1–11, followed by the global deprotection. The simplified mimic 3 exhibited potent cytotoxicity toward p388 mouse leukemia cells (IC50 = 12 nM), effectively induced ion transport across the lipid bilayers of liposomes, and displayed H+ and Na+ ion channel activities. Because of its simplified yet functional scaffold structure with a potential for diversification, our rationally designed ion channel molecule should be useful as a novel platform for developing various cytotoxic channel molecules with additional desired functions.
A chip-based automated patch-clamp technique provides an attractive biophysical tool to quantify solute permeation through membrane channels. Proteo–giant unilamellar vesicles (proteo-GUVs) were used to form a stable lipid bilayer across a micrometer-sized hole. Because of the small size and hence low capacitance of the bilayer, single-channel recordings were achieved with very low background noise. The latter allowed the characterization of the influx of 2 major classes of antibiotics—cephalosporins and fluoroquinolones—through the major Escherichia coli porins OmpF and OmpC. Analyzing the ion current fluctuations in the presence of antibiotics revealed transport properties that allowed the authors to determine the mode of permeation. The chip-based setup allows rapid solution exchange and efficient quantification of antibiotic permeation through bacterial porins on a single-molecule level.
Mechanosensitive (MS) ion channels are the primary molecular transducers of mechanical force into electrical and/or chemical intracellular signals in living cells. They have been implicated in innumerable mechanosensory physiological processes including touch and pain sensation, hearing, blood pressure control, micturition, cell volume regulation, tissue growth, or cellular turgor control. Much of what we know about the basic physical principles underlying the conversion of mechanical force acting upon membranes of living cells into conformational changes of MS channels comes from studies of MS channels reconstituted into artificial liposomes. Using bacterial MS channels as a model, we have shown by reconstituting these channels into liposomes that there is a close relationship between the physico-chemical properties of the lipid bilayer and structural dynamics bringing about the function of these channels.
Understanding the pathogenicity of amyloid-beta (Aβ) peptides constitutes a major goal in research on Alzheimer’s disease (AD). One hypothesis entails that Aβ peptides induce uncontrolled, neurotoxic ion flux through cellular membranes. The exact biophysical mechanism of this ion flux is, however, a subject of an ongoing controversy which has attenuated progress toward understanding the importance of Aβ-induced ion flux in AD. The work presented here addresses two prevalent controversies regarding the nature of transmembrane ion flux induced by Αβ peptides. First, the results clarify that Αβ can induce stepwise ion flux across planar lipid bilayers as opposed to a gradual increase in transmembrane current; they show that the previously reported gradual thinning of membranes with concomitant increase in transmembrane current arises from residues of the solvent hexafluoroisopropanol, which is commonly used for the preparation of amyloid samples. Second, the results provide additional evidence suggesting that Aβ peptides can induce ion channel-like ion flux in cellular membranes that is independent from the postulated ability of Αβ to modulate intrinsic cellular ion channels or transporter proteins.
Connexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell–cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders. We show here that a mutant of Cx26, M34A, forms an active hemichannel in lipid bilayer experiments. A comparison with the Cx26 wild-type is presented. Two different techniques using micro/nano-structured substrates for the formation of pore-suspending lipid membranes are used. We reconstituted the Cx26 wild-type and Cx26M34A into artificial lipid bilayers and observed single channel activity for each technique, with conductance levels of around 35, 70 and 165 pS for the wild-type. The conductance levels of Cx26M34A were found at around 45 and 70 pS.
Microstructured planar substrates have been shown to be suitable for patch clamp recording from both whole cells and isolated patches of membrane, as well as for measurements from planar lipid bilayers. Here, we further explore this technology with respect to high-resolution, low noise single-channel recording. Using solvent-free lipid bilayers from giant unilamellar vesicles obtained by electro-swelling, we recorded channels formed by the peptaibol alamethicin, a well-studied model system for voltage-dependent channels, focusing on the transient dynamics of single-channel formation upon application of a voltage step. With our setup, we were able to distinctly resolve dwell times well below 100 mus and to perform a thorough statistical analysis of alamethicin gating. Our results show good agreement with models that do not rely on the existence of non-conducting preaggregate states. Microstructured apertures in glass substrates appear promising with respect to future experiments on cellular ion channels reconstituted in suspended lipid membranes.
Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time-consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation. Bilayer recordings are attractive for investigations of membrane proteins not accessible to patch clamp analysis, like e.g. proteins from organelles. In the presented work, we show the example of the outer membrane protein OmpF from Escherichiacoli. We reconstituted OmpF in proteoliposomes and observed the characteristic trimeric conductance levels and the typical gating induced by pH and transmembrane voltage. Moreover, OmpF is the main entrance for beta-lactam antibiotics and we investigated translocation processes of antibiotics and modulation of OmpF by spermine. We suggest that the rapid formation of porin containing lipid bilayers is of potential for the efficient electrophysiological characterization of the OmpF protein, for studying membrane permeation processes and for the rapid screening of antibiotics.
In 2013 the Cardiac Safety Research Consortium (CSRC), the Health and Environmental Sciences Institute (HESI), and the US Food and Drug Administration (FDA) proposed a paradigm to improve assessment of the proarrhythmic risk of therapeutic compounds. This paradigm, the Comprehensive In-vitro Proarrhythmia Assay (CiPA), was introduced to provide a more complete assessment of proarrhythmic risk by evaluating and implementing currently available high throughput methods. An important part of this is the electrophysiological evaluation of hERG, and also other cardiac channels including NaV1.5 and CaV1.2. The Q&A draft from August 2020 describes how nonclinical assays such as patch clamp can be used as a part of an integrated risk assessment prior to first-in-human studies, and in later stages of clinical development.Following up on hERG and NaV1.5 best practices and calibration standards which have been published recently on automated patch clamp devices, we show here cardiac ion channel recordings from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) or overexpressing cell lines generated with the world’s smallest patch clamp setups: Port-a-Patch and Port-a-Patch mini. Recordings at RT or physiological temperature of hERG recorded from HEK cells, and peak or late INa current recorded from iPSC-CMs or CHO cells are shown. INa-Late was activated by ATX-II and blocked by ranolazine, INa-Peak was blocked by tetracaine in a concentration-dependent manner, and hERG was blocked by increasing concentrations of dofetilide.
Calcium (Ca2+) is a universal signalling molecule and is critically important in regulating many physiological functions and survival of RBCs. Amongst others, intracellular Ca2+ controls cell volume and deformability. This process plays a substantial role in RBCs since their volume needs to adapt when passing blood vessel constrictions during the flow. Excessive Ca2+ uptake also leads to accelerated cell clearance causing anaemia.
Therefore, studying Ca2+ regulation is crucial to understand RBC diseases. Piezo1, KCa3.1 (Gardos channel) and NMDA receptors are three channels present in the RBC membrane and critical for Ca2+ regulation.
We developed functional assays to measure these channels in healthy and diseased RBCs populations using electrophysiological tools, contributing to the characterization of RBC diseases.
CHO cells expressing transient receptor potential cation channel V (TRPV) members 1, 3 and 4 and subfamily M member 8 were studied using our automated patch clamp systems, the Patchliner Octo (PL) and Port-a-Patch Perfusion (PaPP). During the recordings, heat, cold and/or ligand activation was performed. A classical ramp pulse-protocol (–100 mV to 100 mV) was applied.
Heat activation of TRPV1, 3, 4 channels was performed repeatedly by the heated pipetted (37-45 °C) of the PL. Interestingly ruthenium red (RR, 50 and 200 µM) was not able to prevent heat activation. Experiments involving TRPV4 were also performed on the PaPP. The cannel could be activated by heat and only partially blocked by RR. Ligand activation could be also performed on the PL (10 µM Capsaicin – TRPV1, 200 µM 2-APB – TRPV3, 100 nM GSK1016790 – TRPV4) and TRPV4 on the PaPP. In all cases the effect could be inhibited using blockers. TRPM8 channel could be repetitively activated using solution at 10°C on the PaPP at 10 °C. Capsazepine (10 µM) was used to block the activated current.
Both the PL and PaPP are powerful tools to study TRP channel physiology (both using heat activation and ligand activation) and could be used to find compounds which block the temperature and ligand response separately.
Piezo1, KCa3.1 (Gardos channel) and CaV2.1 are three channels present in the red blood cell membrane. We will highlight the role of these channels in Hereditary Xerocytosis as well as in the Gardos Channelopathy using electrophysiological tools. Since red blood cells are everything but under suspicion to be excitable cells, we will take these cells as an example to show that KCa3.1, CaV2.1 and Piezo1 present an intimate interplay providing evidence that voltage-activated channels can well play a substantial role in non-excitable cells.
Cell-free production is a valuable and alternative method for the synthesis of membrane proteins. This system offers openness allowing the researchers to modify the reaction conditions without any boundaries. Additionally, the cell-free reactions are scalable from 20 μL up to several mL, faster and suitable for the high-throughput protein production. Here, we present two cell-free systems derived from Escherichia coli (E. coli) and Spodoptera frugiperda (Sf21) lysates. In the case of the E. coli cell-free system, nanodiscs are used for the solubilization and purification of membrane proteins. In the case of the Sf21 system, endogenous microsomes with an active translocon complex are present within the lysates which facilitate the incorporation of the bacterial potassium channel KcsA within the microsomal membranes. Following cell-free synthesis, these microsomes are directly used for the functional analysis of membrane proteins.
Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to NaV1.7 and NaV1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of NaV1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of NaV1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.
Ethnopharmacology relevance - Pain is an unpleasant sensory and emotional experience, often accompanied by the occurrence of a variety of diseases. More than 800 kinds of traditional Chinese medicines (TCM) has now been reported for pain relief and several monomers have been developed into novel analgesic drugs. Bupleurum chinense and Angelica biserrata were representatives of the TCM that are currently available for the treatment of pain.
The Port-a-Patch mini is built on the success of the Port-a-Patch. We miniaturized this patch clamp system even further by integrating the amplifier into the system. Supporting giga-seal recordings from one cell at a time, the Port-a-Patch mini offers fast and easy access to high quality patch clamp data with only minimal training. Not only a powerful research tool but also ideal for educational purposes and quick tests of cells and ion channels.
Available at an attractive price, the Port-a-Patch mini is a powerful research tool for studying ion channels and also the ideal technology platform for teaching basic electrophysiological concepts in academic institutions.
The Port-a-Patch platform, used in the scientific work presented in this webinar, is a highly versatile patch clamp platform for high quality recordings form cells, organelles and artificial membranes.
The Port-a-Patch is a semi-automated patch clamp device supporting stable giga-seals and excellent voltage-control of the membrane.
The Port-a-Patch replaces a classical patch clamp rig, is easy to learn, still with the same quality and accuracy as known from conventional gold standard patch clamp. However, the planar geometry, compact size and versatile add-ons, allows an unprecedented experimental freedom of this platform.
This webinar shows applications that go way beyond possibilities of conventional patch-clamping, where the Port-a-Patch facilitates completely novel scientific directions. The high scientific impact of the Port-a-Patch is illustrated by its vast publications list, including high rank journals such as Science, Nature, PNAS.
TRPV4 is a member of the transient receptor potential TRPV4 is a member of the transient receptor potential channel (TRP) family. Transient receptor potential vanilloidtype 4 (TRPV4) shares approximately 40% identity with TRPV1 and TRPV2 and is a Ca2+-permeable non-selectivecation channel1-3 expressed in a wide range of tissues including neurons of the central and peripheral nervous systems, and in non-neuronal tissue including human T cells, corneal and retinal epithelial cells, endothelial cells of the eye, liver, heart, kidney, synoviocytes, epitheliallining of trachea and lung airways, stellate cells of thepancreas, and many more.
TRPM8 is a member of the transient receptor potential channel (TRP) family. TRPM8 is known to be a thermosensitive channel, activated by cold temperatures (below ~25˚C) and ligands such as menthol, Eucalyptol and icilin1-4. It belongs to the melastatin subfamily of TRP channels5 and shows an outward rectification with a relatively high permeability for calcium ions and little selectivity between monovalent cations. Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant.Here we present data of hTRPM8 collected on the Port-a-Patch using cooled solution via the External Perfusion System. Cold activated hTRPM8 was blocked by capsazepine with an IC50 in good agreement with the literature.Here we present data of hTRPM8 collected on the Port-a-Patch using cooled solution via the External Perfusion System. Cold activated hTRPM8 was blocked by capsazepine with an IC50 in good agreement with the literature.
TRPV1 and TRPM8 are members of the transient receptor potential channel (TRP) family. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential. TRPV1 is mainly expressed in sensory nerves. Its presence is essential for transduction of nociception as well as inflammatory and hypothermic effects of vanniloid compounds. It also contributes to acute thermal nociception and thermal hyperalgesia following tissue injury. TRPV1 forms a relatively Ca2+-selective ion channel with outwardly rectifying properties. It is activated by vanilloids such as capsaicin, by protons, increased temperatures, lipoxygenase products, as well as anandamide (Huang et al., 2002). Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, due to activation of TRPM8, a Ca2+-permeable, cold-activated member of the TRP superfamily of cation channels (McKemy et al., 2002; Peier et al., 2002). Here we present data of TRPV1 and TRPM8 collected on the Port-a-Patch. Channel activation with capsaicin as well as menthol are shown.
Transient receptor potential (TRP) channels are an important class of receptors found widely distributed throughout the mammalian central and peripheral nervous systems. They have been shown to be activated by many stimuli including temperature, mechano-stimulation, divalent cations and pH, amongst others. TRP channels are receiving much attention as potential targets for the treatment of, for example, pain, respiratory diseases such as asthma, cancer and immune disorders (for review see ref. 1). The TRPA1 receptor was first cloned from cultured human lung fibroblasts but has subsequently been found to be expressed in sensory neurones and is often found co-localised with TRPV1. TRPA1 is activated by a number of chemical stimuli including allyl isothiocyanate (mustard oil), cinnamaldehyde (the active ingredient of cinnamon), chlorobenzylidene malononitrile (CS tear gas), hydrogen peroxide and hyperchlorite (chlorine gas). It is thought that TRPA1, together with TRPV1, may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma. Here we present data recorded on the Port-aPatch with external perfusion showing recordings of human TRPA1 (hTRPA1) activated by increasing concentrations of allyl isothiocyanate (AITC). hTRPA1 could be repetitively stimulated using low concentrations of AITC but was desensitized by high concentrations of AITC (>10 µM).
Transient receptor potential (TRP) channels are an important class of receptors found widely distributed throughout the mammalian central and peripheral nervous systems. They have been shown to be activated by many stimuli including temperature, mechano-stimulation, divalent cations and pH, amongst others. TRP channels are receiving much attention as potential targets for the treatment of, for example, pain, respiratory diseases such as asthma, cancer and immune disorders. The TRPM7 receptor is thought to play a role in magnesium homeostasis. A role for TRPM7 in intracellular pH sensing, the pathological response to blood vessel wall injury and cell adhesion has also been suggested. In electrophysiological studies TRPM7 can be recorded using a voltage ramp protocol. It displays a characteristic large outward current with little inward current and can be blocked by the presence of internal Mg2+ ions. Here we present data recorded on the Port-a-Patch with internal perfusion showing recordings of mouse TRPM7 (mTRPM7) and block of this channel by the internal perfusion of Mg2+ ions.
Mitochondria are often referred to as the “power house” of the cell since they are responsible for making most of the cell’s energy supply in the form of adenosine triphosphate (ATP). In addition to providing the cell with energy, mitochondria are thought to have roles in cell signalling, cellular differentiation and apoptosis. They have also been implicated in the pathophysiology of neurodegenerative disorders such as Parkinson’s Disease , and may also play a role in diabetes and in the ageing process. Mitochondria are usually rod shaped and range in size from approximately 1 - 10 µm. They have an outer membrane and a highly folded inner membrane. The outer membrane is highly permeable and contains one of the most well studied mitochondrial proteins, the voltage-dependent anion channel (VDAC). The inner membrane contains many ion channels, including the Ca2+ uniporter, a KATP channel, the Ca2+-activated K+ channel (KCa) and the inner membrane anion channel (IMAC). To study the mitochondrial inner membrane using the patch clamp technique, mitoplasts were formed. This is a process whereby the mitochondria are swelled, thus rupturing the outer membrane and exposing the inner membrane.
The NaV1.7 gene (SCN9A) encodes a voltage-gated sodium (NaV) channel, primarily expressed in the peripheral nervous system and has been isolated from rat dorsal root ganglion (DRG) neurons, human medullary thyroid cancer cells (hNE-Na) and PC12 cells. Different NaV channels play a key role in modulation of action potentials in the central and peripheral nervous systems. In particular, the fast upstroke of the action potential is mediated by NaV channels. NaV channels are in part characterized by their TTX-sensitivity (TTX-resistant [TTXr], TTX-sensitive [TTXs]). NaV1.7 is a TTXs channel and is sensitive to TTX in the nanomolar range. The role of hNaV1.7 has yet to be fully elucidated but is proposed to play an important role in nociception and pain sensing. NaV1.7 has been implicated to play a role in disease pain states, in particular inflammatory pain and hypersensitivity to heat following burn injury. Common to many of the voltagegated ion channels, a number of compounds display a higher affinity for the inactivated state of the channel. For this reason, it is important to be able to reliably record both activation and inactivation kinetics of the channel. In this Application Note we present data using the Port-a-Patch characterizing CHO cells stably expressing hNaV1.7. The hNaV1.7 activation and inactivation properties and TTX sensitivity are consistent with those reported in the literature.
KV1.3 is a voltage-gated potassium channel which plays a role in human T cell activation and proliferation, cell-mediated cytotoxicity and volume regulation. It is therefore an important target for the therapeutic control of T cellresponses. The KV1.3 channel is endogenously expressed in Jurkat cells, an immortalised T lymphocyte cell line. The channel is activated by membrane depolarisation at voltages typically more positive than -40 mV with rapid activation kinetics and slower inactivation. In common with many other voltage-gated potassium channels, KV1.3 can be blocked by replacing K+ with Cs+ ions in the pipette solution. Using Nanion’s Internal Perfusion System, we were able to record stable KV1.3 currents from Jurkat cells and reliably block this potassium current by perfusing the internal side of the chip with a Cs+-containing solution. The KV1.3 mediated current could also be completely recovered by perfusing the inside of the chip with K+-containing solution. KV1.3 mediated currents can also be blocked by internal perfusion with tetraethylammonium (TEA). We present data here showing block of KV1.3 by increasing concentrationsof TEA using the Internal Perfusion System. The IC50 that we obtained for TEA applied internally was in good agreement with the literature.
Mitochondria play an important role in metabolism by providing the cell with ATP due to oxidative phosphorylation. But they are also supposed to be involved in apoptosis and cytoprotection. The mitochondrial membranes contain a large number of ion channels, transporters and pores. However the physiological role of mitochondrial channels is largely unknown. The main channel of the outer membrane is VDAC, a well described anion conductance. In the inner membrane most prominent are the permeability transition pore (PTP) and the inner membrane anion channel IMAC. Different potassium channels are described as well (mitoBK, mitoKATP and Kv1.3) and a number of calcium conducting channels and receptors (for example MCU). To study the channels of the inner mitochondrial membrane the outer membrane can be stripped of by osmotic swelling. This method was used for the examples of electrophysiological measurement with the Port-a-Patch shown below.
The hERG gene (KCNH2) encodes a potassium ion channel responsible for the repolarizing IKr current in the cardiac action potential (Sanguinetti et al., 1995). Abnormalities in this channel may lead to either Long QT syndrome (LQT2) (with loss-of-function mutations) or Short QT syndrome (with gain-of-function mutations), both potentially fatal cardiac arrhythmia, due to repolarization disturbances of the cardiac action potential. Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening. A large range of therapeutic agents with diverse chemical structures have been reported to induce long QT syndrome. These include antihistamines (e.g. Terfenadine), gastrointestinal prokinetic agents (e.g. Cisapride) and others. Here we present data collected on the Port-a-Patch. Astemizole, Terfenadine, Cisapride and Flunarizine dose-response curves on hERG expressed in CHO cells are shown. The mean current amplitude in these cells was 1076 ± 79 pA (n= 88) at -40 mV.
The hERG gene encodes a potassium channel responsible for the repolarization of the IKr current in cardiac cells. This channel is important in the repolarization of the cardiac action potential. Abnormalities in this channel can cause long or short QT syndrome, leading to potentially fatal cardiac arrhythmia. Given the importance of this channel in maintaining cardiac function, and disturbances of channel activity by certain compounds such as anti-arrhythmias and anti-psychotics, it has become an important target in compound safety screening. It is a desirable option to study this channel at physiological temperature since compounds can display different actions or potencies at physiological temperature. Here, we present data collected on the Port-a-Patch using the External Perfusion System coupled with Nanion’s Temperature Control. Cells were captured and sealed at room temperature and control recordings made before raising the temperature to 35°C so that parameters such as current peak amplitude could be compared at the two different temperatures. Furthermore, the hERG active compound, quinidine, was used at physiological temperature and a full dose response curve was achieved. This demonstrates the stability of the recordings on the Port-a-Patch at this temperature. The concentration response curve generated an IC50 similar to that obtained at room temperature, and similar to that published in the literature.
The hERG gene (KCNH2) encodes a potassium ion channel responsible for the repolarizing IKr current in the cardiac action potential (Sanguinetti et al., 1995). Abnormalities in this channel may lead to either Long QT Syndrome (LQT2) (with loss-of-function mutations) or Short QT syndrome (with gain-of-function mutations), both potentially fatal cardiac arrhythmia, due to repolarization disturbances of the cardiac action potential. Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening. A large range of therapeutic agents with diverse chemical structures have been reported to induce long QT syndrome. These include antihistamines (e.g. Terfenadine), gastrointestinal prokinetic agents (e.g. Cisapride) and others. In this report we present data that were collected on the Port-a-Patch. Cells (CHO permanently expressing hERG, supplied by Millipore) were tested. Current amplitudes, IVs and cisapride as well as quinidine dose response curves were analyzed.
The hERG gene (KCNH2) encodes a potassium ion channel responsible for the repolarizing IKr current in the cardiac action potential (Sanguinetti et al., 1995). Abnormalities in this channel may lead to either Long QT Syndrome (LQT2) (with loss-of-function mutations) or Short QT syndrome (with gain-of-function mutations), both potentially fatal cardiac arrhythmia, due to repolarization disturbances of the cardiac action potential. Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening. A large range of therapeutic agents with diverse chemical structures have been reported to induce long QT syndrome. These include antihistamines (e.g. terfenadine), gastrointestinal prokinetic agents (e.g. cisapride) and others. In this report we present data that were collected on the Port-a-Patch. Cells (HEK293 stably expressing hERG, supplied by Millipore) were tested. Current amplitudes, IVs and cisapride as well as quinidine dose-response curves were analyzed.
The gene CACNA1H encodes the α1H subunit of the voltage-gated calcium channel CaV3.2. It belongs to the low voltage-activated T-type calcium channels. CaV3.2 displays the typical characteristics of the T-type channels: activation at low depolarization of the membrane and transient kinetics. T-type Ca2+ channels are involved in diverse, mainly rhythmic processes like e.g. pacemaking and generation of thalamocortical rhythms in sleep or epilepsy. CaV3.2 is expressed in a wide variety of cells. Amongst others it has been found in kidney, smooth muscle, brain, adrenal and cardiac cells. It seems to be involved in contraction of smooth muscle and the secretion of the adrenal hormones aldosterone and cortisol. Pharmacological block of T-type channels may lead to new drugs for the treatment of hypertension and epilepsy. The biophysical and pharmacological properties of the cells are presented in this Application Note.
Gamma aminobutyric acid type A (GABAA) receptors are the most important inhibitory neurotransmitter receptors in the mammalian central nervous system (CNS). They are opened by GABA allowing the passage of chloride ions across the membrane. GABAA channels are modulated by a variety of different drugs including benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. The receptors are heteropentameric and depending on the subunit combination, they exhibit different electrophysiological and pharmacological properties. Six a-, three b-, three g-, one d-, one e-, one p-, one θ- and three r-subunits have been cloned, including splice variants of some of these subunits. Functional GABAA receptors typically assemble with two a, two b, and one g subunit, with alternating a and b subunits connected by a g subunit. GABAA receptors play a critical role in regulating excitability of the brain, anxiety, vigilance, as well as learning and memory. The a5 subunit is highly expressed in the hippocampus and olfactory bulb and expressed in low levels in other brain regions including the cortex, subiculum, hypothalamus, sympathetic preganglionic neurons, and amygdala. GABAA receptors containing the a5 subunit cluster at both extrasynaptic sites as well as synaptic sites thus contributing to tonic currents and synaptic GABA-ergic neurotransmission. a5 -containing receptors exhibit unique physiology and pharmacology and they are potential pharmacological targets for the treatment of neurodevelopmental disorders, depression, schizophrenia, and mild cognitive impairment. The Port-a-Patch with External Perfusion System was used to record a5b3g2 receptors expressed in HEK293 cells.
To provide scientists in basic or applied cardiology and toxicology with a standardized and pure cardiac myocyte model with functional expression of all essential cardiac ion channels, Axiogenesis has developed Cor.At® cardiomyocytes. These mouse embryonic stem cell derived cardiomyocytes are ready to use and 99.9 % pure without contamination by other cell types. Using the Porta-Patch®, Cor.At® cardiomyocytes have experimentally been shown to functionally express at least three essential cardiac currents INa, ICa, and IK, and to exhibit typical cardiac action potentials.
The voltage gated N-type calcium channel (CaV2.2) is encoded by the gene CACNA1B. CaV2.2 is a high voltage activated calcium channel. CaV2.2 is found mainly in the brain, where it mediates neurotransmitter release at the synapse. The strong depolarization of neuronal action potentials causes the opening of the channel. Calcium can then enter the cell and initiates the fusion of the neurotransmitter vesicles with the membrane. CaV2.2 is inhibited by w-conotoxin, a neurotoxin of the fish hunting snail, with high specificity. CaV2.2 has been implicated in the transmission of pain. Pharmacological block of CaV2.2 by compounds based on w-conotoxin has been shown to be effective against strong chronical pain. The biophysical and pharmacological properties of the cells are presented in this Application Note.
The P2X4 receptor is a ligand-gated ion channel activated by extracellular ATP. P2X4 activity is associated with neuropathic pain, vasodilation, and pulmonary secretion and is therefore of therapeutic interest. The structure-activity relationship of P2X4 antagonists is poorly understood. Here we elucidate the structure-activity of 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) at human P2X4 by combining pharmacology, electrophysiology, molecular modeling, and medicinal chemistry. 5-BDBD antagonized P2X4 in a noncompetitive manner but lacked effect at human P2X2. Molecular modeling and site-directed mutagenesis suggested an allosteric binding site for 5-BDBD located between two subunits in the body region of P2X4, with M109, F178, Y300, and I312 on one subunit and R301 on the neighboring subunit as key residues involved in antagonist binding. The bromine group of 5-BDBD was redundant for the antagonist activity of 5-BDBD, although an interaction between the carbonyl group of 5-BDBD and R301 in P2X4 was associated with 5-BDBD activity. 5-BDBD could inhibit the closed channel but poorly inhibited the channel in the open/desensitizing state. We hypothesize that this is due to constriction of the allosteric site after transition from closed to open channel state. We propose that M109, F178, Y300, R301, and I312 are key residues for 5-BDBD binding; provide a structural explanation of how they contribute to 5-BDBD antagonism; and highlight that the limited action of 5-BDBD on open versus closed channels is due to a conformational change in the allosteric site.
Bacterial membranes are not easy to patch clamp. Since bacterial ion channels are of increasing interest, we started to optimize the protocols for patch clamping bacterial spheroplasts with the Port-a-Patch. Bacterial spheroaplasts can be prepared up to a size of 5 µm. They consist of the inner bacterial membrane. This technique was first used for patch clamp experiments by Boris Matrinac in 1987 and let to the discovery of mechanosensitive channels in E. coli. Here we describe the preparation of Spheroplasts out of E. coli and show ion channel currents recorded with the Port-a-Patch.
Brain–machine interfaces typically rely on electrophysiological signals to interpret and transmit neurological information. In biological systems, however, neurotransmitters are chemical-based interneuron messengers. This mismatch can potentially lead to incorrect interpretation of the transmitted neuron information. Here we report a chemically mediated artificial neuron that can receive and release the neurotransmitter dopamine. The artificial neuron detects dopamine using a carbon-based electrochemical sensor and then processes the sensory signals using a memristor with synaptic plasticity, before stimulating dopamine release through a heat-responsive hydrogel. The system responds to dopamine exocytosis from rat pheochromocytoma cells and also releases dopamine to activate pheochromocytoma cells, forming a chemical communication loop similar to interneurons. To illustrate the potential of this approach, we show that the artificial neuron can trigger the controllable movement of a mouse leg and robotic hand.
Synacinn is a standardized polyherbal extract formulated for the treatment of diabetes mellitus and its complications. This study aims to assess the mutagenicity potential of Synacinn by Ames assay and in vivo bone marrow micronucleus (MN) test on Sprague Dawley rat. Human ether-a-go-go-related gene (hERG) assay and Functional Observation Battery (FOB) were done for the safety pharmacology tests. In the Ames assay, Dose Range Finding (DRF) study and mutagenicity assays (+/− S9) were carried out. For the MN test, a preliminary and definitive study were conducted. In-life observations and number of immature and mature erythrocytes in the bone marrow cells were recorded. The hERG assay was conducted to determine the inhibitory effect on hERG potassium channel current expressed in human embryonic kidney cells (HEK293). FOB tests were performed orally (250, 750, and 2000 mg/kg) on Sprague Dawley rats. Synacinn is non-mutagenic against all tested strains of Salmonella typhimurium and did not induce any clastogenicity in the rat bone marrow. Synacinn also did not produce any significant inhibition (p ≤ 0.05) on hERG potassium current. Synacinn did not cause any neurobehavioural changes in rats up to 2000 mg/kg. Thus, no mutagenicity, cardiotoxicity and neurotoxicity effects of Synacinn were observed in this study.
Water and ionic homeostasis of red blood cells (RBC) is regulated by various active and passive transport mechanisms in the RBC membrane, including channels like aquaporins, the mechanically activated non-selective cation channel Piezo1 and the Ca2+-activated potassium channel KCa3.1. The human genome contains 27 genes that code for transient receptor potential (TRP) channels. The only TRP channel protein that has been detected in circulating mouse RBC is TRPC6, which might be associated with basal Ca2+ leakage and stress-stimulated Ca2+ entry. TRPC2 and TRPC3 are expressed by murine erythroid precursors and splenic erythroblasts, and in these cells, erythropoietin stimulates an increase in intracellular calcium concentration via TRPC2 and TRPC3. In this study we identified the TRP vanilloid (TRPV) 2 channel protein in mouse and human RBC by specific antibodies and mass spectrometry. TRPV2-dependent currents and Ca2+ entry were activated by the TRPV2 agonists cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) resulting in a leftshift of the hypotonicity-dependent hemolysis curve. This effect was reversed in the presence of the KCa3.1 inhibitor TRAM-34, whereas the knockout of Trpv2 right-shifted the hemolysis curve to higher tonicities.
Oseltamivir has been shown to prolong the atrial conduction time and effective refractory period, and to suppress the onset of burst pacing-induced atrial fibrillation in vitro. To better predict its potential clinical benefit as an anti-atrial fibrillatory drug, we performed translational studies by assessing in vivo anti-atrial fibrillatory effect along with in vivo and in vitro electropharmacological analyses. Oseltamivir in intravenous doses of 3 (n = 6) and 30 mg/kg (n = 7) was administered in conscious state to the persistent atrial fibrillation model dogs to confirm its anti-atrial fibrillatory action. The model was prepared by tachypacing to the atria of chronic atrioventricular block dogs for > 6 weeks. Next, oseltamivir in doses of 0.3, 3 and 30 mg/kg was intravenously administered to the halothane-anesthetized intact dogs to analyze its in vivo electrophysiological actions (n = 4). Finally, its in vitro effects of 10–1,000 μM on IK,ACh, IKur, IKr, INa and ICaL were analyzed by using cell lines stably expressing Kir3.1/3.4, KV1.5, hERG, NaV1.5 or CaV1.2, respectively (n = 3 for IK,ACh and IKr or n = 6 for IKr, INa and ICaL). Oseltamivir in doses of 3 and 30 mg/kg terminated the atrial fibrillation in 1 out of 6 and in 6 out of 7 atrial fibrillation model dogs, respectively without inducing any lethal ventricular arrhythmia. Its 3 and 30 mg/kg delayed inter-atrial conduction in a frequency-dependent manner, whereas they prolonged atrial effective refractory period in a reverse frequency-dependent manner in the intact dogs. The current assay indicated that IC50 values for IK,ACh and IKr were 160 and 231 μM, respectively, but 1,000 µM inhibited INa, ICaL and IKur by 22, 19 and 13%, respectively. The extent of INa blockade was enhanced at faster beating rate and more depolarized resting membrane potential. Oseltamivir effectively terminated the persistent atrial fibrillation, which may be largely due to the prolongation of the atrial effective refractory period and inter-atrial conduction time induced by IK,ACh and IKr inhibitions along with INa suppression. Thus, oseltamivir can exert a powerful anti-atrial fibrillatory action through its ideal multi-channel blocking property; and oseltamivir would become a promising seed compound for developing efficacious and safe anti-atrial fibrillatory drugs.
Background & purpose: P2X4 is a ligand-gated cation channel activated by extracellular ATP, involved in neuropathic pain, inflammation and arterial tone.
Experimental approach: Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca2+ responses; whole-cell currents were measured by patch clamp electrophysiological. Human primary macrophage chemokine release was used to assess effect of taspine on inflammatory cell function. An enzymatic assay was performed to assess the effect of taspine on recombinant PI3-kinase.
Key Results: A natural product screen identified taspine as an inhibitor of humanP2X4 activity. Taspine inhibits human and mouse P2X4-mediated Ca2+ influx in 1321N1 cells expressing receptors but lacked activity at human P2X2, P2X3, P2X2/3 and P2X7 receptors. Taspine inhibited the maximal response at human and mouse P2X4 but effective on ATP potency. Taspine has a slow onset rate (∼15 min for half-maximal inhibition), irreversible over 30 min of washout. Taspine inhibitsP2X4-mediated Ca2+ signalling in mouse BV-2 microglia cells and human primary macrophage. Taspine inhibited P2X4-mediated CXCL5 secretion in human primary macrophage. Taspine reversed ivermectin-induced potentiation of P2X4 currents in1321N1 stably expressing cells. The PI3-kinase inhibitor LY294002 mimicked the properties of taspine on P2X4-mediated Ca2+ influx and whole-cell currents. Taspine directly inhibited the enzymatic activity of recombinant PI3-kinase in a competitive manner.
Conclusion and Implications: Taspine is a novel natural product P2X4 receptor inhib-itor, mediating its effect through PI3-kinase inhibition rather than receptor antagonism. Taspine can inhibit the pro-inflammatory signalling by P2X4 in human primary macrophage.
Background and Purpose: Sodium channel inhibitors can be used to treat hyperexcitability‐related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described.Experimental Approach: Patch‐clamp experiments with ultra‐fast solution exchange and photolabeling‐coupled electrophysiology were applied to describe the unique mechanism of riluzole on NaV1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding.Key Results: We present evidence that riluzole acts predominantly by non‐blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized.Conclusions and Implications: Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel’s function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Buthus martensii Karsch (BmK), is a kind of traditional Chinese medicine, which has been used for a long history for the treatment of many diseases, such as inflammation, pain and cancer. In this study, DKK-SP1/2/3 genes were screened and extracted from the cDNA library of BmK.The DKK-SP1/2/3 were expressed by using plasmid pSYPU-1b in E. coli BL21, and recombinant proteins were obtained by column chromatography. In the xylene-induced mouse ear swelling and carrageenan-induced rat paw swelling model, DKK-SP1 exerted a significant anti-inflammatory effect by inhibiting the expression of NaV1.8 channel. Meanwhile, the release of pro-inflammatory cytokines(COX-2, IL-6) was decreased significantly and the release of anti-inflammatory cytokines (IL-10) were elevated significantly. Moreover, DKK-SP1 could significantly decrease the NaV1.8 current in acutelyisolated rat DRG neurons. In the acetic acid-writhing and ION-CCI model, DKK-SP2 displayed significant analgesic activity by inhibiting the expression of the NaV1.7 channel. Moreover, DKK-SP2 could significantly inhibit the NaV1.7 current in the hNaV1.7-CHO cells.
Corneal stromal wound healing is a well-balanced process promoted by overlapping phases including keratocyte proliferation, inflammatory-related events, and tissue remodeling. L-carnitine as a natural antioxidant has shown potential to reduce stromal fibrosis, yet the underlying pathway is still unknown. Since transient receptor potential vanilloid 1 (TRPV1) is a potential drug target for improving the outcome of inflammatory/fibrogenic wound healing, we investigated if L-carnitine can mediate inhibition of the fibrotic response through suppression of TRPV1 activation in human corneal keratocytes (HCK). We determined TRPV1-induced intracellular calcium transients using fluorescence calcium imaging, channel currents by planar patch-clamping, and cell migration by scratch assay for wound healing. The potential L-carnitine effect on TRPV1-induced myofibroblast transdifferentiation was evaluated by immunocytochemical detection of alpha smooth muscle actin. RT-PCR analysis confirmed TRPV1 mRNA expression in HCK. L-carnitine (1 mmol/l) inhibited either capsaicin (CAP) (10 µmol/l), hypertonic stress (450 mOsmol/l), or thermal increase (>43 °C) induced Ca2+ transients and corresponding increases in TRPV1-induced inward and outward whole-cell currents. This was accompanied by suppression of injury-induced increases in myofibroblast transdifferentiation and cell migration. In conclusion, L-carnitine contributes to inhibit stromal scarring through suppressing an injury-induced intrinsic TRPV1 activity that is linked with induction of myofibroblast transdifferentiation in HCK cells.
Non-steroidal Anti-inflammatory Drugs (NSAIDs) are widely used because of their excellent anti-inflammatory and analgesic effects. However, NSAIDs could cause certain cardiac side effects, such as myocardial infarction, heart failure, atrial fibrillation, arrhythmia and sudden cardiac death. Therefore, meloxicam, nimesulide, piroxicam, and diclofenac were selected and the whole cell patch clamp technique was used to investigate the electrophysiological regulatory effects of them on the sodium channel hNaV1.5 and potassium channel hKV11.1, which were closely associated to the biotoxicity of cardiac, and to explore the potential cardiac risk mechanism. The results showed that the four NSAIDs could inhibit the peak currents of hNaV1.5 and hKV11.1. Furthermore, the four NSAIDs could affect both the activation and inactivation processes of hNaV1.5 with I–V curves left-shifted to hyperpolarized direction in activation phase. These data indicate that the inhibition effects of NaV1.5 and KV11.1 by meloxicam, nimesulide, piroxicam, and diclofenac might contribute to their potential cardiac risk. These findings provide a basis for the discovery of other potential cardiac risk targets for NSAIDs.
Tetrameric ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the mammalian central nervous system and are involved in learning, memory formation, and pathological processes. Based on structural and sequence similarities of the ligand-binding and channel domains of iGluR subunits to bacterial binding proteins and potassium channels, iGluRs are thought to have originally arisen from their fusion. Here we report the functional coupling of the bacterial ectoine binding protein EhuB to the channel pore-forming transmembrane domains of the bacterial GluR0 receptor by stabilization of dimeric binding domains. Insertion of a disulfide bridge in the dimer interface abolished desensitization of the channel current analogous to mammalian iGluRs. These results demonstrate the functional compatibility of bacterial binding proteins to the gate of the channel pore of an iGluR. Moreover, our results highlight the modular structure and crucial role of binding domain dimerization in the functional evolution of iGluRs.
Background and Purpose: Glucosylsphingosine (GS), an endogenous sphingolipid, is highly accumulated in the epidermis of patients with atopic dermatitis (AD) due to abnormal ceramide metabolism. More importantly, GS can evoke scratching behaviors. However, the precise molecular mechanism by which GS induces pruritus has been elusive. Thus, the present study aimed to elucidate the molecular signaling pathway of GS, especially at the peripheral sensory neuronal levels.Experimental Approach: Calcium imaging was used to investigate the responses of HEK293T cells or mouse dorsal root ganglion (DRG) neurons to application of GS. Scratching behavior tests were also performed with wild-type and Trpv4 knockout mice.Key Results: GS activated DRG neurons in a manner involving both the 5-HT2A receptor and TRPV4. Furthermore, GS-induced responses were significantly suppressed by various inhibitors, including ketanserin (5-HT2A receptor antagonist), YM254890 (Gαq/11 inhibitor), gallein (Gβγ complex inhibitor), U73122 (phospholipase C inhibitor), bisindolylmaleimide I (PKC inhibitor), and HC067047 (TRPV4 antagonist). Moreover, DRG neurons from Trpv4 knockout mice exhibited significantly reduced responses to GS. Additionally, GS-evoked scratching behaviors were greatly decreased by pretreatment with inhibitors of either 5-HT2A receptor or TRPV4. As expected, GS-evoked scratching behavior was also significantly decreased in Trpv4 knockout mice.Conclusion and Implications: Overall, the present study provides evidence for a novel molecular signaling pathway for GS-evoked pruritus, which utilizes both 5-HT2A receptor and TRPV4 in mouse sensory neurons. Considering the high accumulation of GS in the epidermis of patients with AD, GS could be another pruritogen in patients with AD.
Standard high throughput screening projects using automated patch-clamp instruments often fail to grasp essential details of the mechanism of action, such as binding/unbinding dynamics and modulation of gating. In this study, we aim to demonstrate that depth of analysis can be combined with acceptable throughput on such instruments. Using the microfluidics-based automated patch clamp, IonFlux Mercury, we developed a method for a rapid assessment of the mechanism of action of sodium channel inhibitors, including their state-dependent association and dissociation kinetics. The method is based on a complex voltage protocol, which is repeated at 1 Hz. Using this time resolution we could monitor the onset and offset of both channel block and modulation of gating upon drug perfusion and washout. Our results show that the onset and the offset of drug effects are complex processes, involving several steps, which may occur on different time scales. We could identify distinct sub-processes on the millisecond time scale, as well as on the second time scale. Automated analysis of the results allows collection of detailed information regarding the mechanism of action of individual compounds, which may help the assessment of therapeutic potential for hyperexcitability-related disorders, such as epilepsies, pain syndromes, neuromuscular disorders, or neurodegenerative diseases.
Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria.
Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.
Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.
Antitumor-analgesic peptide (AGAP), one scorpion toxin purified from Buthus martensii Karsch, was known as its analgesic and antitumor activities. Trp38, a conserved aromatic residue of AGAP, might play important roles in its interaction with sodium channels. In this study, a mutant W38F was generated and effects of W38F were examined on hNaV1.4, hNaV1.5, and hNaV1.7 by using whole cell patch clamp, which were closely associated to the biotoxicity of skeletal and cardiac muscles, and pain signaling. The data showed that W38F decreased the inhibition effects of peak currents of hNaV1.7, hNaV1.4, and hNaV1.5 compared with AGAP, notably, W38F reduced the analgesic activity compared with AGAP. The results suggested that Trp38 be a crucial amino acid involved in the interaction with these three sodium channels. The decreased analgesic activity of W38F might result from its much less inhibition of hNaV1.7. These findings provided more information about the relationship between structure and function of AGAP and may facilitate the modification of other scorpion toxins with pharmacological effects.
Optogenetics holds great potential for precisely altering living cell behavior with the aid of light because of its high temporospatial resolution. However, the light-dependent manner severely limits its applications in deep tissues, particularly to those in the visible region. Here, we propose a wireless charging electrochemiluminescence (ECL) system, featured with long-time delayed luminescence, to remotely activate the light-gated ion channel (channelrhodopsin-2, ChR2) on the living cell membrane, followed by the intracellular influx of Ca2+ ions. Upon wireless charging ECL illumination, the influx of Ca2+ into the living cells triggers strong ion indicator fluorescence, suggesting the successful remote control on ChR2. As such, the wireless charging ECL strategy exhibits great potential to wireless control of optogenetics in deep tissues by implanting a device in vivo.
Sodium channel inhibitor drugs can exert their effect by either blocking, or modulating the channel. The extent of modulation versus channel block is crucial regarding the therapeutic potential of drug candidates. Modulation can be selective for pathological hyperactivity, while channel block affects vital physiological function as much as pathological activity. Previous results indicated that riluzole, a drug with neuroprotective and antiepileptic effects, may have a unique mechanism of action, where modulation is predominant, and channel block is negligible. We studied the effects of riluzole on rNaV1.4 channels expressed in HEK cells. We observed that inhibition by riluzole disappeared and reappeared at a rate that could not be explained by association/dissociation dynamics. In order to verify the mechanism of non-blocking modulation, we synchronized photolabeling with the voltage clamp protocol of patch-clamp experiments. Using this method, we could bind a photoreactive riluzole analog covalently to specific conformations of the channel. Photolabeling was ineffective at resting conformation, but effective at inactivated conformation, as judged from persisting modulated gating after removal of unbound photoactive drug from the solution. Mutation of the key residue of the local anesthetic binding site (F1579A) did not fully prevent ligand binding and inhibition, however, it eliminated most of the modulation caused by ligand binding. Our results indicate that riluzole binds with highest affinity to the local anesthetic binding site, which transmits inhibition by the unique non-blocking modulation mechanism. Our results also suggest the existence of one or more additional binding sites, with lower affinity, and different inhibition mechanism.
The transient receptor potential (TRP) channels family are cationic channels involved in various physiological processes as pain, inflammation, metabolism, swallowing function, gut motility, thermoregulation or adipogenesis. In the oral CaVity, TRP channels are involved in chemesthesis, the sensory chemical transduction of spicy ingredients. Among them, TRPA1 is activated by natural molecules producing pungent, tingling or irritating sensations during their consumption. TRPA1 can be activated by different chemicals found in plants or spices such as the electrophiles isothiocyanates, thiosulfinates or unsaturated aldehydes. TRPA1 has been as well associated to various physiological mechanisms like gut motility, inflammation or pain. Cinnamaldehyde, its well known potent agonist from cinnamon, is reported to impact metabolism and exert anti-obesity and anti-hyperglycemic effects. Recently, a structurally similar molecule to cinnamaldehyde, cuminaldehyde was shown to possess anti-obesity and anti-hyperglycemic effect as well. We hypothesized that both cinnamaldehyde and cuminaldehyde might exert this metabolic effects through TRPA1 activation and evaluated the impact of cuminaldehyde on TRPA1. The results presented here show that cuminaldehyde activates TRPA1 as well. Additionally, a new natural agonist of TRPA1, tiglic aldehyde, was identified and p-anisaldehyde confirmed.
Inositol-1,4,5-triphosphate-receptor 1 (IP3R1), a Ca2+ channel in the sarcoplasmic reticulum membrane, is an effective regulator of Ca2+ release involved in the pathology of most cardiovascular diseases. Our study aim to investigate the underlying mechanism by which IP3R1 signaling mediates the process of homocysteine (Hcy)-induced Ca2+ accumulation via interaction with sodium current (NaV1.5) in atrium. We utilized whole-cell patch-clamp analysis and flow cytometry to detect the abnormal electrical activity in mouse atrial myocytes (MACs) obtained from C57B6 mice fed with high-Hcy diet. The results represented not only an increase in protein levels of NaV1.5 and IP3R1, but also an enhanced intracellular levels of Ca2+, and prolonged action potential duration (APD). However, the inhibition of IP3R1 or NaV1.5 gene could both attenuate Ca2+ accumulation in MACs triggered by Hcy, as well as abnormal electrical activity. In addition, Hcy increased the interaction between IP3R1 and NaV1.5. These data suggest that Hcy induced Ca2+ accumulation is mediated by the IP3R1/NaV1.5 signaling pathway, accompanied with the influx of Na+ and Ca2+, which act as triggers for electrical remodeling.
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.
Chronic hepatitis C virus (HCV) infection has a close association with type 2 diabetes mellitus. Although the mechanisms of insulin resistance in chronic hepatitis C (CHC) patients have been extensively studied, little attention has been given to the role of β-cell function in HCV-associated diabetes. Here, we analysed β-cell function in CHC patients and HCV-infected mouse model and found in addition to insulin resistance, impaired pancreatic β-cell function occurred in CHC patients and HCV-infected C/OTg mice, not only in diabetic individuals but also in individuals with impaired fasting glucose levels. Both first-phase and second-phase insulin secretion were impaired, at least partially due to the reduction of exocytosis of secretory insulin-containing granules following HCV infection. Up-regulated p38δ in HCV-infected β-cells resulted in inactivation of protein kinase D (PKD), which was responsible for impaired insulin secretory capacity of β-cells. Thus, impaired insulin secretion due to HCV infection in β-cells contributes to HCV-associated type 2 diabetes. These findings provided a new inspiration for the important prognostic and therapeutic implications in the management of CHC patients with impaired fasting glucose.
Voltage-gated sodium channels are crucial mediators of neuronal damage in ischemic and excitotoxicity disease models. Fenamates have been reported to have anti-inflammatory properties following a decrease in prostaglandin synthesis. Several researches showed that fenamates appear to be ion channel modulators and potential neuroprotectants. In this study, the neuroprotective effects of tolfenamic acid, flufenamic acid, and mefenamic acid were tested by glutamate-induced injury in SH-SY5Y cells. Following this, fenamates' effects were examined on both the expression level and the function of hNaV1.1 and hNaV1.2, which were closely associated with neuroprotection, using Western blot and patch clamp. Finally, the effect of fenamates on the expression of apoptosis-related proteins in SH-SY5Y cells was examined. The results showed that both flufenamic acid and mefenamic acid exhibited neuroprotective effects against glutamate-induced injury in SH-SY5Y cells. They inhibited peak currents of both hNaV1.1 and hNaV1.2. However, fenamates exhibited decreased inhibitory effects on hNaV1.1 when compared to hNaV1.2. Correspondingly, the inhibitory effect of fenamates was found to be consistent with the level of neuroprotective effects in vitro. Fenamates inhibited glutamate-induced apoptosis through the modulation of the Bcl-2/Bax-dependent cell death pathways. Taken together, NaV1.2 might play a part in fenamates' neuroprotection mechanism. NaV1.2 and NMDAR might take part in the neuroprotection mechanism of the fenamates. The fenamates inhibited glutamate-induced apoptosis through modulation of the Bcl-2/Bax-dependent cell death pathways.
There are indications that pharmacological doses of ascorbate (Asc) used as an adjuvant improve the chemotherapeutic management of cancer. This favorable outcome stems from its cytotoxic effects due to prooxidative mechanisms. Since regulation of intracellular Ca2+ levels contributes to the maintenance of cell viability, we hypothesized that one of the effects of Asc includes disrupting regulation of intracellular Ca2+ homeostasis. Accordingly, we determined if Asc induced intracellular Ca2+ influx through activation of pertussis sensitive Gi/o-coupled GPCR which in turn activated transient receptor potential (TRP) channels in both etoposide-resistant and -sensitive retinoblastoma (WERI-Rb1) tumor cells. Ca2+ imaging, whole-cell patch-clamping, and quantitative real-time PCR (qRT-PCR) were performed in parallel with measurements of RB cell survival using Trypan Blue cell dye exclusion. TRPM7 gene expression levels were similar in both cell lines whereas TRPV1, TRPM2, TRPA1, TRPC5, TRPV4, and TRPM8 gene expression levels were downregulated in the etoposide-resistant WERI-Rb1 cells. In the presence of extracellular Ca2+, 1 mM Asc induced larger intracellular Ca2+ transients in the etoposide-resistant WERI-Rb1 than in their etoposide-sensitive counterpart. With either 100 µM CPZ, 500 µM La3+, 10 mM NAC, or 100 µM 2-APB, these Ca2+ transients were markedly diminished. These inhibitors also had corresponding inhibitory effects on Asc-induced rises in whole-cell currents. Pertussis toxin (PTX) preincubation blocked rises in Ca2+ influx. Microscopic analyses showed that after 4 days of exposure to 1 mM Asc cell viability fell by nearly 100% in both RB cell lines. Taken together, one of the effects underlying oxidative mediated Asc-induced WERI-Rb1 cytotoxicity stems from its promotion of Gi/o coupled GPCR mediated increases in intracellular Ca2+ influx through TRP channels. Therefore, designing drugs targeting TRP channel modulation may be a viable approach to increase the efficacy of chemotherapeutic treatment of RB. Furthermore, Asc may be indicated as a possible supportive agent in anti-cancer therapies.
As key players in cell function, ion channels are important targets for drug discovery and therapeutic development against a wide range of health conditions. Thus, developing assays to reconstitute ion channel macromolecular complexes in physiological conditions and screen for chemical modifiers of protein–protein interactions within these complexes is timely in drug discovery campaigns. For most ion channels, expressing their pore-forming subunit in heterologous mammalian cells has now become a routine procedure. However, reconstituting protein-channel complexes in physiological environments is still challenging, limiting our ability to identify tools and probes based on allosteric mechanisms, which could lead to more targeted and precise modulation of the channel function. Here, we describe the assay development steps to stably reconstitute the interaction between voltage-gated Na+ (NaV) channel NaV1.6 and its accessory protein, fibroblast growth factor 14 (FGF14) using the split-luciferase complementation assay (LCA), followed by assay miniaturization and optimization in 384-well plates for in-cell high-throughput screening (HTS) against protein-channel interactions. This optimized LCA can subsequently be used for rapid estimation of hit potency and efficacy via dose-dependency studies, enabling ranking of hits prior to more labor-intensive validation studies. Lastly, we introduce the methodology for rapid functional hit validation studies using semi-automated planar patch-clamp electrophysiology. Our robust, in-cell HTS platform can be adapted to any suitable ion channel complex to explore regulatory pathways of cellular signaling using kinase inhibitors, as well as to screen small molecules for probe development and drug repurposing toward new targets/areas of medicine. Overall, the flexibility of this assay allows users to broadly explore therapeutic options for channelopathy-associated diseases at a fast pace, enabling rapid hypothesis generation in early phase drug discovery campaigns and narrowing down targets prior to more labor-intensive in vivo studies.
One of the most commonly used strategies to reduce hERG (human ether-a-go-go) activity in the drug candidates is introduction of a carboxylic acid group. During the optimization of PPARδ modulators, some of the compounds containing a carboxylic acid were found to inhibit the hERG channel in a patch clamp assay. By modifying the basicity of the imidazole core, potent and selective PPARδ modulators that do not inhibit hERG channel were identified. Some of the modulators have excellent pharmacokinetic profiles in mice.
Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.
AimsWomen with long QT syndrome 2 (LQT2) have a particularly high postpartal risk for lethal arrhythmias. We aimed at investigating whether oxytocin and prolactin contribute to this risk by affecting repolarization.Methods and resultsIn female transgenic LQT2 rabbits (HERG-G628S, loss of IKr), hormone effects on QT/action potential duration (APD) were assessed (0.2–200 ng/L). Hormone effects (200 ng/L) on ion currents and cellular APD were determined in transfected cells and LQT2 cardiomyocytes. Hormone effects on ion channels were assessed with qPCR and western blot. Experimental data were incorporated into in silico models to determine the pro-arrhythmic potential. Oxytocin prolonged QTc and steepened QT/RR-slope in vivo and prolonged ex vivo APD75 in LQT2 hearts. Prolactin prolonged APD75 at high concentrations. As underlying mechanisms, we identified an oxytocin- and prolactin-induced acute reduction of IKs-tail and IKs-steady (−25.5%, oxytocin; −13.3%, prolactin, P 0.05) in CHO-cells and LQT2-cardiomyocytes. IKr currents were not altered. This oxytocin-/prolactin-induced IKs reduction caused APD90 prolongation (+11.9%/+13%, P 0.05) in the context of reduced/absent IKr in LQT2 cardiomyocytes. Hormones had no effect on IK1 and ICa,L in cardiomyocytes. Protein and mRNA levels of CACNA1C/CaV1.2 and RyR2 were enhanced by oxytocin and prolactin. Incorporating these hormone effects into computational models resulted in reduced repolarization reserve and increased propensity to pro-arrhythmic permanent depolarization, lack of capture and early afterdepolarizations formation.ConclusionsPostpartum hormones oxytocin and prolactin prolong QT/APD in LQT2 by reducing IKs and by increasing CaV1.2 and RyR2 expression/transcription, thereby contributing to the increased postpartal arrhythmic risk in LQT2.
Stereotyped behaviors are series of postures that show very little variability between repeats. They have been used to classify the dynamics of individuals, groups and species without reference to the lower-level mechanisms that drive them. Stereotypes are easily identified in animals due to strong constraints on the number, shape, and relative positions of anatomical features, such as limbs, that may be used as landmarks for posture identification. In contrast, the identification of stereotypes in single cells poses a significant challenge as the cell lacks these landmark features, and finding constraints on cell shape is a non-trivial task. Here, we use the maximum caliber variational method to build a minimal model of cell behavior during migration. Without reference to biochemical details, we are able to make behavioral predictions over timescales of minutes using only changes in cell shape over timescales of seconds. We use drug treatment and genetics to demonstrate that maximum caliber descriptors can discriminate between healthy and aberrant migration, thereby showing potential applications for maximum caliber methods in automated disease screening, for example in the identification of behaviors associated with cancer metastasis.
Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca2+-permeable NMDARs in three glioblastoma cell lines. Therefore, we investigated the impact of this receptor on cell survival, migration and DNA double-strand break (DSB) repair in the presence of both, glutamate and NMDAR antagonists, and after clinically relevant doses of ionizing radiation. Our results indicate that treatment with NMDAR antagonists slowed the growth and migration of glutamate-releasing LN229 cells, suggesting that activation of NMDARs facilitate tumor expansion. Furthermore, we found that DSB-repair upon radiation was more effective in the presence of glutamate. In contrast, antagonizing the NMDAR or the Ca2+-dependent transcription factor CREB impaired DSB-repair similarly and resulted in a radiosensitizing effect in LN229 and U-87MG cells, indicating a common link between NMDAR signaling and CREB activity in glioblastoma. Since the FDA-approved NMDAR antagonists memantine and ifenprodil showed differential radiosensitizing effects, these compounds may constitute novel optimizations for therapeutic interventions in glioblastoma..
5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a non-specific chloride channel blocker. Peritoneal adhesion is an inevitable complication of abdominal surgery and remains an important clinical problem, leading to chronic pain, intestinal obstruction, and female infertility. The aim of this study is to observe the effects of NPPB on peritoneal adhesions and uncover the underlying mechanism. The formation of postoperative peritoneal adhesions was induced by mechanical injury to the peritoneum of rats. MTT assay and wound-healing assay were used to evaluate proliferation and migration of primary cultured adhesion fibroblasts (AFB) respectively. Whole-cell chloride currents were measured using a fully automated patch-clamp workstation. Cell volume changes were monitored by light microscopy and video imaging. Our results demonstrated that NPPB could significantly prevent the formation of peritoneal adhesion in rats and inhibit the proliferation of AFB in a concentration-dependent manner. NPPB also reduced the migration of AFB cells with an IC50 of 53.09 μM. A 47% hypotonic solution successfully activated the ICl,vol in AFB cells. The current could be blocked by extracellular treatment with NPPB. Moreover, 100 μM NPPB almost completely eliminated the capacity of regulatory volume decrease (RVD) in these cells. These data indicate that NPPB could prevent the formation of postoperative peritoneal adhesions. The possible mechanism may be through the inhibition of the proliferation and migration of AFB cells by modulating ICl,vol and cell volume. These results suggest a potential clinical use of NPPB for preventing the formation of peritoneal adhesions.
Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites. Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.
Store-operated Ca2+ entry (SOCE) is the most important Ca2+ entry pathway in non-excitable cells. Colorectal cancer (CRC) shows decreased Ca2+ store content and enhanced SOCE that correlate with cancer hallmarks and are associated to remodeling of store-operated channels (SOCs). Normal colonic cells display small, Ca2+-selective currents driven by Orai1 channels. In contrast, CRC cells display larger, non-selective currents driven by Orai1 and transient receptor potential canonical type 1 channels (TRPC1). Difluoromethylornithine (DFMO), a suicide inhibitor of ornithine decarboxylase (ODC), the limiting step in polyamine biosynthesis, strongly prevents CRC, particularly when combined with sulindac. We asked whether DFMO may reverse SOC remodeling in CRC. We found that CRC cells overexpress ODC and treatment with DFMO decreases cancer hallmarks including enhanced cell proliferation and apoptosis resistance. Consistently, DFMO enhances Ca2+ store content and decreases SOCE in CRC cells. Moreover, DFMO abolish selectively the TRPC1-dependent component of SOCs characteristic of CRC cells and this effect is reversed by the polyamine putrescine. Combination of DFMO and sulindac inhibit both SOC components and abolish SOCE in CRC cells. Finally, DFMO treatment inhibits expression of TRPC1 and stromal interaction protein 1 (STIM1) in CRC cells. These results suggest that polyamines contribute to Ca2+ channel remodeling in CRC, and DFMO may prevent CRC by reversing channel remodeling
Background: Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and KV1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and KV1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and KV1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA.
Methods: We used in vitro functional assays to assess the effects of selective KCa1.1 and KV1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and KV1.3 blockers in reducing disease severity compared with monotherapies.
Results: We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and KV1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting KV1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and KV1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA.
Conclusions: Our results demonstrate the importance of KCa1.1 and KV1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.
Fenamates are N-substituted anthranilic acid derivatives, clinically used as nonsteroidal anti-inflammatory drugs (NSAIDs) in fever, pain and inflammation treatments. Previous studies have shown that they are also modulators of diverse ion channels, exhibiting either activation or inhibitory effects. However, the effects of fenamates on sodium channel subtypes are still unknown. In this study, fenamates, including mefenamic acid, flufenamic acid and tolfenamic acid, were examined by whole-cell patch clamp techniques on the sodium channels hNaV1.7 and hNaV1.8, which are closely associated with pain. The results showed that the mefenamic acid, flufenamic acid, and tolfenamic acid inhibited the peak currents of hNaV1.7 and hNaV1.8 in CHO cells stably expressing hNaV1.7 and hNaV1.8. However, much lighter inhibition effects of hNaV1.8 were registered in the experimental system. Furthermore, the mefenamic acid, flufenamic acid and tolfenamic acid significantly affected the inactivation processes of hNaV1.7 and hNaV1.8 with I-V curves left-shifted to hyperpolarized direction. These data indicate that the inhibition effects of NaV1.7 and NaV1.8 by mefenamic acid, flufenamic acid and tolfenamic acid might contribute to their analgesic activity in addition to their inhibition of cyclooxygenase. These findings provide a basis for further studies in the discovery of other potential targets for NSAIDs.
The permeation of most antibiotics through the outer membrane of Gram-negative bacteria occurs through porin channels. To design drugs with increased activity against Gram-negative bacteria in the face of the antibiotic resistance crisis, the strict constraints on the physicochemical properties of the permeants imposed by these channels must be better understood. Here we show that a combination of high-resolution electrophysiology, new noise-filtering analysis protocols and atomistic biomolecular simulations reveals weak binding events between the beta-lactam antibiotic ampicillin and the porin PorB from the pathogenic bacterium Neisseria meningitidis. In particular, an asymmetry often seen in the electrophysiological characteristics of ligand-bound channels is utilised to characterise the binding site and molecular interactions in detail, based on the principles of electro-osmotic flow through the channel. Our results provide a rationale for the determinants that govern the binding and permeation of zwitterionic antibiotics in anion-selective porin channels.
The double membrane cell envelope of Gram negative bacteria is a sophisticated barrier that facilitates the uptake of nutrients and protects the organism from toxic compounds. An antibiotic molecule must find its way through the negatively charged lipopolysaccharide layer on the outer surface, pass through either a porin or the hydrophobic layer of the outer membrane, then traverse the hydrophilic peptidoglycan layer only to find another hydrophobic lipid bilayer before it finally enters the cytoplasm, where it typically finds its target. This complex uptake pathway with very different physico-chemical properties is one reason that Gram-negatives are intrinsically protected against multiple classes of antibiotic-like molecules, and is likely the main reason that in vitro target based screening programmes have failed to deliver novel antibiotics for these organisms. Due to the lack of general methods available for quantifying the flux of drugs into the cell, little is known about permeation rates, transport pathways and accumulation at the target sites for particular molecules. Here we summarise the current tools available for measuring antibiotic uptake across the different compartments of Gram-negative bacteria.
The transient receptor potential mucolipin 1 (TRPML1) channel has been reported to mediate lysosomal Ca2+ release that is involved in Ca2+-dependent lysosome trafficking and autophagic flux. However, this regulatory mechanism of lysosomal TRPML1 channel activity in podocytes remains poorly understood. In the present study, we tested whether TRPML1 channel in podocytes mediates lysosome trafficking which is essential for multivesicular body (MVB) degradation by lysosomes. We first demonstrated the abundant expression of TRPML1 channel in podocytes. By GCaMP3 Ca2+ imaging, we characterized the lysosomal specificity of TRPML1 channel-mediated Ca2+ release in podocytes. Given the important role of acid ceramidase (AC) in lysosome function and podocyte injury, we tested whether AC regulates this TRPML1 channel-mediated Ca2+ release and consequent lysosome-dependent MVB degradation in podocytes. Pharmacologically, it was found that TRPML1 channel activity was remarkably attenuated by AC inhibitor, carmofur. Sphingosine, as an AC product, was demonstrated to induce TRPML1-mediated Ca2+ release, which was inhibited by a TRPML1 blocker, verapamil. Using a Port-a-Patch planar patch-clamp system, we found that AC-associated sphingolipids, sphingomyelin, ceramide, and sphingosine had different effects on TRPML1 channel activity in podocytes. Functionally, the inhibition of AC or blockade of TRPML1 channels was found to suppress the interaction of lysosomes and MVBs, leading to increased exosome release from podocytes. These results suggest that AC is critical for TRPML1 channel-mediated Ca2+ release, which controls lysosome-MVB interaction and exosome release in podocytes.
Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.
Background & Purpose:The P2X3 receptor is an ATP‐gated ion channel expressed by sensory afferent neurons, and is as a target to treat chronic sensitisation conditions. The first‐in‐class, selective P2X3 and P2X2/3 receptor antagonist, the diaminopyrimidine MK‐7264 (Gefapixant), has progressed to Phase III trials for refractory or unexplained chronic cough. We have used patch‐clamp to elucidate the pharmacology and kinetics of MK‐7264 and rat models of hypersensitivity and hyperalgesia to test efficacy in these conditions.Experimental Approach:Whole‐cell patch‐clamp of 1321N1 cells expressing human P2X3 and P2X2/3 receptors was used to determine mode of MK‐7264 action, potency and kinetics. The analgesic efficacy was assessed using paw withdrawal threshold and limb weight distribution in rat models of inflammatory, osteoarthritic and neuropathic sensitisation.Key Results:MK‐7264 is a reversible allosteric antagonist at human P2X3 and P2X2/3 receptors with IC50 values of 153 and 220nM, respectively. Experiments with the slowly desensitising P2X2/3 heteromer revealed concentration and state‐dependency to wash‐on, with faster rates and greater inhibition when applied before agonist compared to during agonist application. Wash‐on rate (τ value) for MK‐7264 at maximal concentrations was 19s and 146s when applied before and during agonist application, respectively. In vivo, MK‐7264 (30 mg/kg) displayed efficacy comparable to naproxen (20 mg/kg) in inflammatory and osteoarthritic sensitisation models, and gabapentin (100 mg/kg) in neuropathic sensitisation models, increasing paw withdrawal threshold and decreasing weight bearing discomfort.Conclusions and Implications:MK‐7264 is a reversible and selective P2X3 and P2X2/3 antagonist, exerting allosteric antagonism via preferential activity at closed channels. Efficacy in rat models supports clinical investigation of chronic sensitisation conditions.
In human uveal melanoma (UM), tumor enlargement is associated with increases in aqueous humor vascular endothelial growth factor-A (VEGF-A) content that induce neovascularization. 3-Iodothyronamine (3-T1AM), an endogenous thyroid hormone metabolite, activates TRP melastatin 8 (TRPM8), which blunts TRP vanilloid 1 (TRPV1) activation by capsaicin (CAP) in human corneal, conjunctival epithelial cells, and stromal cells. We compare here the effects of TRPM8 activation on VEGF-induced transactivation of TRPV1 in an UM cell line (92.1) with those in normal primary porcine melanocytes (PM) since TRPM8 is upregulated in melanoma. Fluorescence Ca2+-imaging and planar patch-clamping characterized functional channel activities. CAP (20 μM) induced Ca2+ transients and increased whole-cell currents in both the UM cell line and PM whereas TRPM8 agonists, 100 μM menthol and 20 μM icilin, blunted such responses in the UM cells. VEGF (10 ng/ml) elicited Ca2+ transients and augmented whole-cell currents, which were blocked by capsazepine (CPZ; 20 μM) but not by a highly selective TRPM8 blocker, AMTB (20 μM). The VEGF-induced current increases were not augmented by CAP. Both 3-T1AM (1 μM) and menthol (100 μM) increased the whole-cell currents, whereas 20 μM AMTB blocked them. 3-T1AM exposure suppressed both VEGF-induced Ca2+ transients and increases in underlying whole-cell currents. Taken together, functional TRPM8 upregulation in UM 92.1 cells suggests that TRPM8 is a potential drug target for suppressing VEGF induced increases in neovascularization and UM tumor growth since TRPM8 activation blocked VEGF transactivation of TRPV1.
This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.
In cancer cells specific ion channels exhibit altered channel expression, which can drive malignant and metastatic cell behavior. Hence, therapeutic strategies modulating ion channels prove to be promising in cancer therapeutics. Alterations in temperature, even small deviations from normothermia, may cause changes in electrophysiological processes, since activation and conductivity of various ion channels are temperature-dependent. In this pilot study, we focused on a basic understanding of the effects of temperature-alterations on voltage-gated ion channels of A549 cells using an automated patch-clamp system. The measurements were carried out in whole-cell voltage-clamped configuration applying test pulses between −60 and +60 mV. For positive voltages the ion-current curves showed an instantaneously increased conductance, followed by a slow current increase provoked by later activating voltage-gated ion channels, indicating the time-delayed response of additional channels. To investigate the temperature-dependent electrophysiological behavior, six cells (passages 7–10, n = 34) were examined at room temperature and normal body temperature. Compared to normal body temperature, reduced temperatures revealed a higher whole-cell current at negative voltages (63.4% (±18.5%), −60 mV) and lower currents (52.6% (±27.3%), +60 mV) at positive voltages, indicating a hypothermia-induced modulation of voltage-gated channels in the lung cancer cell line A549.
Aspergillus flavus is a notorious foodborne fungus, posing a significant risk to humans in the form of hepatocellular carcinoma or aspergillosis. Thymol, as a food preservative, could efficiently kill conidia of A. flavus. However, the underlying mechanisms by which thymol kills A. flavus are not completely understood. With specific fluorescent dyes, we detected several apoptotic hallmarks, including chromatin condensation, phosphatidylserine externalization, DNA damage, mitochondrial depolarization, and caspase 9 activation in conidia exposed to 200 μg/mL of thymol, indicating that thymol induced a caspase-dependent conidial apoptosis in A. flavus. Chemical–protein interactome (CPI) and autodock analyses showed that KCNAB, homologue to the β-subunit of the voltage-gated potassium channel (KV) and aldo-keto reductase, was the potential target of thymol. Following studies demonstrated that thymol could activate the aldo-keto reductase activity of KCNAB in vitro and stimulate a transient K+ efflux in conidia, as determined using a Port-a-Patch. Blocking K+ eruption by 4-aminopyridine (a universal inhibitor of KV) could significantly alleviate thymol-mediated conidial apoptosis, indicating that activation of KV was responsible for the apoptosis. Taken together, our results revealed a K+ efflux-mediated apoptotic pathway in A. flavus, which greatly contributed to the development of an alternative strategy to control this pathogen.
Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-Å resolution and AtOSCA3.1 at 4.8-Å resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.
Fibroblast-like synoviocytes (FLS) are a key cell-type involved in rheumatoid arthritis (RA) progression. We previously identified the KCa1.1 potassium channel (Maxi-K, BK, Slo 1, KCNMA1) as a regulator of FLS and that KCa1.1 inhibition reduces disease severity in RA animal models. However, systemic KCa1.1 block causes multiple side effects and in this study, we aimed to determine whether the KCa1.1 β1-3-specific venom peptide blocker iberiotoxin (IbTX) reduces disease severity in animal models of RA without inducing major side effects. We used immunohistochemistry to identify IbTX-sensitive KCa1.1 subunits in joints of rats with a model of RA. Patch clamp and functional assays were used to determine if IbTX can regulate FLS through targeting KCa1.1. We then tested the efficacy of IbTX in ameliorating disease in two rat models of RA. Finally, we determined if IbTX causes side-effects including incontinence or tremors in rats, compared to those treated with the small molecule KCa1.1 blocker paxilline. IbTX-sensitive subunits of KCa1.1 are expressed by FLS in joints of rats with experimental arthritis. IbTX inhibits KCa1.1 channels expressed by FLS from patients with RA and by FLS from rat models of RA and reduces FLS invasiveness. IbTX significantly reduces disease severity in two rat models of RA. Unlike paxilline, IbTX does not induce tremors or incontinence in rats. Overall, IbTX inhibits KCa1.1 channels on FLS and treats rat models of RA without inducing side effects associated with non-specific KCa1.1 blockade and could become the basis for the development of a new treatment for RA.
LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5′-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.
Mechanosensitive ion channels such as Piezo, TRAAK, TRPs and OSCA are important transmembrane proteins that are involved in many physiological processes such as touch, hearing and blood pressure regulation. Unlike ligand-gated channels or voltage-gated ion channels, which have a canonical ligand-binding domain or voltage-sensing domain, the mechanosensitive domain and related gating mechanism remain elusive. TRAAK channels are mechanosensitive channels that convert a physical mechanical force into a flow of potassium ions. The structures of TRAAK channels have been solved, however, the functional roles of the structural domains associated with channel mechanosensitivity remains unclear. Here, we generated a series of chimeric mutations between TRAAK and a non-mechanosensitive silent TWIK-1 K2P channel. We found that the selectivity filter region functions as the major gate of outward rectification and found that lower part of fourth transmembrane domain (M4) is necessary for TRAAK channel mechanosensitivity. We further demonstrated that upper part of M4 can modulate the mechanosensitivity of TRAAK channel. Furthermore, we found that hydrophilic substitutions of W262 and F121 facing each other, and hydrophobic substitutions of Q258 and G124, which are above and below W262 and F121, respectively, greatly increase mechanosensitivity, which suggests that dynamic interactions in the upper part of M4 and PH1 domain are involved in TRAAK channel mechanosensitivity. Interestingly, these gain-of-function mutations are sensitive to cell-poking stimuli, indicating that cell-poking stimuli generate a low membrane mechanical force that opens TRAAK channels. Our results thus showed that fourth transmembrane domain of TRAAK is critical for the gating of TRAAK by mechanical force and suggested that multiple dynamic interactions in the upper part of M4 and PH1 domain are involved in this process.
During evolution, the majority of organisms have developed specific sensors for gravity, the only constant environmental cue on earth. Nevertheless, a variety of gravity effects on molecular, cellular, and physiological level has also been reported in single-cell organisms and cell types of plants and animals which do not seem to possess specific sensors. We have found that the cellular membrane, common to all cells, itself is interacting with gravity by changing its fluidity. Thus, it delivers a basic mechanism for gravity perception for all existing cells and living systems. In the following, we discuss the physical principles and the consequences of our findings for membrane-bound processes, for life on earth, and for manned space travel. In addition, a first model is proposed, how a sensor system for gravity based on membrane thermodynamics could be structured.
Sodium channel inhibitor drugs decrease pathological hyperactivity in various diseases including pain syndromes, myotonia, arrhythmias, nerve injuries and epilepsies. Inhibiting pathological but not physiological activity, however, is a major challenge in drug development. Sodium channel inhibitors exert their efects by a dual action: they obstruct ion fow (“block”), and they alter the energetics of channel opening and closing (“modulation”). Ideal drugs would be modulators without blocking effect, because modulation is inherently activity-dependent, therefore selective for pathological hyperactivity. Can block and modulation be separated? It has been difficult to tell, because the effect of modulation is obscured by conformation-dependent association/dissociation of the drug. To eliminate dynamic association/dissociation, we used a photoreactive riluzole analog which could be covalently bound to the channel; and found, unexpectedly, that drug-bound channels could still conduct ions, although with modulated gating. The finding that non-blocking modulation is possible, may open a novel avenue for drug development because non-blocking modulators could be more specifc in treating hyperactivity-linked diseases.
Background:Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The “NACHT, LRR and PYD domain containing protein 3” (NLRP3)-inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells, but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3-inflammasome in AF.Methods:NLRP3-inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal (pAF) or long-standing persistent (chronic) AF (cAF). To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knock-in mouse model expressing constitutively active NLRP3 (CM-KI) wasestablished. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electrical activation pattern, Ca2+ spark frequency (CaSF), atrialeffective refractory period (AERP), and morphology of atria were evaluated in CM-KI mice and WT littermates.Results:NLRP3-inflammasome activity was increased in atrial CMs of pAF and cAF patients. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which wasattenuated by a specific NLRP3-inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic-reticulum Ca2+-release, AERP shortening and atrialhypertrophy. Adeno-associated virus subtype-9 mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AFdevelopment in CREM transgenic mice, a well-characterized mouse model of spontaneous AF.Conclusions:Our study establishes a novel pathophysiological role for CM NLRP3-inflammasome signaling with a mechanistic link to the pathogenesis of AF, and establishes inhibition of NLRP3 as a potential novel AF-therapy approach.
The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.
Bestrophin proteins are calcium (Ca2+)-activated chloride channels. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Whole-cell recordings show that ionic currents through BEST1 run down over time, but it is unclear whether this behavior is intrinsic to the channel or the result of cellular factors. Here, using planar lipid bilayer recordings of purified BEST1, we show that current rundown is an inherent property of the channel that can now be characterized as inactivation. Inactivation depends on the cytosolic concentration of Ca2+, such that higher concentrations stimulate inactivation. We identify a C-terminal inactivation peptide that is necessary for inactivation and dynamically interacts with a receptor site on the channel. Alterations of the peptide or its receptor dramatically reduce inactivation. Unlike inactivation peptides of voltage-gated channels that bind within the ion pore, the receptor for the inactivation peptide is on the cytosolic surface of the channel and separated from the pore. Biochemical, structural, and electrophysiological analyses indicate that binding of the peptide to its receptor promotes inactivation, whereas dissociation prevents it. Using additional mutational studies we find that the “neck” constriction of the pore, which we have previously shown to act as the Ca2+-dependent activation gate, also functions as the inactivation gate. Our results indicate that unlike a ball-and-chain inactivation mechanism involving physical occlusion of the pore, inactivation in BEST1 occurs through an allosteric mechanism wherein binding of a peptide to a surface-exposed receptor controls a structurally distant gate.
Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.
A series of tubular molecules with different lengths have been synthesized by attaching Trp-incorporated peptides to the pillar[5]arene backbone. The tubular molecules are able to insert into the lipid bilayer to form unimolecular transmembrane channels. One of the channels has been revealed to specifically insert into the bilayer of the Gram-positive bacteria. In contrast, this channel cannot insert into the membranes of the mammalian rat erythrocytes even at the high concentration of 100 μm. It was further demonstrated that, as a result of this high membrane selectivity, the channel exhibits efficient antimicrobial activity for the Gram-positive bacteria and very low hemolytic toxicity for mammalian erythrocytes.
3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone metabolite. The profound pharmacological effects of 3-T1AM on energy metabolism and thermal homeostasis have raised interest to elucidate its signaling properties in tissues that pertain to metabolic regulation and thermogenesis. Previous studies identified G protein-coupled receptors (GPCRs) and transient receptor potential channels (TRPs) as targets of 3-T1AM in different cell types. These two superfamilies of membrane proteins are largely expressed in tissue which influences energy balance and metabolism. As the first indication that 3-T1AM virtually modulates the function of the neurons in hypothalamus, we observed that intraperitoneal administration of 50 mg/kg bodyweight of 3-T1AM significantly increased the c-FOS activation in the paraventricular nucleus (PVN) of C57BL/6 mice. To elucidate the underlying mechanism behind this 3-T1AM-induced signalosome, we used three different murine hypothalamic cell lines, which are all known to express PVN markers, GT1-7, mHypoE-N39 (N39) and mHypoE-N41 (N41). Various aminergic GPCRs, which are the known targets of 3-T1AM, as well as numerous members of TRP channel superfamily, are expressed in these cell lines. Effects of 3-T1AM on activation of GPCRs were tested for the two major signaling pathways, the action of Gαs/adenylyl cyclase and TRPM. Here, we demonstrated that this thyroid hormone metabolite has no significant effect on Gi/o signaling and only a minor effect on the Gαs/adenylyl cyclase pathway, despite the expression of known GPCR targets of 3-T1AM. Next, to test for other potential mechanisms involved in 3-T1AM-induced c-FOS activation in PVN, we evaluated the effect of 3-T1AM on the intracellular Ca2+ concentration and whole-cell currents. The fluorescence-optic measurements showed a significant increase of intracellular Ca2+ concentration in the three cell lines in the presence of 10 μM 3-T1AM. Furthermore, this thyroid hormone metabolite led to an increase of whole-cell currents in N41 cells. Interestingly, the TRPM8 selective inhibitor (10 μM AMTB) reduced the 3-T1AM stimulatory effects on cytosolic Ca2+ and whole-cell currents. Our results suggest that the profound pharmacological effects of 3-T1AM on selected brain nuclei of murine hypothalamus, which are known to be involved in energy metabolism and thermoregulation, might be partially attributable to TRP channel activation in hypothalamic cells.
Background: Among the hymenopteran insect venoms, those from social wasps and bees – such as honeybee, hornets and paper wasps – have been well documented. Their venoms are composed of a number of peptides and proteins and used for defending their nests and themselves from predators. In contrast, the venoms of solitary wasps and bees have not been the object of further research. In case of solitary bees, only major peptide components in a few venoms have been addressed. Therefore, the aim of the present study was to explore the peptide component profile of the venom from the solitary bee Xylocopa appendiculata circumvolans by peptidomic analysis with using LC-MS. Methods: A reverse-phase HPLC connected to ESI-OrbiTrap MS was used for LC-MS. On-line mass fingerprinting was made from TIC, and data-dependent tandem mass spectrometry gave MSMS spectra. A major peptide component was isolated by reverse-phase HPLC by conventional way, and its sequence was determined by Edman degradation, which was finally corroborated by solid phase synthesis. Using the synthetic specimen, biological activities (antimicrobial activity, mast cell devaluation, hemolysis, leishmanicidal activity) and pore formation in artificial lipid bilayer were evaluated. Results: On-line mass fingerprinting revealed that the crude venom contained 124 components. MS/MS analysis gave 75 full sequences of the peptide components. Most of these are related to the major and novel peptide, xylopin. Its sequence, GFVALLKKLPLILKHLH-NH2, has characteristic features of linear cationic α-helical peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, it can be predicted to adopt an amphipathic α-helix secondary structure. In biological evaluation, xylopin exhibited broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity. Additionally, the peptide was able to incorporate pores in artificial lipid bilayers of azolectin, confirming the mechanism of the cytolytic activity by pore formation in biological membranes. Conclusions: LC-ESI-MS and MS/MS analysis of the crude venom extract from a solitary bee Xylocopa appendiculata circumvolans revealed that the component profile of this venom mostly consisted of small peptides. The major peptide components, xylopin and xylopinin, were purified and characterized in a conventional manner. Their chemical and biological characteristics, belonging to linear cationic α-helical peptides, are similar to the known solitary bee venom peptides, melectin and osmin. Pore formation in artificial lipid bilayers was demonstrated for the first time with a solitary bee peptide.
Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The KV1.3 potassium channel is a key regulator of CCR7− TEM cell activation. Blocking KV1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, KV1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent KV1.3 blockers and HsTX1[R14A] is selective for KV1.3 over closely-related KV1 channels. PEGylation of HsTX1[R14A] to create a KV1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for KV1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7− TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.
Objective: Zinc oxide (ZnO) nanoparticles can exhibit toxicity towards organisms and oxidative stress is often hypothesized to be one of the most important factors. Nevertheless, the detailed mechanism of toxicity‐induced by ZnO nanoparticles has not been completely addressed. The present study aimed to investigate the toxic effects of ZnO nanoparticles on the expression and activity of Na+/K+‐ATPase and on potassium channel block. Materials and methods: In the present study, we explored the cytotoxic effect of ZnO nanoparticles on murine photoreceptor cells using lactate dehydrogenase (LDH) release assay, reactive oxygen species (ROS) determination, mitochondrial membrane potential (Δφm) measurement, delayed rectifier potassium current recordings and Na+/K+‐ATPase expression and activity monitoring. Results: The results indicated that ZnO nanoparticles could increase the LDH release in medium, aggravate the ROS level within cells, collapse the Δφm, block the delayed rectifier potassium current, and attenuate the expressions of Na+/K+‐ATPase at both mRNA and protein levels and its activity, and thus exert cytotoxic effects on murine photoreceptor cells, finally damaging target cells. Conclusion: Our findings will facilitate the understanding of the mechanism involved in ZnO nanoparticle‐induced cytotoxicity in murine photoreceptor cells via potassium channel block and Na+/K+‐ATPase inhibition.
Tumor cells undergo a critical remodeling of intracellular Ca2+ homeostasis that contribute to important cancer hallmarks. Store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway modulated by mitochondria, is dramatically enhanced in colon cancer cells. In addition, most cancer cells display the Warburg effect, a metabolic switch from mitochondrial metabolism to glycolysis that provides survival advantages. Accordingly, we investigated mitochondria control of store-operated currents (SOCs) in two cell lines previously selected for representing human normal colonic cells and colon cancer cells. We found that, in normal cells, mitochondria are important for SOCs activity but they are unable to prevent current inactivation. In contrast, in colon cancer cells, mitochondria are dispensable for SOCs activation but are able to prevent the slow, Ca2+-dependent inactivation of SOCs. This effect is associated to increased ability of tumor cell mitochondria to take up Ca2+ due to increased mitochondrial potential (ΔΨ) linked to the Warburg effect. Consistently with this view, selected non-steroidal anti-inflammatory drugs (NSAIDs) depolarize mitochondria, inhibit mitochondrial Ca2+ uptake and promote SOC inactivation, leading to inhibition of both SOCE and cancer cell proliferation. Thus, mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells and this effect is counteracted by selected NSAIDs providing a mechanism for cancer chemoprevention.
Scorpion toxins can kill other animals by inducing paralysis and arrhythmia, which limits the potential applications of these agents in the clinical management of diseases. Antitumor-analgesic peptide (AGAP), purified from Buthus martensii Karsch, has been proved to possess analgesic and antitumor activities. Trp38, a conserved aromatic residue of AGAP, might play an important role in mediating AGAP activities according to the sequence and homology-modeling analyses. Therefore, an AGAP mutant, W38G, was generated, and effects of both AGAP and the mutant W38G were examined by whole-cell patch clamp techniques on the sodium channels hNaV1.4 and hNaV1.5, which were closely associated with the biotoxicity of skeletal and cardiac muscles, respectively. The data showed that both W38G and AGAP inhibited the peak currents of hNaV1.4 and hNaV1.5; however, W38G induced a much weaker inhibition of both channels than AGAP. Accordingly, W38G exhibited much less toxic effect on both skeletal and cardiac muscles than AGAP in vivo. The analgesic activity of W38G and AGAP were verified in vivo as well, and W38G retained analgesic activity similar to AGAP. Inhibition to both NaV1.7 and NaV1.8 was involved in the analgesic mechanism of AGAP and W38G. These findings indicated that Trp38 was a key amino acid involved in the biotoxicity of AGAP, and the AGAP mutant W38G might be a safer alternative for clinical application because it retains the analgesic efficacy with less toxicity to skeletal and cardiac muscles.
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride (Cl-) channel regulated by protein kinases, phosphatases, divalent cations and by protein-protein interactions. Among protein-protein interactions, we previously showed that Annexin A5 (AnxA5) binds to CFTR and is involved in the channel localization within membranes and in its Cl- channel function. The deletion of phenylalanine at position 508 (F508del) is the most common mutation in CF which leads to an altered protein (F508del-CFTR) folding with a nascent protein retained within the ER and is quickly degraded. We previously showed that AnxA5 binds to F508del-CFTR and that its increased expression due to a Gonadoliberin (GnRH) augments Cl- efflux in cells expressing F508del-CFTR. The aim of the present work was to use the GnRH analog buserelin which is already used in medicine. Human nasal epithelial cells from controls and CF patients (F508del/F508del) were treated with buserelin and we show here that the treatment alleviates Cl- channel defects in CF cells. Using proteomics we highlighted some proteins explaining this result. Finally, we propose that buserelin is a potential new pharmaceutical compound that can be used in CF and that bronchus can be targeted since we show here that they express GnRH-R.
Purpose:The heat-sensitive transient receptor potential vanilloid type-1 (TRPV1) channel (i.e., capsaicin [CAP] receptor) is upregulated in numerous cancers. This study determined if this response occurs in fresh and cultured hyperplastic human pterygial epithelial tissues.Methods:Reverse transcriptase PCR and quantitative real-time PCR, along with immunohistochemistry and Western blotting, characterized TRPV1 expression patterns in pterygial and healthy conjunctival tissue, primary and immortalized pterygial cells (hPtEC), and primary and immortalized conjunctival epithelial cells (HCjEC). Imaging of Ca2+ and planar whole-cell patch-clamping evaluated TRP channel activity. An MTS assay measured cell metabolic activity and a cell growth assay monitored proliferation.Results:Capsaicin (20 μM) and elevating bath temperature above 43°C activated Ca2+ transients more in hPtEC than HCjEC. Capsaicin induced corresponding changes in inward currents that were inhibited by 20 μM capsazepine (CPZ). Vascular endothelial growth factor (VEGF) also increased Ca2+-influx and induced corresponding inward currents more in hPtEC than in HCjEC, whereas CPZ (20 μM), BCTC (20 μM), or La3+ (500 μM) reduced these responses, respectively. Whereas epidermal growth factor (EGF) increased proliferation more in hPtEC than in HCjEC, VEGF had no effect on this response. Capsazepine suppressed hPtEC proliferation induced by EGF and VEGF, whereas it was cytotoxic to HCjEC.Conclusions:Mitogenic responses to EGF and VEGF are mediated through TRPV1 transactivation. Only in hPtEC do the increases in proliferation induced by EGF exceed those in HCjEC. Therefore, TRPV1 is a potential drug target whose clinical relevance in treating pterygium warrants further assessment.
The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an “open” channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.
Abstract: Cytoplasmic calcium (Ca2+) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca2+-independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca2+ activation and ion selectivity. A “Ca2+ clasp” within the channel’s intracellular region acts as a sensor of cytoplasmic Ca2+. Alanine substitutions within a hydrophobic “neck” of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca2+. We conclude that the primary function of the neck is as a “gate” that controls chloride permeation in a Ca2+-dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel’s ion selectivity. We find that mutation of a cytosolic “aperture” of the pore does not perturb the Ca2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single “selectivity filter,” in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.Significance:BEST1 is a Ca2+-activated chloride channel found in a variety of cell types that allows chloride to traverse the plasma membrane. Mutations in BEST1 can cause macular degeneration. The mechanisms for anion selectivity and Ca2+-dependent activation of BEST1 are unknown. Here, we show that a hydrophobic “neck” region of the channel’s pore does not play a major role in ion selectivity but acts as an effective gate, responding to Ca2+ binding at a cytosolic sensor. Mutation of a cytosolic “aperture” dramatically affects relative permeabilities among anions. These insights help rationalize how disease-causing mutations in BEST1 affect channel behavior and contribute to a broader understanding of ion channel gating and selectivity mechanisms.
Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels.
Scorpion toxins are invaluable therapeutic leads and pharmacological tools which influence the voltage-gated sodium channels. However, the details were still unclear about the structure–function relationship of scorpion toxins on VGSC subtypes. In the previous study, we reported one α-type scorpion toxin Bmk AGP-SYPU1 and its two mutants (Y5F and Y42F) which had been demonstrated to ease pain in mice acetic acid writhing test. However, the function of Bmk AGP-SYPU1 on VGSCs is still unknown. In this study, we examined the effects of BmK AGP-SYPU1 and its two mutants (Y5F and Y42F) on hNaV1.4 and hNaV1.5 heterologously expressed CHO cell lines by using Na+-specialized fluorescent dye and whole-cell patch clamp. The data showed that BmK AGP-SYPU1 displayed as an activator of hNaV1.4 and hNaV1.5, which might indeed contribute to its biotoxicity to muscular and cardiac system and exhibited the functional properties of both the α-type and β-type scorpion toxin. Notably, Y5F mutant exhibited lower activatory effects on hNaV1.4 and hNaV1.5 compared with BmK AGP-SYPU1. Y42F was an enhanced activator and confirmed that the conserved Tyr42 was the key amino acid involved in bioactivity or biotoxicity. These data provided a deep insight into the structure–function relationship of BmK AGP-SYPU1, which may be the guidance for engineering α-toxin with high selectivity on VGSC subtypes.
We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40–60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.
TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac
KV2.1, the voltage-gated ion channel, is ubiquitously expressed in variety of tissues and dysfunction of this ion channel is responsible for multiple diseases. Electrophysiological properties of ion channels are so far characterized with eukaryotic cells using the manual patch clamp which requires skilful operators and expensive equipments. In this research, we created a simple and sensitive drug screen method using bacterial giant spheroplasts and the automated patch clamp which does not require special skills. We expressed a eukaryotic voltage-gated ion channel KV2.1 in Escherichia coli using prokaryotic codon, and prepared giant spheroplasts large enough for the patch clamp. Human KV2.1 currents were successfully recorded from giant spheroplasts with the automated system, and KV2.1-expressed E. coli spheroplasts could steadily reacted to the dose–response assay with TEA and 4-AP. Collectively, our results indicate for the first time that the bacterial giant spheroplast can be applied for practical pharmaceutical assay using the automated patch clamp.
Background/Aims: Ocular surface health depends on conjunctival epithelial (HCjE) layer integrity since it protects against pathogenic infiltration and contributes to tissue hydration maintenance. As the same increases in tear film hyperosmolarity described in dry eye disease can increase corneal epithelial transient receptor potential vanilloid type-1 (TRPV1) channel activity, we evaluated its involvement in mediating an osmoprotective effect by L-carnitine against such stress. Methods: Using siRNA gene silencing, Ca2+ imaging, planar patch-clamping and relative cell volume measurements, we determined if the protective effects of this osmolyte stem from its interaction with TRPV1. Results: TRPV1 activation by capsaicin (CAP) and an increase in osmolarity to ≈ 450 mOsM both induced increases in Ca2+ levels. In contrast, blocking TRPV1 activation with capsazepine (CPZ) fully reversed this response. Similarly, L-carnitine (1 mM) also reduced underlying whole-cell currents. In calcein-AM loaded cells, hypertonic-induced relative cell volume shrinkage was fully blocked during exposure to L-carnitine. On the other hand, in TRPV1 gene-silenced cells, this protective effect by L-carnitine was obviated.Conclusion:The described L-carnitine osmoprotective effect is elicited through suppression of hypertonic-induced TRPV1 activation leading to increases in L-carnitine uptake through a described Na+-dependent L-carnitine transporter.
We report on a single-step fabrication procedure of borosilicate glass micropores surrounded by a smooth microcrater. By inserting a thin air-gap between a borosilicate glass substrate and a reflective layer, we achieve dual-sided laser ablation of the device. The resultant crater provides a smoother, curved surface onto which cells settle during planar patch clamping. Gigaohm seals, which are more easily achievable on these devices as compared to conventional micropores, are achieved by patch clamping human embryonic kidney (HEK 293) cells. Further, the microcraters show enhanced mechanical stability of the planar patch clamped cells during perfusion. We integrate polydimethylsiloxane microfluidic devices with the microcraters and use passive pumping to perfuse the cells. We find that passive pumping increases the pressure within the device by 1.85 Pa. However, due to the enhanced stability of the microcrater, fluidic shearing reduces the seal resistance by only 6.8 MΩ on average, which is less than one percent of the gigaohm seal resistance.
Cystic fibrosis (CF), the most common autosomal recessive disease in Caucasians, is due to mutations in the CFTR gene. F508del, the most frequent mutation in patients, impairs CFTR protein folding and biosynthesis. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) and its traffic to the plasma membrane is altered. Nevertheless, if it reaches the cell surface, it exhibits a Cl− channel function despite a short half-life. Pharmacological treatments may target the F508del-CFTR defect directly by binding to the mutant protein or indirectly by altering cellular proteostasis, and promote its plasma membrane targeting and stability. We previously showed that annexine A5 (AnxA5) directly binds to F508del-CFTR and, when overexpressed, promotes its membrane stability, leading to the restoration of some Cl− channel function in cells. Because Gonadotropin-Releasing Hormone (GnRH) increases AnxA5 expression in some cells, we tested it in CF cells. We showed that human epithelial cells express GnRH-receptors (GnRH-R) and that GnRH induces an AnxA5 overexpression and an increased Cl− channel function in F508del-CFTR cells, due to an increased stability of the protein in the membranes. Beside the numerous physiological implications of the GnRH-R expression in epithelial cells, we propose that a topical use of GnRH is a potential treatment in CF.
Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK−/− cardiomyocytes. Transmission electron microscopy of BK−/− ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK−/− permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK−/− hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK−/− hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK−/− hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations.
Type-A γ-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human β3 homopentamer, at 3 Å resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.
Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify—and MLIV patient fibroblasts to test—small-molecule activators for their potential to restore TRPML1 mutant channel function. Using the whole-lysosome planar patch-clamp technique, we found that activation of MLIV mutant isoforms by the endogenous ligand PI(3,5)P2 is strongly reduced, while activity can be increased using synthetic ligands. We also found that the F465L mutation renders TRPML1 pH insensitive, while F408Δ impacts synthetic ligand binding. Trafficking defects and accumulation of zinc in lysosomes of MLIV mutant fibroblasts can be rescued by the small molecule treatment. Collectively, our data demonstrate that small molecules can be used to restore channel function and rescue disease associated abnormalities in patient cells expressing specific MLIV point mutations.
Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca2+ channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca2+ permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca2+ transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca2+ transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La3+, capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca2+ transients, which were suppressed by La3+ and CPZ whereas CAP-induced Ca2+ transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.
HsTX1 toxin, from the scorpion Heterometrus spinnifer, is a 34-residue, C-terminally amidated peptide cross-linked by four disulfide bridges. Here we describe new HsTX1 analogues with an Ala, Phe, Val or Abu substitution at position 14. Complexes of HsTX1 with the voltage-gated potassium channels KV1.3 and KV1.1 were created using docking and molecular dynamics simulations, then umbrella sampling simulations were performed to construct the potential of mean force (PMF) of the ligand and calculate the corresponding binding free energy for the most stable configuration. The PMF method predicted that the R14A mutation in HsTX1 would yield a > 2 kcal/mol gain for the KV1.3/KV1.1 selectivity free energy relative to the wild-type peptide. Functional assays confirmed the predicted selectivity gain for HsTX1[R14A] and HsTX1[R14Abu], with an affinity for KV1.3 in the low picomolar range and a selectivity of more than 2,000-fold for KV1.3 over KV1.1. This remarkable potency and selectivity for KV1.3, which is significantly up-regulated in activated effector memory cells in humans, suggest that these analogues represent valuable leads in the development of therapeutics for autoimmune diseases.
Background: N588K-KCNH2 and V307L-KCNQ1 mutations lead to a gain-of-function of IKr and IKs thus causing short-QT syndromes (SQT1, SQT2). Combined pharmacotherapies using K+-channel-blockers and β-blockers are effective in SQTS. Since β-blockers can block IKr and IKs, we aimed at determining carvedilol's and metoprolol's electrophysiological effects on N588K-KCNH2 and V307L-KCNQ1 channels. Methods Wild-type (WT)-KCNH2, WT-KCNQ1 and mutant N588K-KCNH2 and V307L-KCNQ1 channels were expressed in CHO-K1 or HEK-293T cells and IKs and IKr were recorded at baseline and during β-blocker exposure. Results Carvedilol (10 μM) reduced IKs tail in WT- and V307L-KCNQ1 by 36.5 ± 5% and 18.6 ± 9% (P 0.05). IC50 values were 16.3 μM (WT) and 46.1 μM (V307L), indicating a 2.8-fold decrease in carvedilol's IKs-blocking potency in V307L-KCNQ1. Carvedilol's (1 μM) inhibition of the IKr tail was attenuated in N588K-KCNH2 (4.5 ± 3% vs 50.3 ± 4%, WT, P 0.001) with IC50 values of 2.8 μM (WT) and 25.4 μM (N588K). Carvedilol's IKr end-pulse inhibition, however, was increased in N588K-KCNH2 (10 μM, 60.7 ± 6% vs 36.5 ± 5%, WT, P 0.01).Metoprolol (100 μM) reduced IKr end-pulse by 0.23 ± 3% (WT) and 74.1 ± 7% (N588K, P 0.05), IKr tail by 32.9 ± 10% (WT) and 68.8 ± 7% (N588K, P 0.05), and reduced IKs end-pulse by 18.3 ± 5% (WT) and 57.1 ± 11% (V307L, P 0.05) and IKs tail by 3.3 ± 1% (WT) and 45.1 ± 13 % (V307L, P 0.05), indicating an increased sensitivity to metoprolol in SQT mutated channels. Conclusions N588K-KCNH2 and V307L-KCNQ1 mutations decrease carvedilol's inhibition of the IKs or IKr tail but increase carvedilol's IKr end-pulse inhibition and metoprolol's inhibition of tail and end-pulse currents. These different effects on SQT1 and SQT2 mutated channels should be considered when using β-blocker therapy in SQTS patients.
Human corneal endothelial cells (HCEC) maintain appropriate tissue hydration and transparency by eliciting net ion transport coupled to fluid egress from the stroma into the anterior chamber. Such activity offsets tissue swelling caused by stromal imbibition of fluid. As corneal endothelial (HCE) transport function is modulated by temperature changes, we probed for thermosensitive transient receptor potential melastatin 8 (TRPM8) functional activity in immortalized human corneal endothelial cells (HCEC-12) and freshly isolated human corneal endothelial cells (HCEC) as a control. This channel is either activated upon lowering to 28 °C or by menthol, eucalyptol and icilin. RT-PCR and quantitative real-time PCR (qPCR) verified TRPM8 gene expression. Ca2+ transients induced by either menthol (500 μmol/l), eucalyptol (3 mmol/l), or icilin (2–60 μmol/l) were identified using cell fluorescence imaging. The TRP channel blocker lanthanum III chloride (La3+, 100 μmol/l) as well as the TRPM8 blockers BCTC (10 μmol/l) and capsazepine (CPZ, 10 μmol/l) suppressed icilin-induced Ca2+ increases. In and outward currents induced by application of menthol (500 μmol/l) or icilin (50 μmol/l) were detected using the planar patch-clamp technique. A thermal transition from room temperature to ≈ 18 °C led to Ca2+ increases that were inhibited by a TRPM8 blocker BCTC (10 μmol/l). Other thermosensitive TRP pathways whose heterogeneous Ca2+ response patterns are suggestive of other Ca2+ handling pathways were also detected upon strong cooling (≈10 °C). Taken together, functional TRPM8 expression in HCEC-12 and freshly dissociated HCEC suggests that HCE function can adapt to thermal variations through activation of this channel subtype.
The voltage-gated potassium channel KV1.3 is a well-established target for treatment of autoimmune diseases. ShK peptide from a sea anemone is one of the most potent blockers of KV1.3 but its application as a therapeutic agent for autoimmune diseases is limited by its lack of selectivity against other KV channels, in particular KV1.1. Accurate models of KV1.x-ShK complexes suggest that specific charge mutations on ShK could considerably enhance its specificity for KV1.3. Here we evaluate the K18A mutation on ShK, and calculate the change in binding free energy associated with this mutation using the path-independent free energy perturbation and thermodynamic integration methods, with a novel implementation that avoids convergence problems. To check the accuracy of the results, the binding free energy differences were also determined from path-dependent potential of mean force calculations. The two methods yield consistent results for the K18A mutation in ShK and predict a 2 kcal/mol gain in KV1.3/KV1.1 selectivity free energy relative to wild-type peptide. Functional assays confirm the predicted selectivity gain for ShK[K18A] and suggest that it will be a valuable lead in the development of therapeutics for autoimmune diseases.
Multicellular organisms fight bacterial and fungal infections by producing peptide-derived broad-spectrum antibiotics. These host-defense peptides compromise the integrity of microbial cell membranes and thus evade pathways by which bacteria develop rapid antibiotic resistance. Although more than 1,700 host-defense peptides have been identified, the structural and mechanistic basis of their action remains speculative. This impedes the desired rational development of these agents into next-generation antibiotics. We present the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and MD simulations of human dermcidin in membranes that reveal the antibiotic mechanism of this major human antimicrobial, found to suppress Staphylococcus aureus growth on the epidermal surface. Dermcidin forms an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidate the unusual membrane permeation pathway for ions and show adjustment of the pore to various membranes. Our study unravels the comprehensive mechanism for the membrane-disruptive action of this mammalian host-defense peptide at atomistic level. The results may form a foundation for the structure-based design of peptide antibiotics.
Chemical point mutation: Polytheonamide B is a naturally occurring polypeptide containing 48 amino acids. It both displays potent cytotoxicity and acts as a monovalent cation channel in vitro. Chemoselective methods to modify the 44th, N-, and C-terminal residues of the natural product have been developed, and evaluation of the resultant derivatives suggests that the intrinsic activities of the peptide can only be altered by switching its N-terminal substitution.
Transient receptor potential channels (TRPs) regulate tumor growth via calcium-dependent mechanisms. The (thermosensitive) capsaicin receptor TRPV1 is overexpressed in numerous highly aggressive cancers. TRPV1 has potent antiproliferative activity and is therefore potentially applicable in targeted therapy of malignancies. Recently, we characterized TRPM8 functions in pancreatic neuroendocrine tumors (NETs), however, the role of TRPV1 is unknown. Here, we studied the expression and the role of TRPV1 in regulating intracellular Ca2+ and chromogranin A (CgA) secretion in pancreatic NET BON-1 cell line and in primary NET cells (prNET). TRPV1 expression was detected by RT-PCR, Western blot and immunofluorescence. Intracellular free Ca2+ ([Ca2+]i) was measured by fura-2; TRPV1 channel currents by the planar patch-clamp technique. Nonselective cation currents were analyzed by a color-coded plot method and CgA secretion by ELISA. Pancreatic BON-1 cells and NETs express TRPV1. Pharmacological blockade of TRPs by La3+ (100 μM) or by ruthenium-red (RuR) or by capsazepine (CPZ) (both at 10 μM) suppressed the capsaicin (CAP)- or heat-stimulated increase of [Ca2+]i in NET cells. CAP (20 μM) also increased nonselective cation channel currents in BON-1 cells. Furthermore, CAP (10 μM) stimulated CgA secretion, which was inhibited by CPZ or by RuR (both 10 μM). La3+ potently reduced both stimulated and the basal CgA secretion. Our study shows for the first time that TRPV1 is expressed in pancreatic NETs. Activation of TRPV1 translates into changes of intracellular Ca2+, a known mechanism triggering the secretion of CgA. The clinical relevance of TRPV1 activation in NETs requires further investigations.
The μO-conotoxins are notable for their unique selectivity for NaV1.8 over other sodium channel isoforms, making them attractive drug leads for the treatment of neuropathic pain. We describe the discovery of a novel μO-conotoxin, MfVIA, from the venom of Conus magnificus using high-throughput screening approaches. MfVIA was found to be a hydrophobic 32-residue peptide (amino acid sequence RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV) with highest sequence homology to μO-conotoxin MrVIB. To overcome the synthetic challenges posed by μO-conotoxins due to their hydrophobic nature and difficult folding, we developed a novel regioselective approach for the synthesis of μO-conotoxins. Performing selective oxidative deprotections of the cysteine side-chain protecting groups of the fully protected peptide allowed manipulations in organic solvents with no chromatography required between steps. Using this approach, we obtained correctly folded MfVIA with increased synthetic yields. Biological activity of MfVIA was assessed using membrane potential-sensitive dyes and electrophysiological recording techniques. MfVIA preferentially inhibits NaV1.8 (IC50 95.9 ± 74.3 nM) and NaV1.4 (IC50 81 ± 16 nM), with significantly lower affinity for other NaV subtypes (IC50 431–6203 nM; NaV1.5 > 1.6 ∼ 1.7 ∼ 1.3 ∼ 1.1 ∼ 1.2). This improved approach to μO-conotoxin synthesis will facilitate the optimization of μO-conotoxins as novel analgesic molecules to improve pain management.
Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC50 value of ∼30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ∼0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes.
We have studied whether functional TRPV1 channels exist in the INS-1E cells, a cell type used as a model for β-cells, and in primary β-cells from rat and human. The effects of the TRPV1 agonists capsaicin and AM404 on the intracellular free Ca2+ concentration ([Ca2+]i) in the INS-1E cells were studied by fura-2 based microfluorometry. Capsaicin increased [Ca2+]i in a concentration-dependent manner, and the [Ca2+]i increase was dependent on extracellular Ca2+. AM404 also increased [Ca2+]i in the INS-1E cells. Capsazepine, a specific antagonist of TRPV1, completely blocked the capsaicin- and AM404-induced [Ca2+]i increases. Capsaicin did not increase [Ca2+]i in the primary β-cells from rat and human. Whole cell patch clamp configuration was used to record currents across the plasma membrane in the INS-1E cells. Capsaicin elicited inward currents that were inhibited by capsazepine. Western blot analysis detected TRPV1 proteins in the INS-1E cells and the human islets. Immunohistochemistry was used to study the expression of TRPV1, but no TRPV1 protein immunoreactivity was detected in the human islet cells and the human insulinoma cells. We conclude that the INS-1E cells, but not the primary β-cells, express functional TRPV1 channels.
Inflammatory cytokine interleukin-1 (IL-1) performs multiple functions in the central nervous system. The type 1 IL-1 receptor (IL-1R1) and the IL-1 receptor accessory protein (IL-1RAcP) form a functional IL-1 receptor complex that is thought to mediate most, if not all, IL-1–induced effects. Several recent studies, however, suggest the existence of a heretofore-unidentified receptor for IL-1. In this study, we report that the IL-1R1 gene contains an internal promoter that drives the transcription of a shortened IL-1R1 mRNA. This mRNA is the template for a unique IL-1R protein that is identical to IL-1R1 at the C terminus, but with a shorter extracellular domain at the N terminus. We have termed this molecule IL-1R3. The mRNA and protein for IL-1R3 are expressed in normal and two strains of commercially available IL-1R1 knockout mice. Western blot analysis shows IL-1R3 is preferentially expressed in neural tissues. Furthermore, IL-1β binds specifically to IL-1R3 when it is complexed with the newly discovered alternative IL-1 receptor accessory protein, IL-1RAcPb. Stimulation of neurons expressing both IL-1R3 and IL-1RAcPb with IL-1β causes fast activation of the Akt kinase, which leads to an increase in voltage-gated potassium current. These results demonstrate that IL-1R3/IL-1RAcPb complex mediates a unique subset of IL-1 activity that accounts for many previously unexplained IL-1 effects in the central nervous system.
We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.
Cloperastine is an antitussive drug, which can be received as an over-the-counter cold medicine. The chemical structure of cloperastine is quite similar to that of the antihistamine drug diphenhydramine, which is reported to inhibit hERG K+ channels and clinically induce long QT syndrome after overdose. To analyze its proarrhythmic potential, we compared effects of cloperastine and diphenhydramine on the hERG K+ channels expressed in HEK293 cells. We further assessed their effects on the halothane-anesthetized guinea-pig heart under the monitoring of monophasic action potential (MAP) of the ventricle. Cloperastine inhibited the hERG K+ currents in a concentration-dependent manner with an IC50 value of 0.027 μM, whose potency was 100 times greater than that of diphenhydramine (IC50; 2.7 μM). In the anesthetized guinea pigs, cloperastine at a therapeutic dose of 1 mg/kg prolonged the QT interval and MAP duration without affecting PR interval or QRS width. Diphenhydramine at a therapeutic dose of 10 mg/kg prolonged the QT interval and MAP duration together with increase in PR interval and QRS width. The present results suggest that cloperastine may be categorized as a QT-prolonging drug that possibly induces arrhythmia at overdoses like diphenhydramine does.
P2X7 is a homotrimeric ion channel with two transmembrane domains and a large extracellular ATP-binding domain. It plays a key role in the response of immune cells to danger signals released from cells at sites of inflammation. Gating of murine P2X7 can be induced by the soluble ligand ATP, as well as by NAD(+)-dependent ADP-ribosylation of arginine 125, a posttranslational protein modification catalyzed by the toxin-related ecto-enzymes ART2.1 and ART2.2. R125 is located at the edge of the ligand-binding crevice. Recently, an alternative splice variant of P2X7, designated P2X7(k), was discovered that differs from the previously described variant P2X7(a) in the N-terminal 42 amino acid residues composing the first cytosolic domain and most of the Tm1 domain. Here we compare the two splice variants of murine P2X7 with respect to their sensitivities to gating by ADP-ribosylation in transfected HEK cells. Our results show that the P2X7(k) variant is sensitive to activation by ADP-ribosylation whereas the P2X7(a) variant is insensitive, despite higher cell surface expression levels. Interestingly, a single point mutation (R276K) renders the P2X7(a) variant sensitive to activation by ADP-ribosylation. Residue 276 is located at the interface of neighboring subunits approximately halfway between the ADP-ribosylation site and the transmembrane domains. Moreover, we show that naive and regulatory T cells preferentially express the more sensitive P2X7(k) variant, while macrophages preferentially express the P2X7(a) variant. Our results indicate that differential splicing of alternative exons encoding the N-terminal cytosolic and transmembrane domains of P2X7 control the sensitivity of different immune cells to extracellular NAD(+) and ATP.
Transient receptor potential vanilloid (TRPV) channels respond to polymodal stresses to induce pain, inflammation and tissue fibrosis. In this study, we probed for their functional expression in human conjunctival epithelial (HCjE) cells and ex vivo human conjunctivas. Notably, patients suffering from dry eye syndrome experience the same type of symptomology induced by TRPV channel activation in other ocular tissues. TRPV gene and protein expression were determined by RT-PCR and immunohistochemistry in HCjE cells and human conjunctivas (body donors). The planar patch-clamp technique was used to record nonselective cation channel currents. Ca2+ transients were monitored in fura-2 loaded cells. Cultivated HCjE cells and human conjunctiva express TRPV1, TRPV2, and TRPV4 mRNA. TRPV1 and TRPV4 localization was identified in human conjunctiva. Whereas the TRPV1 agonist capsaicin (CAP) (5–20 μM) -induced Ca2+ transients were blocked by capsazepine (CPZ) (10 μM), the TRPV4 activator 4α-PDD (10 μM) -induced Ca2+ increases were reduced by ruthenium-red (RuR) (20 μM). Different heating (40°C or >43°C) led to Ca2+ increases, which were also reduced by RuR. Hypotonic challenges of either 25 or 50% induced Ca2+ transients and nonselective cation channel currents. In conclusion, conjunctiva express TRPV1, TRPV2, and TRPV4 channels which may provide novel drug targets for dry eye therapeutics. Their usage may have fewer side effects than those currently encountered with less selective drugs.
Currently, the identification of apoptotic or damaged human corneal endothelial (HCE) cells is limited to a morphological assessment and vital staining. Specific electrophysiological investigations may prospectively help to identify damaged HCE cells at an earlier stage. Besides calcium imaging, the so-called patch-clamp technique is an important test method enabling one to assay the effect of various substances on ion channels and receptors of the cell membrane. First electrophysiological pilot experiments with cultivated and freshly isolated HCE cells have revealed promising results. In this way, the expression of certain transient receptor potential channels (TRPs) could be demonstrated. However, the function of these channels is still not fully elucidated. In humans, TRPs play a crucial role in the sense of taste, pheromones, temperature and pain and are involved in osmolarity. This review summarises the current literature on the electrophysiology of the human corneal endothelium and deduces potential approaches to a sensitive vitality and function test under utilisation of the electrophysiological properties of HCE cells.
Thermosensitive transient receptor potential (TRP) proteins such as TRPV1–TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3, and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1–3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a non-selective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 to over 40°C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine CPZ (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40°C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25%) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2, and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress.
Four novel peptides were isolated from the venoms of the solitary eumenine wasps Eumenes rubrofemoratus and Eumenes fraterculus. Their sequences were determined by MALDI-TOF/TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry) analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R (LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two, EMP-ER (FDIMGLIKKVAGAL-NH2) and EMP-EF (FDVMGIIKKIAGAL-NH2), are similar to eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, they can be predicted to adopt an amphipathic α-helix secondary structure. In fact, the CD (circular dichroism) spectra of these peptides showed significant α-helical conformation content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity.
Polytheonamide B, the largest nonribosomal linear peptide identified to date, is a transmembrane channel-forming peptide. Nine of its substructures have now been chemically synthesized. The membrane-disrupting and ion-channel-forming sequences as well as the cytotoxicity-enhancing sequence have been identified.
Research on bacterial mechanosensitive (MS) channels has since their discovery been at the forefront of the MS channel field due to extensive studies of the structure and function of MscL and MscS, two of the several different types of MS channels found in bacteria. Just a few years after these two MS channels were cloned their 3D structure was solved by X-ray crystallography. Today, the repertoire of multidisciplinary approaches used in experimental and theoretical studies following the cloning and crystallographic determination of the MscL and MscS structure has expanded by including electronparamagnetic resonance (EPR) and Förster resonance energy transfer (FRET) spectroscopy aided by computational modelling employing molecular dynamics as well as Brownian dynamics simulations, which significantly advanced the understanding of structural determinants of the gating and conduction properties of these two MS channels. These extensive multidisciplinary studies of MscL and MscS have greatly contributed to elucidation of the basic physical principles of MS channel gating by mechanical force. This review summarizes briefly the major experimental and conceptual advancements, which helped in establishing MscL and MscS as a major paradigm of mechanosensory transduction in living cells.
The transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-and Mg2+ permeable cation channel that might be a cellular osmosensor since it is activated upon hypotonic cell swelling. TRPV4 is also thermosensitive and responds to moderate heat (from 24 to 27 °C) as well as to phorbol esters (4α-PDD) and several endogenous substances including arachidonic acid (AA), the endocannabinoids anandamide and 2-AG, and cytochrome P-450 metabolites of AA, such as epoxyeicosatrienoic acids. The resulting Ca2+ influx occurring in response to swelling induces regulatory volume decrease (RVD) behavior. As regulation of cell volume is essential for corneal endothelial function, we determined whether human corneal endothelial cells have functional TRPV4 channel activity. RT-PCR identified TRPV4 gene expression in the HCEC-12 cell line as well as two clonal daughter cell lines (HCEC-H9C1, HCEC-B4G12). [Ca2+]i transients were monitored in fura-2 loaded cells. Nonselective cation channel currents were recorded in the whole-cell mode of the planar patch-clamp technique. TRPV4 mRNA was found in HCEC-12 and the clonal daughter cell lines. TRPV4 channel agonists (4α-PDD and GSK1016790A; both 5 μmol/l) as well as moderate heat (40 °C) elicited [Ca2+]i transients. Hypotonicity increased [Ca2+]i and nonselective cation channel currents in HCEC-12 cells. There is functional TRPV4 expression in HCEC-12 and in its clonal daughter cell lines based on Ca2+ transients and underlying currents induced by known activators of this channel.
Since its launch in the early 1980s, the patch clamp method has been extensively used to study ion channels in the plasma membrane, but its application to the study of intracellular ion channels has been limited. Unlike the plasma membrane, intracellular membranes are usually not stable enough to withstand mechanical manipulation by glass electrodes during seal formation and rupturing of the membrane. To circumvent these problems, we developed a method involving the immobilization of isolated organelles on a solid matrix planar glass chip. This glass chip contains a microstructured hole that supports the formation of gigaseals and subsequent electrophysiological recordings despite the high fragility of intracellular membranes. Here, we report the experimental details of this method using lysosomes, which are the smallest cellular organelles, as a model system. We demonstrate that we can record endogenous ionic currents from wild-type lysosomes, as well as from lysosomes overexpressing ion channels, and expect that this method will provide electrophysiological access to a broad range of intracellular ion channels.
The physiology and transparency of the cornea are dependent on corneal endothelial function. The role of temperature sensitive ion channels in maintaining such activity is unknown. This study was undertaken to probe for the functional expression of such pathways in human corneal endothelial cells (HCEC). We used HCEC-12, an immortalized population derived from whole corneal endothelium, and two morphologically distinct clonal cell lines derived from HCEC-12 (HCEC-H9C1, HCEC-B4G12) to probe for gene expression and function of transient receptor potential (TRP) channels of the vanilloid (V) isoform subfamily (i.e. TRPV1–3) in these cell types. Expression of TRPV isotypes 1, 2 and 3 were detected by RT-PCR. Protein expression of TRPV1 in situ was confirmed by immunostaining of corneoscleral remnants after keratoplasty. TRPV1–3 functional activity was evident based on capsaicin-induced Ca2+ transients and induction of these responses through rises in ambient temperature from 25 °C to over 40 °C. The currents underlying Ca2+ transients were characterized with a novel high throughput patch-clamp system. The TRPV1 selective agonist, capsaicin (CAP) (10–20 μM) increased non-selective cation whole-cell currents resulting in calcium increases that were fully blocked by either the TRPV1 antagonist capsazepine (CPZ) or removal of extracellular calcium. Similarly, heating from room temperature to over 40 °C increased the same currents resulting in calcium increases that were significantly reduced by the TRP channel blockers lanthanum chloride (La3+) (100 μM) and ruthenium-red (RuR) (10 μM), respectively. Moreover, application of the TRPV channel opener 2-aminoethoxydiphenyl borate (2-APB) (400 μM) led to a reversible increase in intracellular Ca2+ indicating putative TRPV1–3 channel activity. Taken together, TRPV activity modulation by temperature underlies essential homeostatic mechanisms contributing to the support of corneal endothelial function under different ambient conditions.
It is presently unclear whether the antiseizure effects exerted by NSAIDs are totally dependent on COX inhibition or not. To clarify this point we investigated whether 7-methyl-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM2), two imidazo[1,2-b]pyridazines structurally related to indomethacin (IDM) but ineffective in blocking COXs, retain IDM antiabsence activity. When administered by intraperitoneal injection in WAG/Rij rats, a rat strain which spontaneously develops SWDs, both DM1 and DM2 dose-dependently suppressed the occurrence of these seizures. Importantly, these compounds were both more potent in suppressing SWD occurrence than IDM. As T-type channel blockade is considered a mechanism of action common to many antiabsence drugs we explored by whole cell patch clamp electrophysiology in stably transfected HEK-293 the effect of DM1 and DM2 on CaV3.1 channels, the T-type channel subtype preferentially expressed in ventrobasal thalamic nuclei. Both these compounds dose-dependently suppressed the currents elicited by membrane depolarization in these cells. A similar T-type blocking effect was also observed when the cells were exposed to IDM. In conclusion, DM1 and DM2 whilst inactive on COXs, are potent antiabsence drugs. This suggests that compounds with structural features typical of NSAIDs may exert antiepileptic activity independently from COX inhibition and possibly by a direct interaction with T-type voltage-dependent Ca2+ channels.
Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino acid residue in the putative pore region that is crucial for conferring high Ca2+ selectivity. Our glass chip-based method will provide electrophysiological access not only to lysosomal TPCN channels but also to a broad range of other intracellular ion channels.
Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca2+ influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1–/– mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide–induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo.
The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca2+ imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca2+ influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.
Here we report a new combination of the patch-clamp technique with the atomic force microscope (AFM). A planar patch-clamp chip microstructured from borosilicate glass was used as a support for mechanical probing of living cells. The setup not only allows for immobilizing even a non-adherent cell for measurements of its mechanical properties, but also for simultaneously measuring the electrophysiological properties of a single cell. As a proof of principle experiment we measured the voltage-induced membrane movement of HEK293 and Jurkat cells in the whole-cell voltage clamp configuration. The results of these measurements are in good agreement with previous studies. By using the planar patch-clamp chip for immobilization, the AFM not only can image non-adhering cells, but also gets easily access to an electrophysiologically controlled cellular probe at low vibrational noise.
Chalcone derivatives of the natural product khellinone were synthesised and screened for bioactivity against the voltage-gated potassium channel KV1.3. X-ray crystallography was employed to investigate relationships between the structure and function of a selection of the reported chalcones.
Ion channels represent highly attractive targets for drug discovery and are implicated in a diverse range of disorders, in particular in the central nervous and cardiovascular systems. Moreover, assessment of cardiac ion-channel activity of new chemical entities is now an integral component of drug discovery programmes to assess potential for cardiovascular side effects. Despite their attractiveness as drug discovery targets ion channels remain an under-exploited target class, which is in large part due to the labour-intensive and low-throughput nature of patch-clamp electrophysiology. This Review provides an update on the current state-of-the-art for the various automated electrophysiology platforms that are now available and critically evaluates their impact in terms of ion-channel screening, lead optimization and the assessment of cardiac ion-channel safety liability.
Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of KATP channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds. New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment. Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.
In evaluating ion channel function, patch clamping, provides the highest information content but every electrophysiologist knows the draw back of the size and complexity of a patch clamp rig. We present here patch clamp recordings in the whole cell con- figuration performed with planar patch clamp chips, which are micro- structured from borosilicate glass substrate. The chips are used in the Port-a-Patch, a simplified and miniaturized patch clamp setup that enables automated patch clamp experiments on a single cell. The PatchMaker software performs the experiment by executing user-determined protocols for cell positioning and in communication with the PULSE software also protocols for electrical stimulation and current readout. In various electro- physiological experiments, the high quality of recordings and the versatility of the perfusion of the recorded cells are demonstrated.
Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels - a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methodsfor ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.
Cytotoxicity of CdSe and CdSe/ZnS nanoparticles has been investigated for different surface modifications such as coating with mercaptopropionic acid, silanization, and polymer coating. For all cases, quantitative values for the onset of cytotoxic effects in serum-free culture media are given. These values are correlated with microscope images in which the uptake of the particles by the cells has been investigated. Our data suggest that in addition to the release of toxic Cd2+ ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects. Additional patch clamp experiments investigate effects of the particles on currents through ion channels.
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10-8 cm2s-1. Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10-8 cm2s-1. These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.
The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.
Due to their important physiological functions, ion channels are key therapeutic targets for a variety of disorders. However, electrophysiological assessment of ion channel activity is technically challenging and has been a bottleneck in the discovery of drugs that modulate channel function. To address this issue, automated patch clamp platforms have been developed with improved throughput and broader applications. An overview of the current status of high‐throughput electrophysiology and its applications in drug discovery is provided.
Patch-clamp electrophysiology remains an important technique in studying ion channels; indeed, it is still considered the gold standard since it was first described by Neher and Sakmann in the 1970s [1]. Ion channels are integral membrane proteins which allow ion current flow across the cell membrane. They are involved in almost all physiological processes, and their malfunction underlies many disease states, making them important pharmacological targets. Conventional patch clamp is a very information-rich technique, but it requires skilled personnel to perform experiments, and typically, only one experiment can be performed at a time. In the late 1990s and early 2000s, the field of ion-channel research was revolutionized by the development of the automated patch-clamp (APC) technique. The most successful approach involved replacing the patch-clamp pipette with a planar substrate (for review, see [2]), making the experiments easier to perform and offering the option for recording multiple cells in parallel. In the last two decades, much has changed in the field of ion-channel drug discovery and APC, with increased throughput and enhanced simplicity. We summarize the main changes in the last decade and attempt to look into the future of what’s to come.
Ion channels are essential in a wide range of cellular functions and their malfunction underlies many disease states making them important targets in drug discovery. The availability of standardized cell lines expressing ion channels of interest lead to the development of diverse automated patch clamp (APC) systems with high-throughput capabilities. These systems are now available for drug screening, but there are limitations in the application range. However, further development of existing devices and introduction of new systems widen the range of possible experiments and increase throughput. The addition of well controlled and fast solution exchange, temperature control and the availability of the current clamp mode are required to analyze standard cell lines and excitable cells such as stem cell-derived cardiomyocytes in a more physiologically relevant environment. Here we describe two systems with different areas of applications that meet the needs of drug discovery researchers and basic researchers alike. The here utilized medium throughput APC device is a planar patch clamp system capable of recording up to eight cells simultaneously. Features such as temperature control and recordings in the current clamp mode are described here. Standard cell lines and excitable cells such as stem cell-derived cardiomyocytes have been used in the voltage clamp and current clamp modes with the view to finding new drug candidates and safety testing methods in a more physiologically relevant environment. The high-throughput system used here is a planar patch clamp screening platform capable of recording from 96 cells in parallel and offers a throughput of 5000 data points per day. Full dose response curves can be acquired from individual cells reducing the cost per data point. The data provided reveals the suitability and relevance of both APC platforms for drug discovery, ion channel research, and safety testing.
Introduction: Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. “Going planar” proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. Areas covered: This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Expert opinion: Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.
Ion channels are highly intriguing biophysical entities that play an incredibly subtle role in the concerted actions in which they are involved, and that also have a crucial impact on inter- and intra-cellular communication. They respond to numerous kinds of stimuli and play a decisive role in the vitality of all living organisms. Ion channels are involved in the function of the cardiovascular and nervous systems and their malfunction underlies numerous diseases and indications. For exactly these reasons, ion channels have for decades been, and are still, the subject of in-depth research into a very broad range of important therapeutic areas. As membrane-bound proteins they are highly ‘druggable’ targets, being readily accessible to small molecules that are capable of fine tuning ion channel function by pharmacological modulation. Approximately 15% of the most successful drugs target ion channels, although ion channels have traditionally been difficult to screen due to a lack of adequate assays. Many of the marketed ion channel drugs were actually not discovered in rational drug-discovery programs, but rather empirically and by serendipity since the available ion channel-screening techniques typically confer a tradeoff between high content and high throughput.
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.
The ICH E14/S7B Implementation Working Group released a draft version on August 28th 2020 on “Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential Questions and Answers”. This document is open for public consultation and comprises proposed revisions for some sections of the current Q&A´s for ICH E14. Furthermore, new Q&A for ICH S7B are included.
This talk will focus on best practice outlines as depicted in the draft version, specifically on in vitro cardiac ion channel assays. The ultimate goal is to provide a more robust and reproducible evaluation of potency of drug block of cardiac ion channel current using patch clamp techniques and heterologous expression systems.
The webinar covers the use of the Patchliner and the SyncroPatch 384/768PE for characterization of ion channels and screening of ion channel active compounds.
Both automated patch clamp systems support high quality, giga-seal recordings, but differ in throughput capabilities and experimental features.
The Patchliner, introduced in 2006, records eight cells in parallel, and is a highly appreciated research platform in industry and academia alike. Experimental features include individual pulse protocols, automated current clamp recordings, internal solution exchange, rapid perfusion, temperature control, and temperature jumps. In addition, scarce and expensive cells can readily be used because of optimized cell catch procedures requiring less than 500 cells/ml.
The SyncroPatch 384/768PE , introduced in 2013, has been adopted by big pharma and academic core facilities around the globe. The SyncroPatch 384/768PE it fully compatible with high throughput screening standards and can be integrated into existing hardware and software. The system supports giga seal recording from up to 768 cells in parallel, excellent voltage-control of patch-clamped cells, fast solution exchange, and has been validated with a wide variety of ion channel targets. Today, the SyncroPatch 384/768PE is utilized for academic research and HTS ion channel drug discovery.
Acid-sensing ion channels (ASICs) are transmembrane sensors of extracellular acidosis and potential drug targets in several disease indications, including neuropathic pain and cancer metastasis. The K+-sparing diuretic amiloride is a moderate nonspecific inhibitor of ASICs and has been widely used as a probe for elucidating ASIC function. In this work, we screened a library of 6-substituted and 5,6-disubstituted amiloride analogs using a custom-developed automated patch clamp protocol and identified 6-iodoamiloride as a potent ASIC1 inhibitor. Follow-up IC50 determinations in tsA-201 cells confirmed higher ASIC1 inhibitory potency for 6-iodoamiloride 94 (hASIC1 94 IC50 = 88 nM, cf. amiloride 11 IC50 = 1.7 μM). A similar improvement in activity was observed in ASIC3-mediated currents from rat dorsal root ganglion neurons (rDRG single-concentration 94 IC50 = 230 nM, cf. 11 IC50 = 2.7 μM). 6-Iodoamiloride represents the amiloride analog of choice for studying the effects of ASIC inhibition on cell physiology.
Human acid-sensing ion channels (ASIC) are ligand-gated ionotropic receptors expressed widely in peripheral tissues as well as sensory and central neurons and implicated in detection of inflammation, tissue injury, and hypoxia-induced acidosis. This makes ASIC channels promising targets for drug discovery in oncology, pain and ischemia, and several modulators have progressed into clinical trials. We describe the use of hASIC1a as a case study for the development and validation of low, medium and high throughput automated patch clamp (APC) assays suitable for the screening and mechanistic profiling of new ligands for this important class of ligand-gated ion channel. Initial efforts to expand on previous manual patch work describing an endogenous hASIC1a response in HEK cells were thwarted by low current expression and unusual pharmacology, so subsequent work utilized stable hASIC1a CHO cell lines. Ligand-gated application protocols and screening assays on the Patchliner, QPatch 48, and SyncroPatch 384 were optimized and validated based on pH activation and nM-μM potency of reference antagonists (e.g., Amiloride, Benzamil, Memantine, Mambalgin-3, A-317567, PcTx1). By optimizing single and stacked pipette tip applications available on each APC platform, stable pH-evoked currents during multiple ligand applications enabled cumulative EC50 and IC50 determinations with minimized receptor desensitization. Finally, we successfully demonstrated for the first time on an APC platform the ability to use current clamp to implement the historical technique of input resistance tracking to measure ligand-gated changes in membrane conductance on the Patchliner platform.
Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC50 values under different conditions using several devices across multiple sites. Methods: APC instruments SyncroPatch 384i, SyncroPatch 384PE and Patchliner, were used to record hERG expressed in HEK or CHO cells. Up to 27 CiPA compounds were used to investigate effects of voltage protocol, incubation time, labware and time between compound preparation and experiment on IC50 values.
For reliable identification of cardiac safety risk, compounds should be screened for activity on cardiac ion channels in addition to hERG, including NaV1.5 and CaV1.2. We identified different parameters that might affect IC50s of compounds on NaV1.5 peak and late currents recorded using automated patch clamp (APC) and suggest outlines for best practices.
Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug’s cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCaV1.2 [L-Type ICa], peak hNaV1.5, [Peak INa], late hNaV1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNaV1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNaV1.5 blocking drugs. hERG and hNaV1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.
Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.
Introduction: Automated patch clamp (APC) devices have become commonplace in many industrial and academic labs. Their ease-of-use and flexibility have ensured that users can perform routine screening experiments and complex kinetic experiments on the same device without the need for months of training and experience. APC devices are being developed to increase throughput and flexibility. Areas covered: Experimental options such as temperature control, internal solution exchange and current clamp have been available on some APC devices for some time, and are being introduced on other devices. A comprehensive review of the literature pertaining to these features for the Patchliner, QPatch and Qube and data for these features for the SyncroPatch 384/768PE, is given. In addition, novel features such as dynamic clamp on the Patchliner and light stimulation of action potentials using channelrhodosin-2 is discussed. Expert opinion: APC devices will continue to play an important role in drug discovery. The instruments will be continually developed to meet the needs of HTS laboratories and for basic research. The use of stem cells and recordings in current clamp mode will increase, as will the development of complex addons such as dynamic clamp and optical stimulation on high throughput devices.
Highlights: A new regulatory paradigm promotes the integration of nonclinical and clinical data. Lack of uncertainty quantification hindered using hERG potency in the new paradigm. A systematic method was established to address this limitation. Analysis supports using different safety margin thresholds in different context. Abstract: - Introduction hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. - Methods A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian Hierarchical Modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. - Results A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. - Discussion This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.
Blockade of the cardiac ion channel coded by human ether-à-gogo-related gene (hERG) can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark) technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.
Patch clamp remains the gold standard for studying ion channel activity within cell membranes. Conventional patch clamp is notoriously low throughput and technically demanding making it an unsuitable technique for high-throughput screening (HTS). Automated patch clamp (APC) devices have done much to increase throughput and improve ease of use, particularly when using standard cell line cells such as HEK and CHO. In recent years, however, the use of human-induced pluripotent stem cells (hiPSCs) has become increasingly important, especially for safety screening in response to the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative introduced in 2013. The goal of this initiative is to standardize assays, targets, and cell types. One part of the paradigm focuses on the use of APC and hiPSC cardiomyocytes. This chapter describes two automated patch clamp devices recording from up to 8 or 384 cells simultaneously using hiPSC cardiomyocytes. In the voltage clamp mode, voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels could be recorded, and pharmacology using tetracaine, a NaV channel blocker, is described. Additionally, action potentials in the current clamp mode were recorded, and examples are shown including the effect of nifedipine, a CaV channel blocker. Detailed methods are provided for cell culture and harvesting of hiPSCs for use on APC devices. Protocols are also provided for voltage and current clamp recordings on the Patchliner, and voltage clamp experiments on the SyncroPatch 384PE APC instruments.
The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions.This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.
Background:QT interval-prolonging drug-drug interactions (QT-DDIs) may increase the risk of life-threatening arrhythmia. Despite guidelines for testing from regulatory agencies, these interactions are usually discovered after drugs are marketed and may go undiscovered for years.Objectives:Using a combination of adverse event reports, electronic health records (EHR), and laboratory experiments, the goal of this study was to develop a data-driven pipeline for discovering QT-DDIs.Methods:1.8 million adverse event reports were mined for signals indicating a QT-DDI. Using 1.6 million electrocardiogram results from 380,000 patients in our institutional EHR, these putative interactions were either refuted or corroborated. In the laboratory, we used patch-clamp electrophysiology to measure the human ether-à-go-go-related gene (hERG) channel block (the primary mechanism by which drugs prolong the QT interval) to evaluate our top candidate.Results:Both direct and indirect signals in the adverse event reports provided evidence that the combination of ceftriaxone (a cephalosporin antibiotic) and lansoprazole (a proton-pump inhibitor) will prolong the QT interval. In the EHR, we found that patients taking both ceftriaxone and lansoprazole had significantly longer QTc intervals (up to 12 ms in white men) and were 1.4 times more likely to have a QTc interval above 500 ms. In the laboratory, we found that, in combination and at clinically relevant concentrations, these drugs blocked the hERG channel. As a negative control, we evaluated the combination of lansoprazole and cefuroxime (another cephalosporin), which lacked evidence of an interaction in the adverse event reports. We found no significant effect of this pair in either the EHR or in the electrophysiology experiments. Class effect analyses suggested this interaction was specific to lansoprazole combined with ceftriaxone but not with other cephalosporins.Conclusions:Coupling data mining and laboratory experiments is an efficient method for identifying QT-DDIs. Combination therapy of ceftriaxone and lansoprazole is associated with increased risk of acquired long QT syndrome.
Automated patch clamp devices are now commonly used for studying ion channels. A useful modification of this approach is the replacement of the glass pipet with a thin planar glass layer with a small hole in the middle. Planar patch clamp devices, such as the three described in this unit, are overtaking glass pipets in popularity because they increase throughput, are easier to use, provide for the acquisition of high-quality and information-rich data, and allow for rapid perfusion and temperature control. Covered in this unit are two challenging targets in drug discovery: voltage-gated sodium subtype 1.7 (NaV1.7) and nicotinic acetylcholine α7 receptors (nAChα7R). Provided herein are protocols for recording activation and inactivation kinetics of NaV1.7, and activation and allosteric modulation of nAChα7R.
Cor.At® Cardiomyocytes are derived from mouse embryonic stem cells (mESC). During differentiation of the mESC, about 5% of all cells develop into cardiomyocytes. Using transgenic mESC with the puromycin resistance cassette under the control of the cardiac α-myosin heavy chain-(MHC) promoter, 99.9% pure Cor.At® Cardiomyocytes can be selected from the large amount of noncardiac myocyte cell population by the application of puromycin. For long-term storage, Cor.At® Cells are deep frozen as single cell suspensions in liquid nitrogen or -150°C deep freezers. Quality control strategies are implemented to guarantee lot-to-lot reproducibility and uniformity of functional properties of Cor.At® Cardiomyocytes for a storage period of at least 12 months. Thawed Cor.At® Cardiomyocytes readily form spontaneously and synchronously contracting monolayers overnight. Seeded in low density on cover slips, Cor.At® Cardiomyocytes can be applied to manual patch clamp for the recording of action potentials as well as all three typical cardiac ion currents INa, ICa,L and IK (data not shown). Additionally, single cell suspensions of pre-cultured Cor.At® Cardiomyocytes can be readily analyzed with very high success rates in automated patch clamp systems like the Port-a-Patch® and Patchliner® from Nanion Technologies GmbH, Munich, Germany, as well as in other automated patch clamp systems (data not shown). The uniqueness of both Nanion systems is their capability to record action potentials in the current clamp mode and the possibility to perform the recordings at physiological temperature in addition to the standard measurements of ion currents in the voltage clamp mode.
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro–generated stem cell–derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell–derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell–derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.
Ion channel proteins are of major importance for the human physiology and thus highly attractive molecular drug targets. Large-scale ion channel screening of wanted and unwanted drug effects is required, but has been limited by the lack of adequate screening technology, because available methods put a tradeoff between high-throughput and high-information content. The advent of automated patch clamp platforms has revolutionized ion channel screening, enabling investigations from a more functional perspective at a much higher throughput. The current status of automated patch clamp platforms, their strengths and drawbacks as well as future developments are reviewed.
Ion channel dysfunction is known to underlie several acute and chronic disorders and, therefore, ion channels have gained increased interest as drug targets. During the past decade, ion channel screening platforms have surfaced that enable high throughput drug screening from a more functional perspective. These two factors taken together have further inspired the development of more refined screening platforms, such as the automated patch clamp platforms described in this article. Approximately four years ago, Nanion introduced its entry level device for automated patch clamping - the Port-a-Patch. With this device, Nanion offers the world’s smallest patch-clamp workstation, whilst greatly simplifying the experimental procedures. This makes the patch clamp technique accessible to researchers and technicians regardless of previous experience in electrophysiology. The same flexibility and high data quality is achieved in a fully automated manner with the Patchliner, Nanion’s higher throughput patch clamp workstation. The system utilizes a robotic liquid handling environment for fully automated application of solutions, cells and compounds. The NPC-16 chips come in a sophisticated, yet simplistic, microfluidic cartridge, which allow for fast and precise perfusion. In this way, full concentration response curves are easily obtained. The Port-a-Patch and Patchliner workstations from Nanion are valuable tools for target validation, secondary screening and safety pharmacology (for example hERG and NaV1.5 safety screening). They are widely used in drug development efforts by biotechnological and pharmaceutical companies, as well as in basic and applied biophysical research within academia.
Efficient high resolution techniques are required for screening efforts and research targeting ion channels. The conventional patch clamp technique, a high resolution but low efficiency technique, has been established for 25 years. Recent advances have opened up new possibilities for automated patch clamping. This new technology meets the need of drug developers for higher throughput and facilitates new experimental approaches in ion channel research. Specifically, Nanion’s electrophysiology workstations, the Port-a-Patch and the Patchliner, have been successfully introduced as high-quality automated patch clamp platforms for industry as well as academic users. Both platforms give high quality patch clamp recordings, capable of true giga-seals and stable recordings, accessible to the user without the need for years of practical training. They also offer sophisticated experimental possibilities, such as accurate and fast ligand application, temperature control and internal solution exchange. This article describes the chip-based patch clamp technology and its usefulness in ion channel drug screening and academic research.
The technique of patch clamping can be seen in retrospect as a combination of two separate lines of development that both originated in the 1960s and 1970s. The classical biophysics of the nerve impulse had by then been established in the squid giant axon using a combination of (1) voltage clamping with axial wire electrodes and (2) internal perfusion or dialysis. This combination had given experimenters control of both the electrical and the chemical gradients governing membrane ion flux. The problem of the day was to extend this type of analysis to smaller, noncylindrical, cellular structures (such as neuronal somata) that would not allow insertion of metal wires, let alone tolerate any of the procedures used for internal perfusion or dialysis of squid axons. While intracellular glass microelectrodes afforded intracellular electrical access to most cellular somata, two independent electrodes for current passing and voltage recording, respectively, were initially necessary, until time-sharing systems made single-microelectrode voltage clamping possible. Even then, however, two severe problems remained: (1) spatially nonuniform voltage control (the so-called space-clamp problem), and (2) the lack of control over intracellular ionic composition.
The patch-clamp technique is the state-of-the-art technology for the study of a large class of membrane proteins called ion channels. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. However, patch clamping is a laborious process requiring a skilled experimenter and is, therefore, not compatible with the high throughput needed in drug development. The solution for automated and parallel patch-clamp measurements that is provided by microchip technology is presented here.
The pharmacological profile of tobacco alkaloids is essential for understanding their physiological effects. Nicotinic acetylcholine receptors (nAChRs) are an important target of tobacco alkaloids with primarily agonistic effects reported for α4β2 nAChRs, but with minimal evidence of α7 activity. In this study, we used a membrane potential assay and automated patch-clamp electrophysiological approaches to functionally characterize distinct groups of tobacco alkaloids in the presence of a subunit-specific positive allosteric modulator (PAM) of human α4β2 and α7 nAChRs. We screened a total of 71 tobacco alkaloids, of which 16 were active against α4β2 and 11 against α7 nAChRs.
The most abundant alkaloids in tobacco leaves—namely nicotine, nornicotine, anabasine, (S)-anatabine, and (R)-anatabine—exhibited potencies (EC50alkaloid+PAM) of 0.02-20 μM against α4β2 and 0.2-10 μM against α7 nAChRs. In the presence of the PAM, nicotine and anabasine, respectively, were found to be the most potent α4β2 and α7 nAChRs agonists. Relative to (S)-anatabine, (R)-anatabine was 5-fold more potent against α4β2; the relationship was found to be inverse in case of α7 nAChRs. In addition, 13 alkaloids demonstrated agonistic effects only in the presence of the PAM and were, therefore, considered to be silent agonists. In conclusion, the data revealed 17 naturally occurring tobacco alkaloids that exhibited a dramatic increase in potency against human α4β2 and α7 nAChRs in the presence of PAMs (relative to that in the absence of the PAM). Our study recognized a subunit-specific enantiomer preference of anatabine and identified several alkaloids with silent agonist properties for human α4β2 and α7 nAChRs.
Voltage-gated sodium channels initiate electrical signals in nerve and cardiac muscle, where their hyperactivity causes pain and cardiac arrhythmia. Local anesthetics and antiarrhythmic drugs selectively block sodium channels in rapidly firing nerve and muscle cells to relieve these conditions. We studied an ancestral bacterial sodium channel to elucidate the structure of the drug-binding site and the pathway for drug entry to the receptor site. We found that the drug-binding site is located in the center of the transmembrane pore, through which sodium ions move and fenestrations form an access pathway for drug entry directly from the cell membrane. These results show how these widely used drugs block the sodium channel and have important implications for structure-based design of next-generation drugs. In my talk, I'll also shed light on the fenestrations of other ion channels to argue that fenestrations could be an entry pathway for many ion channels.
The presentation will address the general setup and special features of the Patchliner from Nanion. One highlight is the recently published procedure to minimize cell usage for stem cell-derived and primary cells on our most flexible automated patch clamp device. Furthermore, fast perfusion, temperature control capabilities and current clamp are discussed and case studies are presented.
All new drugs are screened for their proarrhythmic potential using a method that is overly conservative and provides limited mechanistic insight, which can lead to the misclassification of beneficial drugs as proarrhythmic. Here, we developed an in silico-in vitro pipeline to circumvent these shortcomings. An iPSC-CM computational model was used to design electrophysiological voltage-clamp (VC) protocols for use during in vitro drug studies. Such VC data, along with AP recordings, were acquired from iPSC-CMs before and after treatment with a control solution or verapamil, cisapride, quinine, or quinidine. AP prolongation was seen in response to quinidine and quinine. The VC protocol identified all strong IKr blockers. The protocol also detected block of ICaL by verapamil and Ito by quinidine. The VC data also uncovered a previously unidentified If block by quinine, which was confirmed with experiments using a HEK-293 expression system and automated patch-clamp.
Marc will outline the development, optimization and validation of a range of voltage-gated Ca2+ channel assays on the Patchliner automated patch clamp platform that were subsequently used in an 8 year drug discovery collaboration between Metrion Biosciences and a german pharma company.
The project was successful in identifying several lead series of selective,state-dependent inhibitors of Cav2.2 N-type channels for use as novel, non-opioid analgesic.This required the creation of biophysical screening assays to identify the potency of small molecules against the resting and inactivated state of the human neuronal Ca2+ channels Cav2.1(P/Q type), Cav2.2 and Cav3.2 (T-type), some of which are notoriously difficult in terms of expression levels and current rundown.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) are an interesting source of cells for safety pharmacology, but there are caveats that have to be taken into account. A typical property of hPSC-CM is automaticity, the cardiomyocytes beat spontaneously, resembling cells in the sinoatrial node of the heart. The spontaneous beating is due to lack of IK1 ion channels, which normally assure a stable resting membrane potential in cardiomyocytes. Work by our group has demonstrated that the depolarized state of hPSC-CM limits their usefulness in assays aimed at detecting proarrhythmic properties of drugs (Jonsson et al., 2012, PMID: 22353256).
Dynamic clamping can provide virtual, simulated IK1 channels to a real biological hPSC-CM in a patch clamping experiment. Key benefits of this approach include full control of the added IK1 conductance to each cardiomyocyte, it can be applied to any hPSC-CM source and it can be coupled to automated patch clamping machines. In this webinar I will discuss our work on using the dynamic clamping technique with a Patchliner.
This Igor video tutorial for Patchliner data analysis demonstrates how concentration-response curves are quickly displayed and analyzed. We show how data are loaded and displayed, and the normalized data are fitted and averaged to obtain IC50 values. Please note that more details and features are described in our QuickStart Guide for Igor.
The conventional microelectrode technique and the manual patch clamp method offer direct, information-rich, and real-time in vitro technologies to study proarrhythmic effect of drugs and drug candidate compounds. Although providing excellent data quality, these tests are complicated, time consuming and expensive for the large numbers of compounds. Automated patch-clamp platforms are mainly used with stably expressing cell lines and suitable for rapid and high-quality pharmacological investigation of drug candidates. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) was initiated to further improve these preclinical drug safety paradigms. However, some evidence indicates that the different proarrhythmic pharmacological assays result in contradictory outcomes raising serious questions regarding their predictability for in vivo situations including clinical settings. IC50 values may varied between platforms, therefore, aim of our study was to compare the effect of proarrhythmic compounds on hERG and IKr currents and on cardiac action potential. The hERG current was measured by using both automated and manual patch clamp methods on HEK293 cells. The native ion current (IKr) were recorded from rabbit ventricular myocytes by manual patch clamp technique.
Dofetilide, cisapride, sotalol, terfenadine and verapamil were tested in hERG assay at both room temperature and 37°C with Patchliner. All these compounds were more potent at physiological temperature and therefore, it is a desirable option to study hERG currents at physiological temperature. To evaluate the prognostic value of hERG assay these agents were subjected for further investigations. The IKr current blocking capability of the compounds was tested on rabbit ventricular myocytes with manual patch clamp method at 37°C. The corresponding IC50 values of dofetilide, cisapride and verapamil were in good agreement with IC50 values obtained with Patchliner in hERG assays. As sotalol and terfenadine have stronger effect on IKr measured by manual patch clamp method compared with hERG automated patch clamp experiments, the effects of these drugs on hERG current using manual patch clamp technique were also investigated to study how the potency of these drugs are influenced by the experimental techniques themselves. In contrast with the hERG automated patch clamp assays, the effects of sotalol and terfenadine on hERG current were stronger measured by the manual patch-clamp technique.
In conclusion, results obtained with automated patch-clamp equipment in HEK-hERG cells usually show a reasonable conformity with outcomes of IKr current experiments. The Patchliner system used in our study is well suited to perform safety pharmacological studies. Variability of IC50 values of drugs in different platforms observed in certain cases, which could have been caused by the lack of continuous flow of compound-containing solutions.
The Patchliner is a fully automated planar patch clamp instrument recording from up to 8 cells simultaneously. With its vast experimental freedom and gigaseal data quality, the Patchliner is one of the most versatile patch clamp instruments on the market.
The Patchliner is a fully automated planar patch clamp instrument recording from up to 8 cells simultaneously. With its vast experimental freedom and gigaseal data quality, the Patchliner is one of the most versatile patch clamp instruments on the market. The Patchliner is versatile yet robust, ideal for basic research of ion channel biophysics and mechanisms of action, and sophisticated assays including heat activation of TRP channels, activation of Ca2+-activated channels by internal exchange and fast external solution exchange with minimal exposure for ligand-gated ion channels such as nAChα7. The Patchliner is also an excellent tool for routine assays such as safety screening of hERG or other cardiac ion channels in line with the CiPA initiative. Since its introduction in 2006, over 100 instruments have been installed worldwide, in academic labs (46%), pharmaceutical companies (34%) and CROs (20%). The Patchliner is appreciated because of routine high success rates (greater than 80% gigaseals), optimized assays including minimized cell consumption and proven use of primary cells and stem cells. Our dedicated team of electrophysiologists and engineers are committed to continuous in-house assay development, software and hardware advancements, ensuring fast and custom-tailored solutions for your assay demands.
The transient receptor potential cation channel, subfamily V, member 3 (TRPV3), is a ligand-gated, nonselective cation channel first described in 2002. It exhibits 43% sequence identity to TRPV1. Although TRPV3 has been detected immunologically in the CNS and suggested to be often co-localized with TRPV1, it is found more robustly in keratinocytes in skin and, given it’s threshold for temperature activation of >34˚C, it has been speculated that TRPV3 may act in co-operation with sensory afferents to perceive warmth and signal elevated temperature. TRPV3 can also be activated by the ligand 2-Aminoethoxydiphenyl borate (2-APB). The TRPV3 channel, along with other TRPV channels, may play an important role in chronic pain and, therefore, is receiving increasing attention as a potential therapeutic candidate for the treatment of chronic pain. Here we present data collected on a 4-channel Patchliner with temperature control showing the potential use of the Patchliner to record TRPV3 currents activated by 2-APB or heat. As previously reported, TRPV3 currents sensitize to repeated applications of 2-APB or heat, a phenomenon we also observed. At low concentrations of 2-APB, the currents were primarily outwardly rectifying but at higher concentrations and with prolonged exposure they often became dual rectifying (data not shown). This is also in good agreement with the literature. In contrast, the temperature-activated responses were always outwardly rectifying with little inward current. The inward currents activated by 2-APB could be blocked by ruthenium red (RR) as expected.
TRPM8 is a member of the transient receptor potential channel (TRP) family. TRPM8 is known to be a thermosensitive channel, activated by cold temperatures (below ~25˚C) and ligands such as menthol, Eucalyptol and icilin. It belongs to the melastatin subfamily of TRP channels and shows an outward rectification with a relatively high permeability for calcium ions and little selectivity between monovalent cations. Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, where the TRPM8 channel is specifically expressed. Here we present data of hTRPM8 collected on the Patchliner. Cells performed well on the Patchliner with a success rate of 89% for seal resistance >600 MΩ. Channel activation by the agonists menthol and Eucalyptol is shown.
The transient receptor potential cation channel, subfamily V, member 1 (TRPV1), is a ligand-gated, non-selective cation channel widely expressed in the peripheral and central nervous system. The TRPV1 channel can be activated by a number of physical and chemical stimuli, including capsaicin (the active ingredient in chili peppers), noxious heat (typically >42˚C) and low pH. The TRPV1 channel is putatively involved in the perception and transmission of painful stimuli. Importantly, this channel is proposed to underlie many chronic pain states including inflammation, neuropathic pain and cancer pain, amongst others. These types of pain states are currently poorly managed by the pain medications available and this has led the pharmaceutical industry to seek novel targets for pain management, such as TRPV1. However, TRPV1 antagonists have so far failed in clinical trials due to an undesirable increase in core body temperature resulting in hyperthermia. From these studies, it is proposed that tonically active TRPV1 channels are involved in maintaining normal body temperature and this could have significant influences on drug design. Finding novel compounds with differing effects on capsaicin activation and heat activation may be crucial in the discovery of lead compounds for the treatment of pain and other disease states. Here we present data collected on the 4-channel Patchliner with temperature control showing the potential use of the Patchliner® to record capsaicin and heat activation of TRPV1 channels and subsequent block by ruthenium red (RR).
P2X receptors are ligand-gated ion channels that open in response to extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. P2X receptors are found on many cell types including smooth muscle cells, sensory neurones, epithelia, bone and leukocytes. A role for P2X receptors has been suggested in transmission of thermal stimuli, chemosensory signalling, taste and pain. To date, 7 P2X receptor genes have been cloned and studied in heterologous expression systems. Functional receptors are trimeric, which can be homomeric or heteromeric. The P2X2 and P2X3 receptors can function either as homomers or as P2X2/3 heteromers. When expressed together, a mixture of P2X2 and P2X3 homomers as well as P2X2/3 heteromers are likely to exist, which may be distinguished through their biophysical and pharmacological properties. Both P2X3 homomers and P2X2/3 heteromeric receptors have been implicated in nociception and pain signalling and may be important therapeutic targets for analgesic drugs. The P2X3 and P2X2/3 receptor antagonist MK-7264 (gefapixant), has recently progressed to Phase III trials for refractory or unexplained chronic cough.Here we present data collected on the Patchliner showing activation and inhibition of P2X3 currents expressed in CHO cells with rapid and brief application of ligand (using the stacked solution approach). αβ-methylene ATP (αβ-MeATP) activated P2X3 receptors in a concentrationdependent manner with an EC50 value similar to those in the literature. P2X3 receptors could be repetitively activated by αβ-MeATP and blocked by A-317491 with an IC50 value in good agreement with the literature.
Cellular Dynamics International is developing iCell® Neurons, human iPS cell-derived neurons. These neurons have been used on Nanion’s Patchliner, an automated patch clamp device for recording from up to 8 cells simultaneously. Cells were thawed and cultured as per the manufacturer’s instructions. After plating, cells developed neuronal outgrowth within 24 hours and could be kept in culture for 2 weeks. An investigation into voltage- and ligand-gated ion channels expressed in these cells was undertaken using the Patchliner. The first experiments are shown here and offer promising results for combining a cellular model for neurons and an increased throughput patch clamp device.
P2X receptors are ligand-gated ion channels that open in response to extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. P2X receptors are found on many cell types including smooth muscle cells, sensory neurones, epithelia, bone and leukocytes. A role for P2X receptors has been suggested in transmission of thermal stimuli, chemosensory signalling, taste and pain. To date, 7 P2X receptor genes have been cloned and studied in heterologous expression systems. Functional receptors are trimeric, which can be homomeric or heteromeric. The P2X2 and P2X3 receptors can function either as homomers or as P2X2/3 heteromers. When expressed together, a mixture of P2X2 and P2X3 homomers as well as P2X2/3 heteromers are likely to exist, which may be distinguished through their biophysical and pharmacological properties. P2X2/3 receptors have been implicated in nociception and pain signalling and may be important therapeutic targets for analgesic drugs.Here we present data collected on a 4- or 8-channel Patchliner showing the potential use of the Patchliner to record P2X2/3 currents activated by ATP. ATP activated P2X2/3 receptors in a concentration-dependent manner with an EC50 similar to those reported in the literature for a mixture of homomeric and heteromeric P2X2/3 receptors. The currents desensitized slowly confirming that they are mediated by P2X2 and P2X2/3 receptors rather than P2X3 receptors. P2X2/3 receptors could be repetitively activated by ATP and blocked by suramin with an IC50 in good agreement with the literature.
The NaV1.8 gene (originally named PN3 or SNS; gene symbol SCN10A) encodes a voltage-gated sodium (NaV) channel, selectively expressed in dorsal root ganglion (DRG) neurons. DRGs transmit peripheral stimuli to the central nervous system and are involved in nociception. Different NaV channels play a key role in modulation of DRG action potentials. In particular, the fast upstroke of the action potential is mediated by NaV channels. NaV channels are in part characterized by their TTX-sensitivity (TTX-resistant [TTXr], TTX-sensitive [TTXs]). NaV1.8 is a TTXr channel. Compared with other NaV channels, NaV1.8 has slow activation and inactivation kinetics and is opened at relatively high voltages. It is an interesting drug target for inflammatory and neuropathic pain, because modulation of NaV1.8 by inflammatory mediators seems to be a key mechanism of DRG nociceptor sensitization and activation. Interestingly, NaV1.8 has been reported to play an important role in the perception of cold pain. In this Application Note we present data recorded on the Patchliner characterizing ND7-23 cells (a rat DRG/mouse neuroblastoma hybrid) stably transfected with rat NaV1.8. All experiments were performed in the presence of 100 nM TTX to block the endogenous TTXs Na+ current present in these cells. The NaV1.8 activation and inactivation properties and tetracaine sensitivity recorded on the Patchliner were consistent with those reported in the literature.
Human induced pluripotent stem cell-derived neurons (hiPSC-neurons) may provide a viable cellular model for studying the mechanisms underlying neurological diseases and drug development. Axiogenesis provides a number of hiPSC-neurons including dopaminergic neurons (Dopa.4U) and peripheral neurons (Peri.4U), amongst others. These neurons have been used on in-vitro systems such as multielectrode arrays (MEA), immunocytochemistry and calcium imaging. They are an interesting model for studying neurological diseases such as Parkinson’s Disease, as well as for efficacy, drug discovery and toxicity studies. In this study, the Patchliner was used to record from Dopa.4U and Peri.4U neurons in voltage and current clamp modes. The cell harvesting procedure was optimized (using papain) to ensure that the cells retained proximal dendrites and initial axon segments in order to maintain ion channel expression present in these regions. Due to their irregular shape (presence of processes), success rate (typically 20 - 50% for RSeal >200 MΩ) was lower than other cell types which have a smooth, round shape, e.g. standard cell lines. Voltage-gated Na+ (NaV) and K+ (KV) currents were recorded in both cell types. Action potentials (AP) were also recorded and block of the AP of Dopa.4U cells by lidocaine is shown.
The voltage-gated potassium channel KV1.3 is expressed in human naive, central memory T cells (TCM), and effector memory T cells (TEM). TEM cells are important mediators of a variety of chronic inflammatory autoimmune diseases including multiple sclerosis (MS), rheumatoid arthritis (RA), psoriasis, and vasculitis. Antigenic stimulation of TEM cells results in upregulated KV1.3 channel expression. It is proposed that a selective block of KV1.3 channels leads to an inhibition of functionality of TEM cells without affecting the function of naive and TCM cells. Thus, KV1.3 is a promising therapeutic target that could be used to efficiently medicate chronic autoimmune diseases without generating typical side effects associated with today’s immunosuppressive therapies. In the laboratory of conoGenetix biosciences the insect cell line Spodoptera frugiperda (Sf21) is used in combination with a Baculovirus infection system for the heterologous expression of recombinant ion channels. Sf21 cells offer highly specific protein expression and correct posttranslational modifications resulting in functional channels with comparable electrophysiological parameters of ion channels in vivo. In this Application Note we compare the electrophysiological properties of the potassium selective ion channel KV1.3 expressed in Sf21 cells and endogenously expressed KV1.3 channels in TEM cells. For the pharmacological analysis the 4 - channel Nanion Patchliner and one of our innovative, KV1.3 specific, proprietary peptides was used.
The NaV1.7 gene (SCN9A) encodes a voltage-gated sodium (NaV) channel, primarily expressed in the peripheral nervous system and has been isolated from rat dorsal root ganglion (DRG) neurons, human medullary thyroid cancer cells (hNE-Na) and PC12 cells. Different NaV channels play a key role in modulation of action potentials in the central and peripheral nervous systems. In particular, the fast upstroke of the action potential is mediated by NaV channels.NaV channels are in part characterized by their TTX-sensitivity (TTX-resistant [TTXr], TTX-sensitive [TTXs]). NaV1.7 is a TTXs channel and is sensitive to TTX in the nanomolar range. The role of hNaV1.7 has yet to be fully elucidated but is proposed to play an important role in nociception and pain sensing. NaV1.7 has been implicated to play a role in disease pain states, in particular inflammatory pain and hypersensitivity to heat following burn injury. Common to many of the voltage-gated ion channels, a number of compounds display a higher affinity for the inactivated state of the channel. For this reason, it is important to be able to reliably measure the effects of compounds at Vhalf of inactivation, the voltage at which 50% of the channels are inactivated. In this Application Note we present data using an 8-channel Patchliner characterizing CHO cells stably expressing hNaV1.7. The hNaV1.7 activation and inactivation properties are consistent with those reported in the literature. The potency of sodium channel blockers mexiletine, tetracaine, amitriptyline and lidocaine were compared using a holding potential of -120 mV vs the Vhalf of inactivation.
The hERG gene encodes a potassium channel responsible for the repolarization of the IKr current in cardiac cells (Sanguinetti et al, 1995). This channel is important in the repolarization of the cardiac action potential. Abnormalities in this channel can lead to long or short QT syndrome, leading to potentially fatal cardiac arrhythmia. Given the importance of this channel in maintaining cardiac function, and disturbances of channel activity by certain compounds such as anti-arrhythmias and anti-psychotics, it has become an important target in compound safety screening. Compounds can display different properties or different potencies at physiological temperature (35°C) vs. room temperature (RT) and therefore, it is a desirable option to be able to study this channel electrophysiologically at elevated temperature. One such compound which has been shown to have an increase in potency at physiological temperature is erythromycin. Erythromycin is a macrolide antibiotic which can cause QT prolongation and cardiac arrhythmia. Erythromycin has been shown to block hERG channels at physiological temperature with an IC50 of approximately 40 mM (Stanat et al, 2003; Duncan et al, 2005). However, at RT erythromycin is much less potent. At a concentration of 100 mM, erythromycin causes no significant block of hERG currents at RT but significantly blocks currents at physiological temperature (Guo et al, 2005). Here we present data collected on an 8-channel Patchliner with temperature control at RT and at 35°C and the effect this has on the potency of erythromycin.
The intermediate-conductance calcium-activated K+ channel, also known as KCa3.1, IKCa1 or SK4, is a member of the large family of potassium channels gated by calcium. It can be distinguished from the other calcium-activated K+ channels by differences in channel conductance, calcium sensitivity, voltage dependence and pharmacological properties. The hKCa3.1 channel is encoded by the KCNN4 gene. It is primarily expressed in peripheral tissues, including those of the hematopoietic system, colon, lung, placenta, and pancreas and has been proposed to play an important role in a variety of physiological processes including volume regulation in erythrocytes, proliferation and differentiation of B- and T-lymphocytes, and tissue protection following spinal cord injury. Importantly, the hKCa3.1 channel is a promising therapeutic target for a variety of health disorders including sickle cell anaemia and immunological disorders. The Ca2+-binding protein, calmodulin (CaM), is required for the activation of hKCa3.1. The Ca2+-CaM complex is proposed to bind to an intracellular domain of the C terminus of all subunits in the tetramer, inducing conformational changes to open the channel. In this study the Patchliner was used to perform a biophysical and pharmacological characterization of hKCa3.1 channels expressed in CHO cells. hKCa3.1 was activated by exchanging the internal solution to a solution containing free-Ca2+ and blocked by external application of non-selective (BaCl2) and selective (TRAM-34) inhibitors with an IC50 value consistent with that reported in the literature.
HEK-cells expressing GABAA-receptors were investigated with the Patchliner using a stacked application approach for rapid administration of compounds to the patch-clamped cells. The GABAA receptor family is the most important class of inhibitory ion channels involved in synaptic transmission, and are selectively permeable to monovalent anions. They constitute an important therapeutic area for drugs affecting anxiety, sleep and muscle relaxation. As with most ligand gated ion channels, GABAA exhibit receptor desensitization, which is a common phenomenon for ligand gated ion channels. Desensitization can be either exposure time dependent or concentration dependent, or both. Desensitization and recovery kinetics varies from milliseconds to tens of minutes, all depending on receptor type and subunit composition. For rapidly desensitizing ion channels, it is important that compound application is fast, so that the entire ion channel population is exposed to maximum concentration before entering the desensitized state. Exposure time and application intervals are important factors affecting desensitization and recovery from desensitization, to minimize deletrious effects or receptor desensitization. In the experiments presented here, compounds were added to the cells with accurate timing. In addition, a method for brief compound application was developed, allowing 1 s pulses of compound to the patch clamped cells. In this way, receptor desensitization can be minimized, and because of the timed exposures, effects of desensitization.
The Patchliner was used to study the pharmacology of the hGlyR a1 receptor expressed in mouse fibroblast cell line (L-tk). The Patchliner allows for fast application of drugs (50 ms) with precisely controlled application intervals and wash times. These are important experimental parameters when investigating ligand gated ion channels and their effectors since many ligand gated ion channels rapidly desensitize. Kinetics and level of desensitization are determined by ligand concentration, exposure time, or both. Because of the Patchliner's rapid solution exchange combined with brief drug exposure, capabilities and timed application intervals, the deleterious effect caused by receptor desensitization can be minimized and corrected for. Here we show the use of Nanion's Patchliner for long (22 s) and short (1 s) application of glycine to patch clamped whole-cells. For the short applications of compound, a stacked solution application protocol was used. Specifically, two zones of solution were aspirated into the pipette used for administration. When applied to the cell, this results in exposure first to the agonist zone followed by a rapid wash out after 1 s of drug application. In all the protocols used, pre-incubation of modulators is possible, as well as washout in the presence of a modulator.
The aim of this study was to investigate the effect of internal F- on the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) by forskolin in the whole cell patch clamp configuration. Experiments were conducted with Nanion’s fully automated patch clamp device, the Patchliner.
γ-amino butyric acid (GABA), β-alanine and bicuculline were investigated on GABAA-receptors expressed in HEK293 cells. The GABAA receptor family is the most important class of inhibitory ion channels involved in synaptic transmission. GABAA receptors are selectively permeable to monovalent anions. They constitute an important therapeutic target for drugs affecting anxiety, sleep and muscle relaxation. In this study, the cells were exposed to compound for 30 s, followed by a 60 s wash step. Solution exchange around the cell was fast, in the order of 50 ms for saturating concentrations. Complete and rapid switching is important when investigating ligand gated ion channels, since the response is often very fast and most receptors desensitize. For rapidly desensitizing ion channels, fast compound application is crucial, so that the entire ion channel population is exposed to maximum concentration before entering the desensitized state. Desensitization and recovery kinetics vary from milliseconds to tens of minutes, depending on receptor type and subunit composition as well as exposure time and/ or compound concentration. Recordings were made in the whole-cell configuration, using the Patchliner (4 amplifier channels). Expected pharmacology was obtained for the investigated compounds.
The voltage gated N-type calcium channel (CaV2.2) is encoded by the gene CACNA1B. CaV2.2 is a high voltage activated calcium channel. CaV2.2 is found mainly in the brain, where it mediates neurotransmitter release at the synapse. The strong depolarization of neuronal action potentials causes the opening of the channel. Calcium can then enter the cell and initiates the fusion of the neurotransmitter vesicles with the membrane. CaV2.2 is inhibited by w-conotoxin, a neurotoxin of the fish hunting snail, with high specificity. CaV2.2 has been implicated in the transmission of pain. Pharmacological block of CaV2.2 by compounds based on w-conotoxin has been shown to be effective against strong chronical pain. The biophysical and pharmacological properties of the cells are presented in this Application Note.
The gene CACNA1H encodes the α1H subunit of the voltage-gated calcium channel CaV3.2. It belongs to the low voltage-activated T-type calcium channels. CaV3.2 displays the typical characteristics of the T-type channels: activation at low depolarization of the membrane and transient kinetics. T-type Ca2+ channels are involved in diverse, mainly rhythmic processes like e.g. pacemaking and generation of thalamocortical rhythms in sleep or epilepsy. CaV3.2 is expressed in a wide variety of cells. Amongst others it has been found in kidney, smooth muscle, brain, adrenal and cardiac cells. It seems to be involved in contraction of smooth muscle and the secretion of the adrenal hormones aldosterone and cortisol. Pharmacological block of T-type channels may lead to new drugs for the treatment of hypertension and epilepsy. The biophysical and pharmacological properties of the cells are presented in this Application Note.
Human induced pluripotent stem (iPS) cell-derived cardiomyocytes have the potential to provide the ultimate model system for identifying potential anti-arrythmic effects of drugs during routine safety screening. Takara Bio Europe AB is providing a human iPS cell-derived cardiomyocyte product line for use in testing the efficacy and safety of pharmaceutical therapies. The ability to characterize the ion channel profile of these cells and record action potentials at a reasonable throughput is essential to fully realise the potential of this kind of product line. Building on the success of recording stem cells on the Patchliner, Cellartis® hiPS-CM, human iPS cell-derived cardiomyocytes, have now been characterized on the Patchliner in the voltage and current clamp mode. In this Application Note we present data using an 8-channel Patchliner. In the voltage clamp mode, voltage-dependent Na+ (NaV), K+ (KV) and Ca2+ (CaV) channel currents were recorded. As expected, action potentials could be elicited in the current clamp mode. Furthermore, spontaneous action potentials could be recorded as well.
Although mouse embryonic stem (ES) cell-derived cardiomyocytes, e.g. Cor.At® cells from Axiogenesis, can provide a useful model for drug discovery and safety testing as an alternative to acutely dissociated rat or mouse cardiomyocytes, human induced pluripotent (iPS) cell-derived cardiomyocytes have the potential to provide the ultimate model system for identifying potential antiarrythmic effects of drugs during routine safety screening. Axiogenesis has now launched the Cor.4U® human iPS cell-derived cardiomyocyte product line for use in testing the efficacy and safety of pharmaceutical therapies. The ability to characterize the ion channel profile of these cells and reliably record action potentials at a reasonable throughput is essential to fully realise the potential of this kind of product line. Building on the success of Cor. At® mouse embryonic stem (ES) cell-derived cardiomyocytes on the Patchliner, Cor.4U® human iPS cell-derived cardiomyocytes have now been characterized on the Patchliner in the voltage and current clamp modes. In this Application Note we present data using an 8-channel Patchliner characterizing Cor.4U® cells. In the voltage clamp mode, voltage-dependent Na+ (NaV), K+ (KV) and hERG (an inward current using a high K+-containing external solution) channel currents were recorded (Fig. 1). When the Ca2+ channel agonist BayK 8644 was used a voltage-gated Ca2+ (CaV) current could be recorded. As expected, action potentials could be elicited in the current clamp mode. The effect of the compounds TTX and BayK 8644 on the action potentials evoked in Cor.4U cells is also shown.
Acid-sensing ion channels (ASICs) are ligand-gated ion channels activated by protons and are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family. They are highly sensitive to extracellular acidosis. In rodents, where they are mainly expressed in neurons of the peripheral nervous system, ASIC3 plays an important role as sensor of non-adaptive pain which is correlated to tissue acidosis. However, the role of the human ASIC3 channel has not yet been elucidated. In contrast to other ASIC ion channels, ASIC3 shows a sustained window current upon external acidification. Here we present data recorded on an 8-channel Patchliner. Current responses upon external acidification as well as amiloride block of acidosis-induced currents of hASIC3-expressing HEK293 cells are shown.
Cor.At® cardiomyocytes display typical cardiac ion channel activity and action potentials. Both the hERG blockers Quinidine and Cisapride, and the Na+-channel blocker Lidocaine, modulated the action potentials. The Quinidine and Lidocaine effects were reversible, the Cisapride effect was non-reversible. The results demonstrate the presence of an array of ion channels in Cor.At® cardiomyocytes which in conjunction are capable of generating action potentials. Hence these stem cell-derived cardiomyocytes are a suitable alternative to primary cardiomyocytes in drug screening and safety testing. In addition, these experiments demonstrate for the first time the suitability of a higher throughput planar patch clamp system, i.e. Nanion´s Patchliner®, for recording action potentials. This is possible because of the flexibility of Nanion‘s patch clamp systems allowing for a multitude of different experiments to be performed in both voltage and current clamp modes. Cells expressing multiple ion channels and therefore able to elicit action potentials, as opposed to cell lines overexpressing a single ion channel subtype, better represent the physiological system. Thus, the Patchliner® in combination with Cor.At® cardiomyocytes form a powerful tool for ion channel research, drug screening and safety testing.
The human a7 nicotinic acetylcholine receptor expressing cells (stable) from Galantos Pharma GmbH were tested on the Patchliner. Repeated stimulations with 100 μM nicotine were tested to validate the system. In a run, six out of eight cells could be measured. All six cells showed characteristic a7 currents. Average peak currents for the shown experiment were 0.9 ± 0.2 nA (n = 6) which is consistent with manual patch clamp results reported by Galantos Pharma.
AMPA receptors are cation-permeable ionotropic glutamate receptors of the non-NMDA receptor subfamily. To date four subunits, GluA1-4, have been identified which are of similar size (approx. 900 kDa) and share 68-73% amino acid sequence identity. The human GluA2 subunit is encoded by the GRIA2 gene located on the 4q32-33 chromosome. Each of the 4 subunits has four distinct domains: an extracellular amino acid terminal domain (ATD); the extracellular ligand binding domain (LBD); the transmembrane domain (TMD) with 3 transmembrane segments (M1, M3 and M4) and 1 cytoplasmic facing re-entrant loop (M2); and an intracellular carboxyterminal domain. The functional receptor exists as a tetramer, either as homomers or heteromers (GluA1 and GluA4). The vast majority of excitatory fast synaptic transmission in the mammalian central nervous system is mediated by AMPA receptors of differing subunit combinations. It is well known that glutamate is a neurotoxin and it is proposed that overactivation of ionotropic glutamate receptors may underlie many neurodegenerative disorders such as ischemic stroke, epilepsy, Parkinson’s and dementia, amongst others. Enhancement of AMPA receptor activation by, for example, BDNF, has been proposed to have beneficial effects on learning and memory and has potential therapeutic value in the treatment of depression, Huntington’s and Parkinson’s diseases. Here we present data collected on an 8-channel Patchliner showing recordings of GluA2-mediated currents. Glutamate activated GluA2 receptors with an EC50 similar to those reported in the literature. CNQX inhibited and LY404187 enhanced GluA2-mediated responses.
The voltage-gated Na+ channel 1.5 (NaV1.5) is encoded by the SCN5A gene and is responsible for the rising phase of the cardiac action potential (AP). The NaV1.5 channel is comprised of a pore-forming α subunit and auxillary β subunits. When the cardiac cell membrane depolarizes, NaV1.5 opens for a short time allowing an influx of Na+ ions resulting in the upstroke of the AP. During the AP, these channels can recover from inactivation and re-open resulting in a sustained current termed INa-Late. Although this current is substantially smaller than the peak Na+ current (INa-Peak), it is active during the plateau phase and therefore contributes to AP morphology. There is a growing body of evidence that increased INa-Late can have a pathophysiological role in acquired heart diseases such as myocardial ischemia and heart failure. INa-Late is elevated in several pathological conditions which could result in Na+-overload in these cells. A number of loss or gain-of-function mutations in the SCN5A gene have been identified which lead to changes in the magnitude or duration of INa-Peak or INa-Late resulting in fatal arrhythmias. INa-Late is a potential drug target to treat cardiac disorders such as angina, heart failure and arrhythmia. It is also an important target in safety pharmacology as enhancement of INa-Late is proarrhythmic.In this study the Patchliner was used to record INa-Late from CHO cells and hiPSC-CMs. INa-Late was recorded using the voltage protocol specified by CiPA and activated using ATX-II. INa-Late could be recorded from CHO cells stably expressing NaV1.5 and blocked by lidocaine. INa-Late could also be detected in iCell® Cardiomyoctes2 and blocked by ranolazine.
The nicotinic acetylcholine receptor (nAChR) is a member of the ligand-gated ion channel superfamily which includes GABAA, 5HT3, NMDA and glycine receptors. It is a cation-permeable ion channel activated by the neurotransmitter acetylcholine and the natural alkaloid, nicotine. Neuronal nAChR are pentameric and functional channels are formed from a repertoire of nine α (α2 to α10) and three β subunits (β2 to β4). Most nAChR exist as heteromers with the stoichiometry 2α to 3β, however some α subunits function as homomers, these being α7 or α9. nAChR have been proposed to play a role in many neurological disorders such as Alzheimer’s Disease, Parkinson’s, Tourette’s Syndrome and depression. mRNA for the α3 and β4 subunits is found in the mammalian CNS and PNS, in particular automomic ganglion cells and chromaffin cells. nAChR containing the α3 subunit are essential for mediating fast synaptic transmission in the autonomic nervous system and is essential for survival. Block of nicotinic α3β4 receptors by methadone has also been suggested to play a potential role in analgesia. Here we present data collected on a 4- or 8-channel Patchliner showing the potential use of the Patchliner to record nAChR α3β4 currents activated by nicotine. Nicotine activated α3β4 receptors in a concentration dependent manner with an EC50 similar to those reported in the literature. Nicotinic α3β4 receptors could be repetitively activated by nicotine and blocked by mecamylamine, a ganglionic blocker with clinically relevant hypotensive actions, with an IC50 in good agreement with the literature.
In this Application Note we present data characterizing hNaV1.5 overexpressing HEK293 cells. The data were collected with Nanion‘s Patchliner. The performance of the cells was very good on the Patchliner. Current responses of an individual cell expressing the hNaV1.5 channel to an IV voltage protocol are shown as well as the corresponding current-voltage relationship. The average mean peak current density of the cells was -215.1 ± 63 pA/pF at 0 mV (n=9).
Voltage gated sodium channels (NaV) are important elements of action potential initiation and propagation in excitable cells. The channels are activated upon a depolarization of the membrane. Their activation leads to further depolarization of the membrane which constitutes the upstroke of the action potential. NaV currents generally activate very fast (within 1-2 ms) upon depolarization of the membrane. Hence, a good and stable access resistance is critical for high quality pharmacological patch clamp recordings. Also, for automated patch clamp devices, it is not a given that applied compound concentrations are accurately delivered to the cell. This is a pre-requisite for accurately reproducible dose-response curves. Here we present data collected on the 8-channel Patchliner. Tetrodotoxin and lidocaine dose‑response curves on hNaV1.5 expressed in HEK293 cells are shown. Lidocaine has been shown to block hNaV1.5 in its inactivated state (Bean et al. 1983) which means that the IC50 of lidocaine becomes dependent on the holding potential. This dependence was investigated. We also demonstrate the stability and reproducibility of the data collected with the Patchliner. Using two sequential dose responses of hNaV1.5 to TTX we demonstrate that the compound concentrations are accurately delivered to the cells and that recordings are stable with robust access resistance.
The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.
Adverse effects of drug combinations and their underlying mechanisms are highly relevant for safety evaluation, but often not fully studied. Hydroxychloroquine (HCQ) and azithromycin (AZM) were used as a combination therapy in the treatment of COVID-19 patients at the beginning of the pandemic, leading to higher complication rates in comparison to respective monotherapies. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to systematically investigate the effects of HCQ, AZM, and their combination on the structure and functionality of cardiomyocytes, and to better understand the underlying mechanisms. Our results demonstrate synergistic adverse effects of AZM and HCQ on electrophysiological and contractile function of iPSC-CMs. HCQ-induced prolongation of field potential duration (FPDc) was gradually increased during 7-day treatment period and was strongly enhanced by combination with AZM, although AZM alone slightly shortened FPDc in iPSC-CMs. Combined treatment with AZM and HCQ leads to higher cardiotoxicity, more severe structural disarrangement, more pronounced contractile dysfunctions, and more elevated conduction velocity, compared to respective monotreatments. Mechanistic insights underlying the synergistic effects of AZM and HCQ on iPSC-CM functionality are provided based on increased cellular accumulation of HCQ and AZM as well as increased Cx43- and NaV1.5-protein levels.
The mathematical modeling of ion channel kinetics is an important tool for studying the electrophysiological mechanisms of the nerves, heart, or cancer, from a single cell to an organ. Common approaches use either a Hodgkin–Huxley (HH) or a hidden Markov model (HMM) description, depending on the level of detail of the functionality and structural changes of the underlying channel gating, and taking into account the computational effort for model simulations. Here, we introduce for the first time a novel system theory-based approach for ion channel modeling based on the concept of transfer function characterization, without a priori knowledge of the biological system, using patch clamp measurements. Using the shaker-related voltage-gated potassium channel KV1.1 (KCNA1) as an example, we compare the established approaches, HH and HMM, with the system theory-based concept in terms of model accuracy, computational effort, the degree of electrophysiological interpretability, and methodological limitations. This highly data-driven modeling concept offers a new opportunity for the phenomenological kinetic modeling of ion channels, exhibiting exceptional accuracy and computational efficiency compared to the conventional methods. The method has a high potential to further improve the quality and computational performance of complex cell and organ model simulations, and could provide a valuable new tool in the field of next-generation in silico electrophysiology.
QX-314 is a quaternary permanently charged lidocaine derivative that inhibits voltage-gated sodium channels (NaV). As it is membrane impermeable, it is generally considered that QX-314 applied externally is inactive, unless it can gain access to the internal local anesthetic binding site via another entry pathway. Here, we characterized the electrophysiological effects of QX-314 on NaV1.7 heterologously expressed in HEK293 cells, and found that at high concentrations, external QX-314 inhibited NaV1.7 current (IC50 2.0 ± 0.3 mM) and shifted the voltage-dependence to more depolarized potentials (ΔV50 +10.6 mV). Unlike lidocaine, the activity of external QX-314 was not state- or use-dependent. The effect of externally applied QX-314 on NaV1.7 channel biophysics differed to that of internally applied QX-314, suggesting QX-314 has an additional externally accessible site of action. In line with this hypothesis, disruption of the local anesthetic binding site in a [F1748A]NaV1.7 mutant reduced the potency of lidocaine by 40-fold, but had no effect on the potency or activity of externally applied QX-314. Therefore, we conclude, using an expression system where QX-314 was unable to cross the membrane, that externally applied QX-314 is able to inhibit NaV1.7 peak current at low millimolar concentrations.
Capsid assembly modulators (CpAMs) represent a new class of antivirals targeting hepatitis B virus (HBV) core protein to disrupt the assembly process. In this work, a novel chemotype featuring a fused heterocycle amide was discovered through pharmacophore exploration. Lead optimization resulted in compound 8 with an EC50 value of 511 nM, and then methyl substitution on the piperazine was found to improve the in vitro potency remarkably. Further SAR studies established the key compound SHR5133, which showed high in vitro antiviral potency, favorable pharmacokinetic profiles across species, and robust in vivo efficacy.
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, that defines a new gene superfamily. The crystal structure of recombinant Mu8.1 shows structural similarity with conotoxins of the con-ikot-ikot superfamily, with both toxins displaying a saposin-like fold. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of voltage-gated ion channels, Mu8.1 preferentially inhibited the R-type (CaV2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of CaV2.3 and voltage-gated K+ (KV4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing CaV2.3. Importantly, this multidisciplinary study demonstrates the feasibility of large, disulfide-rich venom-component investigation, an endeavor that will lead to the discovery of novel structures and functions in the previously underexplored group of macro-conotoxins.
Alkaloids that target nicotinic acetylcholine receptors (nAChR) are of great interest because of the critical role they play in mood and anxiety. However, understanding of the neuropharmacological effects of nicotinic alkaloids, such as cotinine and anatabine, is very limited. In this study, we investigated the neuropharmacological effects of three naturally occurring alkaloids—nicotine, cotinine, and anatabine—in vitro and in vivo. A single injection of nicotine induced anxiolytic-like behavioral features in mice by using the SmartCube® behavioral profiling system, while cotinine and anatabine had no detectable effect. The results were corroborated by using the zebrafish novel tank test (NTT), which showed a profound anxiolytic-like effect induced by multiple doses of nicotine after a single 20-min treatment. When the regulation of dopamine and norepinephrine release—the neurotransmitter systems relevant for anxiety—were examined in vitro, we found that nicotine stimulated the release of both norepinephrine and dopamine, while cotinine and anatabine mainly stimulated the dopamine release. The molecular targets of nicotine were confirmed to be nAChRs with its most potent activities against α4β2 and α6/3β2β3 subtypes in vitro. Anatabine was a weaker agonist for these receptors than nicotine. Cotinine was the least potent nAChR compound, only being able to activate α4β2 and α6/3β2β3 subtypes at high doses and no detectable activities against α3β4 and α7 subtypes at the concentrations tested. The observed effects were unlikely due to the off-target effect, because these alkaloids did not bind or regulate >160 other molecular targets in vitro. Thus, the present results suggest that natural nicotinic alkaloids can induce an anxiolytic-like behavior in nonclinical animal models, potency of which may depend on the activation of various nAChRs and regulation of various neurotransmitter systems. Further investigations would help understand their effects on humans, because non-clinical studies should not be taken as a direct indication for human behavior and nicotine is not risk free.
Large conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm. Compounds activating BK via beta1 have been identified, yet they exhibit low potency and off-target effects while antagonists that limit agonist activity via beta 1 remain unexplored. Beta1-dependent BK ligand-based pharmacophore modeling and ZINC database searches identified 15 commercially available hits. Concentration-response curves on BK alpha + beta1 subunit-mediated currents were obtained in CHO cells. One potent (EC50 = 20 nM) and highly efficacious activator (maximal activation = ×10.3 of control) was identified along with a potent antagonist (KB = 3.02 nM), both of which were dependent on beta1. Our study provides the first proof-of-principle that an agonist/antagonist pair can be used to control beta1-containing BK activity.
Background and PurposeBefore advancing to clinical trials, new drugs are screened for their pro-arrhythmic potential using a method that is overly conservative and provides limited mechanistic insight. The shortcomings of this approach can lead to the mis-classification of beneficial drugs as pro-arrhythmic.Experimental ApproachAn in silico–in vitro pipeline was developed to circumvent these shortcomings. A computational human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model was used as part of a genetic algorithm to design experiments, specifically electrophysiological voltage clamp (VC) protocols, to identify which of several cardiac ion channels were blocked during in vitro drug studies. Such VC data, along with dynamically clamped action potentials (AP), were acquired from iPSC-CMs before and after treatment with a control solution or a low- (verapamil), intermediate- (cisapride or quinine) or high-risk (quinidine) drug.Key ResultsSignificant AP prolongation (a pro-arrhythmia marker) was seen in response to quinidine and quinine. The VC protocol identified block of IKr (a source of arrhythmias) by all strong IKr blockers, including cisapride, quinidine and quinine. The protocol also detected block of ICaL by verapamil and Ito by quinidine. Further demonstrating the power of the approach, the VC data uncovered a previously unidentified If block by quinine, which was confirmed with experiments using a HEK-293 expression system and automated patch-clamp.Conclusion and ImplicationsWe developed an in silico–in vitro pipeline that simultaneously identifies pro-arrhythmia risk and mechanism of ion channel-blocking drugs. The approach offers a new tool for evaluating cardiotoxicity during preclinical drug screening.
Anoctamin 1 (ANO1) is a calcium-activated chloride channel found in various cell types and is overexpressed in non-small cell lung cancer (NSCLC), a major cause of cancer-related mortality. With the rising interest in development of druggable compounds for NSCLC, there has been a corresponding rise in interest in ANO1, a novel drug target for NSCLC. However, as ANO1 inhibitors that have been discovered simultaneously exhibit both the functions of an inhibition of ANO1 channel as well as a reduction of ANO1 protein levels, it is unclear which of the two functions directly causes the anticancer effect. In this study, verteporfin, a chemical compound that reduces ANO1 protein levels was identified through high-throughput screening. Verteporfin did not inhibit ANO1-induced chloride secretion but reduced ANO1 protein levels in a dose-dependent manner with an IC50 value of ~300 nM. Moreover, verteporfin inhibited neither P2Y receptor-induced intracellular Ca2+ mobilization nor cystic fibrosis transmembrane conductance regulator (CFTR) channel activity, and molecular docking studies revealed that verteporfin bound to specific sites of ANO1 protein. Confirming that verteporfin reduces ANO1 protein levels, we then investigated the molecular mechanisms involved in its effect on NSCLC cells. Interestingly, verteporfin decreased ANO1 protein levels, the EGFR-STAT3 pathway as well as ANO1 mRNA expression. Verteporfin reduced the viability of ANO1-expressing cells (PC9, and gefitinib-resistant PC9) and induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage. However, it did not affect hERG channel activity. These results show that the anticancer mechanism of verteporfin is caused via the down-regulation of ANO1.
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-β (Aβ) induced mitochondrial dysfunction and in acute and transgenic Alzheimer’s disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aβ-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.
Purified cannabidiol (CBD), a non-psychoactive phytocannabinoid, has gained regulatory approval to treat intractable childhood epilepsies. Despite this, artisanal and commercial CBD-dominant hemp-based products continue to be used by epilepsy patients. Notably, the CBD doses used in these latter products are much lower than that found to be effective in reducing seizures in clinical trials with purified CBD. This might be because these CBD-dominant hemp products contain other bioactive compounds, including phytocannabinoids and terpenes, which may exert unique effects on epilepsy-relevant drug targets. Voltage-gated sodium (NaV) channels are vital for initiation of neuronal action potential propagation and genetic mutations in these channels result in epilepsy phenotypes. Recent studies suggest that NaV channels are inhibited by purified CBD. However, the effect of cannabis-based products on the function of NaV channels is unknown.
The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.
Trikafta, currently the leading therapeutic in Cystic Fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch clamp recordings, Western blot and immunolocalization experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and non-treated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor unlike the CFTR potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.
Mathematical models of individual ion channels form the building blocks of complex in-silico tools, enabling the investigation of biophysical mechanisms and simulation of disease processes. We here propose a first simplified hidden Markov Model (HMM) for the voltage-gated potassium channel KV1.1, taking into account the channels’ specific activation and inactivation characteristics close to physiological temperature. The modeling approach and simulation results were compared with an existing Hodgkin Huxley model based on the same experimental data. The newly developed HMM shows a higher accuracy with regard to the activation and inactivation behavior com- pared to the Hodgkin Huxley approach.
Background and Aims: The potassium channel KV1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by KV1.3 inhibition. In this study, we examined KV1.3 as a potential therapeutic intervention point for ulcerative colitis [UC], and studied the efficacy of DES1, a small-molecule inhibitor of KV1.3, in vitro and in vivo.Methods: KV1.3 expression on T cells in peripheral blood mononuclear cells [PBMCs] isolated from donors with and without UC was examined by flow cytometry. In biopsies from UC patients, KV1.3-expressing CD4+ T cells were detected by flow cytometry and immunohistochemistry. In vitro, we determined the ability of DES1 to inhibit anti-CD3-driven activation of T cells. In vivo, the efficacy of DES1 was determined in a humanised mouse model of UC and compared with infliximab and tofacitinib in head-to-head studies.Results: KV1.3 expression was elevated in PBMCs from UC patients and correlated with the prevalence of TH1 and TH2 T cells. KV1.3 expression was also detected on T cells from biopsies of UC patients. In vitro, DES1 suppressed anti-CD3-driven activation of T cells in a concentration-dependent manner. In vivo, DES1 significantly ameliorated inflammation in the UC model and most effectively so when PBMCs from donors with higher levels of activated T cells were selected for reconstitution. The efficacy of DES1 was comparable to that of either infliximab or tofacitinib.Conclusion: Inhibition of KV1.3 [by DES1, for instance] appears to be a potential therapeutic intervention strategy for UC patients.
Despite known adverse effects of hydroxychloroquine (HCQ) and azithromycin (AZM) on cardiac function, HCQ and AZM have been used as combination therapy in the treatment of COVID-19 patients. Recent clinical data indicate higher complication rates with HCQ/AZM combination treatment in comparison to monotherapy. Here, we used human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to systematically investigate the effects of HCQ and AZM individually and in combination. The clinically observed QT prolongation caused by treatment with HCQ could be recapitulated in iPSC-CMs based on prolonged field potential duration (FPDc). Interestingly, HCQ-induced FPDc prolongation was strongly enhanced by combined treatment with AZM, although AZM alone slightly shortened FPDc in iPSC-CMs. Furthermore, combined treatment with AZM and HCQ leads to higher cardiotoxicity, more severe structural disarrangement, and more pronounced contractile and electrophysiological dysfunctions, compared to respective mono-treatments. First mechanistic insights underlying the synergistic effects of AZM and HCQ on iPSC-CM functionality are provided based on increased Cx43- and NaV1.5-protein levels. Taken together, our results highlight that combined treatment with HCQ and AZM strongly enhances the adverse effects on cardiomyocytes, providing mechanistic evidence for the high mortality in patients receiving HCQ/AZM combination treatment.
Alkaloids are a structurally complex group of natural products that have a diverse range of biological activities and significant therapeutic applications. In this study, we examined the acute, anxiolytic-like effects of nicotinic acetylcholine receptor (nAChR)-activating alkaloids with reported neuropharmacological effects but whose effects on anxiety are less well understood. Because α4β2 nAChRs can regulate anxiety, we first demonstrated the functional activities of alkaloids on these receptors in vitro. Their effects on anxiety-like behavior in zebrafish were then examined using the zebrafish novel tank test (NTT). The NTT is a relatively high-throughput behavioral paradigm that takes advantage of the natural tendency of fish to dive down when stressed or anxious. We report for the first time that cotinine, anatabine, and methylanatabine may suppress this anxiety-driven zebrafish behavior after a single 20-min treatment. Effective concentrations of these alkaloids were well above the concentrations naturally found in plants and the concentrations needed to induce anxiolytic-like effect by nicotine. These alkaloids showed good receptor interactions at the α4β2 nAChR agonist site as demonstrated by in vitro binding and in silico docking model, although somewhat weaker than that for nicotine. Minimal or no significant effect of other compounds may have been due to low bioavailability of these compounds in the brain, which is supported by the in silico prediction of blood–brain barrier permeability. Taken together, our findings indicate that nicotine, although not risk-free, is the most potent anxiolytic-like alkaloid tested in this study, and other natural alkaloids may regulate anxiety as well.
A series of oxadiazole derivatives were synthesized and evaluated as 5-hydroxytryptamine-4 receptor (5-HT4R) partial agonists for the treatment of cognitive deficits associated with Alzheimer’s disease. Starting from a reported 5-HT4R antagonist, a systematic structure–activity relationship was conducted, which led to the discovery of potent and selective 5-HT4R partial agonist 1-isopropyl-3-{5-[1-(3-methoxypropyl) piperidin-4-yl]-[1,3,4]oxadiazol-2-yl}-1H-indazole oxalate (Usmarapride, 12l). It showed balanced physicochemical–pharmacokinetic properties with robust nonclinical efficacy in cognition models. It also showed disease-modifying potential, as it increased neuroprotective soluble amyloid precursor protein alpha levels, and dose-dependent target engagement and correlation of efficacy with oral exposures. Phase 1 clinical studies have been completed and projected efficacious concentration was achieved without any major safety concerns. Phase 2 enabling long-term safety studies have been completed with no concerns for further development.
Human pluripotent stem cell–derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of “synthetic” inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential(“dynamic clamp”). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show “adult-like” action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology.These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software.In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Objective: Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression.Methods: The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes.Results: Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes.
PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.
Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.
Recently, there have been great advances in cardiovascular channelopathy modeling and drug safety pharmacology using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The automated patch-clamp (APC) technique overcomes the disadvantages of the manual patch-clamp (MPC) technique, which is labor intensive and gives low output. However, the application of the APC platform is still limited in iPSC-CM based research, due to the difficulty in maintaining the high quality of single iPSC-CMs during dissociation and recording. In this study, we improved the method for single iPSC-CM preparation by applying 2.5 µM blebbistatin (BB, an excitation–contraction coupling uncoupler) throughout APC procedures (dissociation, filtration, storage, and recording). Under non-BB buffered condition, iPSC-CMs in suspension showed a severe bleb-like morphology. However, BB-supplement led to significant improvements in morphology and INa recording, and we even obtained several CMs that showed spontaneous action potentials with typical morphology. Furthermore, APC faithfully recapitulated the single-cell electrophysiological phenotypes of iPSC-CMs derived from Brugada syndrome patients, as detected with MPC. Our study indicates that APC is capable of replacing MPC in the modeling of cardiac channelopathies using human iPSC-CMs by providing high-quality data with higher throughput.
New therapeutic compounds go through a preclinical drug cardiotoxicity screening process that is overly conservative and provides limited mechanistic insight, leading to the misclassification of potentially beneficial drugs as proarrhythmic. There is a need to develop a screening paradigm that maintains this high sensitivity, while ensuring non-cardiotoxic compounds pass this phase of the drug approval process. In this study, we develop an in vitro-in silico pipeline using human induced stem-cell derived cardiomyocytes (iPSC-CMs) to address this problem. The pipeline includes a model-guided optimization that produces a voltage-clamp (VC) protocol to determine drug block of seven cardiac ion channels. Such VC data, along with action potential (AP) recordings, were acquired from iPSC-CMs before and after treatment with a control solution or a low-, intermediate-, or high-risk drug. We identified significant AP prolongation (a proarrhythmia indicator) in two high-risk drugs and, from the VC data, determined strong ion channel blocks that led to the AP changes. The VC data also uncovered an undocumented funny current (If) block by quinine, which we confirmed with experiments using a HEK-293 expression line. We present a new approach to cardiotoxicity screening that simultaneously evaluates proarrhythmia risk (e.g. AP prolongation) and mechanism (e.g. channel block) from iPSC-CMs.
Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".
Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs).
Chapter 7:Utilising Automated Electrophysiological Platform in Epilepsy ResearchAbstract:Genetic mutations have long been implicated in epilepsy, particularly in genes that encode ion channels and neurotransmitter receptors. Among some of those identified are voltage-gated sodium, potassium and calcium channels, and ligand-gated gamma-aminobutyric acid (GABA), neuronal nicotinic acetylcholine (CHRN), and glutamate receptors, making them key therapeutic targets. In this chapter we discuss the use of automated electrophysiological technologies to examine the impact of gene defects in two potassium channels associated with different epilepsy syndromes. The hKCNC1 gene encodes the voltage-gated potassium channel hKV3.1, and mutations in this gene cause progressive myoclonus epilepsy (PME) and ataxia due to a potassium channel mutation (MEAK). The hKCNT1 gene encodes the weakly voltage-dependent sodium-activated potassium channel hKCNT1, and mutations in this gene cause a wide spectrum of seizure disorders, including severe autosomal dominant sleep-related hypermotor epilepsy (ADSHE) and epilepsy of infancy with migrating focal seizures (EIMFS), both conditions associated with drug-resistance. Importantly, both of these potassium channels play vital roles in regulating neuronal excitability.Since its discovery in the late nineteen seventies, the patch-clamp technique has been regarded as the bench-mark technology for exploring ion channel characteristics. In more recent times, innovations in automated patch-clamp technologies, of which there are many, are enabling the study of ion channels with much greater productivity that manual systems are capable of. Here we describe aspects of Nanion NPC-16 Patchliner, examining the effects of temperature on stably and transiently transfected mammalian cells, the latter of which for most automated systems on the market is quite challenging. Remarkable breakthroughs in the development of other automated electrophysiological technologies, such as multielectrode arrays that support extracellular signal recordings, provide additional features to examine network activity in the area of ion channel research, particularly epilepsy. Both of these automated technologies enable the acquisition of consistent, robust, and reproducible data. Numerous systems have been developed with very similar capabilities, however, not all the systems on the market are adapted to work with primary cells, particularly neurons that can be problematic.This chapter also showcases methods that demonstrate the versatility of Nanion NPC-16 Patchliner and the Multi Channel Systems (MCS) multielectrode array (MEA) assay for acutely dissociated murine primary cortical neurons, enabling the study of potassium channel mutations implicated in severe refractory epilepsies.
Recent evidence shows that combination of correctors and potentiators, such as the drug ivacaftor (VX-770), can significantly restore the functional expression of mutated Cystic Fibrosis Transmembrane conductance Regulator (CFTR), an anion channel which is mutated in cystic fibrosis (CF). The success of these combinatorial therapies highlights the necessity of identifying a broad panel of specific binding mode modulators, occupying several distinct binding sites at structural level. Here, we identified two small molecules, SBC040 and SBC219, which are two efficient cAMP-independent potentiators, acting at low concentration of forskolin with EC50 close to 1 μM and in a synergic way with the drug VX-770 on several CFTR mutants of classes II and III. Molecular dynamics simulations suggested potential SBC binding sites at the vicinity of ATP-binding sites, distinct from those currently proposed for VX-770, outlining SBC molecules as members of a new family of potentiators.
Cannabis use is associated with cardiovascular adverse effects ranging from arrhythmias to sudden cardiac death. The exact mechanism of action behind these activities is unknown. The aim of our work was to study the effect of cannabidiol (CBD), tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol on cellular cardiac electrophysiological properties including ECG parameters, action potentials, hERG and IKr ion channels in HEK cell line and in rabbit and guinea pig cardiac preparations. CBD increased action potential duration in rabbit and guinea pig right ventricular papillary muscle at lower concentrations (1 µM, 2.5 µM and 5 µM) but did not significantly change it at 10 µM. CBD at high concentration (10 µM) decreased inward late sodium and L-type calcium currents as well. CBD inhibited hERG potassium channels with an IC50 value of 2.07 µM at room temperature and delayed rectifier potassium current with 6.5 µM at 37 °C, respectively. The frequency corrected QT interval (QTc) was significantly lengthened in anaesthetized guinea pig without significantly changing other ECG parameters. Although the IC50 value of CBD was higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that hERG and potassium channel inhibition might have a role in the possible proarrhythmic adverse effects of cannabinoids in situations where metabolism of CBD impaired and/or the repolarization reserve is weakened.
K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
Urotoxin (α-KTx 6), a peptide from venom of the Australian scorpion Urodacus yaschenkoi, is the most potent inhibitor of KV1.2 described to date (IC50 = 160 pM). The native peptide also inhibits KV1.1, KV1.3 and KCa3.1 with nanomolar affinity but its low abundance in venom precluded further studies of its actions. Here we produced recombinant Urotoxin (rUro) and characterized the molecular determinants of KV1 channel inhibition. The 3D structure of rUro determined using NMR spectroscopy revealed a canonical cysteine-stabilised α/β (CSα/β) fold. Functional assessment of rUro using patch-clamp electrophysiology revealed the importance of C-terminal amidation for potency against KV1.1–1.3 and KV1.5. Neutralization of the putative pore-blocking K25 residue in rUro by mutation to Ala resulted in a major decrease in rUro potency against all KV channels tested, without perturbing the toxin’s structure. Reciprocal mutations in the pore of Uro-sensitive KV1.2 and Uro-resistant KV1.5 channels revealed a direct interaction between Urotoxin and the KV channel pore. Our experimental work supports postulating a mechanism of action in which occlusion of the permeation pathway by the K25 residue in Urotoxin is the basis of its KV1 inhibitory activity. Docking analysis was consistent with occlusion of the pore by K25 and the requirement of a small, non-charged amino acid in the KV1 channel vestibule to facilitate toxin-channel interactions. Finally, computational studies revealed key interactions between the amidated C-terminus of Urotoxin and a conserved Asp residue in the turret of KV1 channels, offering a potential rationale for potency differences between native and recombinant Urotoxin.
Drug resistance and chemotherapy-induced peripheral neuropathy continue to be significant problems in the successful treatment of acute lymphoblastic leukemia (ALL). 5,7-Dibromo-N-alkylisatins, a class of potent microtubule destabilizers, are a promising alternative to traditionally used antimitotics with previous demonstrated efficacy against solid tumours in vivo and ability to overcome P-glycoprotein (P-gp) mediated drug resistance in lymphoma and sarcoma cell lines in vitro. In this study, three di-brominated N-alkylisatins were assessed for their ability to retain potency in vincristine (VCR) and 2-methoxyestradiol (2ME2) resistant ALL cell lines. For the first time, in vitro neurotoxicity was also investigated in order to establish their suitability as candidate drugs for future use in ALL treatment.
Background and PurposeThe P2X4 receptor is an emerging therapeutic target for the treatment of chronic pain and cardiovascular disease. Dogs are well‐recognised natural models of human disease but information regarding P2X4 in dogs is absent. To aid the development and validation of P2X4‐targeting therapeutics, this study aimed to characterise and compare canine and human P2X4.Experimental ApproachGenomic DNA was extracted from whole blood samples from 101 randomly selected dogs and sequenced across the P2RX4 gene to identify potential missense variants. Recombinant canine and human P2X4 tagged with Emerald GFP were expressed in 1321N1 and HEK293 cells and analysed by immunoblotting and confocal microscopy. P2X4 pharmacology was characterised using nucleotide‐induced Fura‐2 AM measurements of intracellular Ca2+ responses and known P2X4 antagonists in 1321N1 and HEK293 cells. P2X4‐mediated inward currents in HEK293 cells were assessed by automated patch clamp.Key ResultsNo P2RX4 missense variants were identified in any canine samples. Canine and human P2X4 were localised primarily to lysosomal compartments. ATP was identified as the primary agonist of canine P2X4 with near identical efficacy and potency at human P2X4. 2’(3’)‐O‐(4‐benzoyl)benzoyl ATP (BzATP), but not ADP, was identified as a partial agonist with reduced potency for dog P2X4 compared to the human orthologue. Five antagonists inhibited canine P2X4, with BX430 displaying reduced sensitivity and potency against canine P2X4.Conclusion and ImplicationsP2X4 is highly conserved across dog pedigrees and displays a similar expression pattern and pharmacological profile to human P2X4, providing support for validation and use of therapeutics designed for P2X4‐related disease onset and management in dogs and humans.
A series of chemical optimizations guided by in vitro affinity at the α4β2 receptor in combination with selectivity against the α3β4 receptor, pharmacokinetic evaluation, and in vivo efficacy in a forced swim test resulted in identification of 3-(6-chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane hydrochloride (9h, SUVN-911) as a clinical candidate. Compound 9h is a potent α4β2 receptor ligand with a Ki value of 1.5 nM. It showed >10 μM binding affinity toward the ganglionic α3β4 receptor apart from showing selectivity over 70 other targets. It is orally bioavailable and showed good brain penetration in rats. Marked antidepressant activity and dose-dependent receptor occupancy in rats support its potential therapeutic utility in the treatment of depression. It does not affect the locomotor activity at doses several folds higher than its efficacy dose. It is devoid of cardiovascular and gastrointestinal side effects. Successful long-term safety studies in animals and phase-1 evaluation in healthy humans for safety, tolerability, and pharmacokinetics paved the way for its further development.
Brugada syndrome (BrS) is one of the major causes of sudden cardiac death in young people, while the underlying mechanisms are not completely understood. Here, we investigated the pathophysiological phenotypes and mechanisms using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from two BrS patients (BrS-CMs) carrying a heterozygous SCN5A mutation p.S1812X. Compared to CMs derived from healthy controls (Ctrl-CMs), BrS-CMs displayed a 50% reduction of INa density, a 69.5% reduction of NaV1.5 expression, and the impaired localization of NaV1.5 and connexin 43 (Cx43) at the cell surface. BrS-CMs exhibited reduced action potential (AP) upstroke velocity and conduction slowing. The Ito in BrS-CMs was significantly augmented, and the ICaL window current probability was increased. Our data indicate that the electrophysiological mechanisms underlying arrhythmia in BrS-CMs may involve both depolarization and repolarization disorders. Cilostazol and milrinone showed dramatic inhibitions of Ito in BrS-CMs and alleviated the arrhythmic activity, suggesting their therapeutic potential for BrS patients.
Dynamic action potential (AP) clamp (dAPC) is an electrophysiology technique that allows one to study in real time the effects of a biological current included in a computational AP model. During an experiment, the seal resistance between the cell membrane and the pipette is finite and a leak current (Ileak) occurs. Its reduction is crucial to properly assess the effect of a drug. Our work aims to quantify the impact of Ileak on a ventricular AP model and to evaluate the benefits of an online compensation. We carried out the experiments using a prototype Nanion Patchliner Dynamite8 in dAPC mode, running the ten Tusscher human ventricular AP model. We use a passive model cell (Cm = 19.8pF, Rseal = 500MOhm) and online compensate the leak current adopting a linear model. Vmax, RMP and AP D20,50,90 are measured at several degrees of compensation (within 0 and 100%), at different pacing frequencies (0.5, 1, 2 Hz), and compared with the AP model in the open loop condition (i.e. with no connection between the model cell and the AP model). Ileak decreases Vmax, depolarizes RMP (up to +6.1mV at 1 Hz ) and prolongs AP D both during the plateau and the late repolarization; a full compensation of Ileak brings the AP biomarkers close to the open loop condition. With this test, we show that online compensation of Ileak is beneficial for proper assessment of AP biomarker. The correction of f RMP is key, as it affects the following phases of the AP.
Current in vitro assays typically poorly predict cardiac liability as they focus on single ion channels overexpressed in cell lines. Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CMs), on the other hand, provide a unique opportunity for drug testing on human cardiomyocytes using high‐throughput systems. However, these cells can differ from adult cardiomyocytes in their ion channel expression and, therefore, electrophysiologic properties. One of the main challenges of hiPSC‐CMs is the physiologic expression of ion channels such as the inward rectifiers (e.g., Kir2.1–2.3), which conduct the cardiac inward rectifier potassium current (IK1). IK1 is one of the primary contributors in maintaining a stable resting membrane potential in cardiac cells, which is essential for excitability. This is only expressed in low levels, or sometimes not at all, in hiPSC‐CMs as shown by patch clamp studies. Dynamic clamp is a method of electronically introducing ion currents (e.g., IK1) into cells to compensate for the lack of endogenous expression, thus offering the potential to record more stable action potentials in hiPSC‐CMs. In this article, we describe the method of using hiPSC‐CMs on an automated patch clamp device (Patchliner) coupled with the automated dynamic clamp add‐on (Dynamite8). We describe protocols for optimized cell handling and harvesting for use on the Patchliner and the steps required for automated execution of experiments and data analysis in dynamic clamp mode. © 2019 by John Wiley & Sons, Inc.Basic Protocol: Recording action potential pharmacology from human induced pluripotent stem cell–derived cardiomyocytes in automated patch clamp combined with dynamic clamp to introduce simulated IK1 and compensate seal resistanceSupport Protocol 1: Cardiomyocyte plating and cultureSupport Protocol 2: Cell harvesting and dissociationAlternate Protocol: Recording action potential pharmacology at physiologic temperatures
P2X7 is an ATP‐gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full‐length P2RX7A pre‐mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele‐specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C‐terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP‐binding site. P2X7L‐transfected HEK 293 cells have phagocytic but not channel, pore, or membrane‐blebbing function, and double‐transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP‐binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes.
Nicotinic acetylcholine receptor (nAChR) subtype-selective pharmacological profiles of tobacco alkaloids are essential for understanding the physiological effects of tobacco products. In this study, automated electrophysiology was used to functionally characterize the effects of distinct groups of tobacco alkaloids on human α4β2 and α7 nAChRs. We found that, in tobacco alkaloids, pyridine as a hydrogen bond acceptor and a basic nitrogen atom at a distance of 4–7 Å are pharmacophoric elements necessary for molecular recognition by α4β2 and α7 nAChRs with various degrees of selectivity, potency, and efficacy. While four alkaloids—nicotine, nornicotine, anabasine and R-anatabine—potently activated α4β2, they were also weak agonists of α7 nAChRs. Nicotine was the most potent agonist of α4β2, while anabasine elicited the highest activation of α7. None of the tobacco alkaloids enhanced nAChR activity elicited by the endogenous ligand acetylcholine; therefore, none was considered to be a positive allosteric modulator (PAM) of either α4β2 or α7 nAChRs. In contrast, we identified tobacco alkaloids, such as the tryptophan metabolite 6-hydroxykynurenic acid, that decreased the activity of both α4β2 and α7 nAChRs. Our study identified a class of alkaloids with positive and negative effects against human α4β2 and α7 nAChRs. It also revealed human α4β2 to be the principal receptor for sensing the most abundant alkaloids in tobacco leaves.
Congenital haemolytic anaemias are inherited disorders caused by red blood cell membrane and cytoskeletal protein defects, deviant hemoglobin synthesis and metabolic enzyme deficiencies. In many cases, although the causing mutation might be known, the pathophysiology and the connection between the particular mutation and the symptoms of the disease are not completely understood. Thus effective treatment is lagging behind. As in many cases abnormal red blood cell cation content and cation leaks go along with the disease, by direct electrophysiological measurements of the general conductance of red blood cells, we aimed to assess if changes in the membrane conductance could be a possible cause. We recorded whole-cell currents from 29 patients with different types of congenital haemolytic anaemias: 14 with hereditary spherocytosis due to mutations in α-spectrin, β-spectrin, ankyrin and band 3 protein; 6 patients with hereditary xerocytosis due to mutations in Piezo1; 6 patients with enzymatic disorders (3 patients with glucose-6-phosphate dehydrogenase deficiency, 1 patient with pyruvate kinase deficiency, 1 patient with glutamate-cysteine ligase deficiency and 1 patient with glutathione reductase deficiency), 1 patient with β-thalassemia and 2 patients, carriers of several mutations and a complex genotype. While the patients with β-thalassemia and metabolic enzyme deficiencies showed no changes in their membrane conductance, the patients with hereditary spherocytosis and hereditary xerocytosis showed largely variable results depending on the underlying mutation.
The transcription factor nuclear factor-erythroid 2-related factor-2 (Nrf2) is known to induce neuroprotective and anti-inflammatory effects and is considered to be an excellent molecular target for drugs related to neurodegenerative disease therapy. Nrf2 activators previously tested in clinical trials were electrophilic, causing adverse effects due to non-selective and covalent modification of cellular thiols. In order to circumvent this issue, we constructed and screened a chemical library consisting of 241 pyrazolo [3,4-d] pyrimidine derivatives and discovered a novel, non-electrophilic compound: 1-benzyl-6-(methylthio)-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidine-4-amine (KKC080106). KKC080106 was able to activate Nrf2 signaling as it increases the cellular levels of Nrf2, binds to the Nrf2 inhibitor protein Keap1, and causes the accumulation of nuclear Nrf2. We also observed an increase in the expression levels of Nrf2-dependent genes for antioxidative/neuroprotective enzymes in dopaminergic neuronal cells. In addition, in lipopolysaccharide-activated microglia, KKC080106 suppressed the generation of the proinflammatory markers, such as IL-1β, TNF-α, cyclooxygenase-2, inducible nitric oxide synthase, and nitric oxide, and inhibited the phosphorylation of kinases known to be involved in inflammatory signaling, such as IκB kinase, p38, JNK, and ERK. As a drug, KKC080106 exhibited excellent stability against plasma enzymes and a good safety profile, evidenced by no mortality after the administration of 2000 mg/kg body weight, and minimal inhibition of the hERG channel activity. Pharmacokinetic analysis revealed that KKC080106 has good bioavailability and enters the brain after oral and intravenous administration, in both rats and mice. In MPTP-treated mice that received KKC080106 orally, the compound blocked microglial activation, protected the nigral dopaminergic neurons from degeneration, and prevented development of the dopamine deficiency-related motor deficits. These results suggest that KKC080106 has therapeutic potential for neurodegenerative disorders such as Parkinson's disease.
This work deals with the isolation and pharmacological investigations of compounds of Euphorbia matabelensis. After multiple separation process, including thin layer chromatography (TLC), vacuum liquid chromatography, preparative TLC, and high-performance liquid chromatography, 1 diterpene (ingenol) and 2 flavonoids (naringenin and eriodictyol) were obtained from the methanol extracts prepared from the stems and roots of the plant. The structures of the isolated compounds were determined by nuclear magnetic resonance (NMR) and MS measurements and comparison with literature data. All compounds were isolated for the first time from the plant. Eriodictyol was detected for the first time from a Euphorbia species. The compounds were tested for their antiproliferative (on HeLa, C33a, MCF-7, and MDA-MB-231 cell lines) and GIRK channel blocking activities. None of the compounds proved to be active in these test systems..
Heart disease is a paramount cause of global death and disability. Although cardiomyocyte death plays a causal role and its suppression would be logical, no clinical counter-measures target the responsible intracellular pathways. Therapeutic progress has been hampered by lack of preclinical human validation. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is activated in failing human hearts and relevant rodent models. Using human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) and MAP4K4 gene silencing, we demonstrate that death induced by oxidative stress requires MAP4K4. Consequently, we devised a small-molecule inhibitor, DMX-5804, that rescues cell survival, mitochondrial function, and calcium cycling in hiPSC-CMs. As proof of principle that drug discovery in hiPSC-CMs may predict efficacy in vivo, DMX-5804 reduces ischemia-reperfusion injury in mice by more than 50%. We implicate MAP4K4 as a well-posed target toward suppressing human cardiac cell death and highlight the utility of hiPSC-CMs in drug discovery to enhance cardiomyocyte survival.
BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.
In the current study effects of fungal extracts on the G-protein-activated inwardly rectifying potassium channel (GIRK1/4) were screened using the automated patch-clamp method. 40 organic (n-hexane, chloroform, and 50% methanol) and aqueous extracts were prepared from 10 mushroom species native to Hungary. Among the examined fungal fractions of different polarities some n-hexane and chloroform extracts exerted considerable ion channel activity. One of the most active fungal species, Hypholoma lateritium was selected for further detailed examination to determine the compounds responsible for the observed pharmacological property. Evaluation of the ion channel activity of mushroom metabolites 1–10 revealed that lanosta-7,9(11)-diene-12β,21α-epoxy2α,3β,24β,25-tetraol (5) demonstrates remarkable blocking activity on GIRK current (IC50 395.1 ± 31.8 nM). Investigation of the selectivity of the GIRK inhibitory effect proved that lanosta-7,9(11)-diene-12β,21α-epoxy2α,3β,24β,25-tetraol (5) has only weak inhibitory activity on hERG channel (7.9 ± 2.8% at 100 μM), exerting more than three orders of magnitude lower blocking activity on hERG channel than on GIRK channel.
Positive allosteric modulators (PAMs) of α7 nAChRs can have different properties with respect to their effects on channel kinetics. Type I PAMs amplify peak channel response to acetylcholine but do not appear to influence channel desensitization kinetics, whereas Type II PAMs both increase channel response and delay receptor desensitization. Both Type I and Type II PAMs are reported in literature, but there are limited reports describing their structure–kinetic profile relationships. Here, we report a novel class of compounds with either Type I or Type II behavior that can be tuned by the relative stereochemistry around the central cyclopropyl ring: for example, (R,R)-13 (BNC375) and its analogues with RR stereochemistry around the central cyclopropyl ring are Type I PAMs, whereas compounds in the same series with SS stereochemistry (e.g., (S,S)-13) are Type II PAMs as measured using patch-clamp electrophysiology. Further fine control over the kinetics has been achieved by changing the substitutions on the aniline ring: generally the substitution of aniline with strong electron withdrawing groups reduces the Type II character of these compounds. Our structure–activity optimization efforts have led to the discovery of BNC375, a small molecule with good CNS-drug like properties and clinical candidate potential.
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) have evolved into widely used and reliable cell sources for modeling cardiovascular channelopathies and for drug safety pharmacology. However, the electrophysiological and pharmacological applications of hiPSC-CMs are hampered by manual patch-clamp technique, which is labor-intensive and generates a low-output. The automated patch-clamp technique is showing potential to overcome this problem. Here, we describe a new dissociation method, with which we can harvest a vast number of single relaxed hiPSC-CMs with smooth membrane suited for automated patch-clamp. Using the automated whole-cell patch-clamp technology, we report a high success rate for cell capture and whole-cell access (around 70%). We are able to identify and record several currents and paced action potentials (APs) with different success rates, including Na+ current (INa), L-type Ca2+ current (ICaL), two specific K+ currents, the transient outward K+ current (Ito) and the inward rectifier K+ current (IK1). Moreover, we successfully applied dynamic current-clamp to virtually increase IK1 for AP recordings. Our study suggests that automated patch-clamp technology could be used to investigate the relevant ionic currents and APs in hiPSC-CMs. The combination of automated patch-clamp and hiPSC-CM technologies promises a wide range of applications in the future.
In this paper, we explore the impact of combining different in silico prediction approaches and data sources on the predictive performance of the resulting system. We use inhibition of the hERG ion channel target as the endpoint for this study as it constitutes a key safety concern in drug development and a potential cause of attrition. We will show that combining data sources can improve the relevance of the training set in regard of the target chemical space, leading to improved performance. Similarly we will demonstrate that combining multiple statistical models together, and with expert systems, can lead to positive synergistic effects when taking into account the confidence in the predictions of the merged systems. The best combinations analyzed display a good hERG predictivity. Finally, this work demonstrates the suitability of the SOHN methodology for building models in the context of receptor based endpoints like hERG inhibition when using the appropriate pharmacophoric descriptors.
Aims: KV1.1 (KCNA1) channels contribute to the control of neuronal excitability and have been associated with epilepsy. KV1.1 channels can associate with the cytoplasmic KVβ1 subunit resulting in rapid inactivating A‐type currents. We hypothesized that removal of channel inactivation, by modulating KV1.1/KVβ1 interaction with a small molecule, would lead to decreased neuronal excitability and anticonvulsant activity. Methods: We applied high‐throughput screening to identify ligands able to modulate the KV1.1‐T1 domain/KVβ1 protein complex. We then selected a compound that was characterized on recombinant KV1.1/KVβ1 channels by electrophysiology and further evaluated on sustained neuronal firing and on in vitro epileptiform activity using a high K+‐low Ca2+ model in hippocampal slices. Results: We identified a novel compound able to modulate the interaction of the KV1.1/KVβ1 complex and that produced a functional inhibition of KV1.1/KVβ1 channel inactivation. We demonstrated that this compound reduced the sustained repetitive firing in hippocampal neurons and was able to abolish the development of in vitro epileptiform activity. Conclusions: This study describes a rational drug discovery approach for the identification of novel ligands that inhibit KV1.1 channel inactivation and provides pharmacological evidence that such a mechanism translates into physiological effects by reducing in vitro epileptiform activity.
The voltage-gated potassium (KV) channels, encoded by 40 genes, repolarize all electrically excitable cells, including plant, cardiac, and neuronal cells. Although these genes were fully sequenced decades ago, a comprehensive kinetic characterization of all KV channels is still missing, especially near physiological temperature. Here, we present a standardized kinetic map of the 40 homomeric KV channels systematically characterized at 15, 25, and 35°C. Importantly, the KV kinetics at 35°C differ significantly from commonly reported kinetics, usually performed at room temperature. We observed voltage-dependent Q10 for all active KV channels and inherent heterogeneity in kinetics for some of them. Kinetic properties are consistent across different host cell lines and conserved across mouse, rat, and human. All electrophysiology data from all KV channels are made available through a public website (Channelpedia). This dataset provides a solid foundation for exploring kinetics of heteromeric channels, roles of auxiliary subunits, kinetic modulation, and for building accurate KV models.
P2X receptors are a structurally and functionally distinctive family of ligand-gated ion channels that play important roles in mediating extracellular adenosine 5′-triphosphate (ATP) signaling in diverse physiological and pathophysiological processes. For several decades, the “manual” patch-clamp technique was regarded as the gold standard assay for investigating ion channel properties. More recently, breakthroughs in the development of automated patch-clamp technologies are enabling the study of ion channels, with much greater throughput capacities. These automated platforms, of which there are many, generate consistent, reliable, high-fidelity data. This chapter demonstrates the versatility of one of these technologies for ligand-gated ion channels, with a particular emphasis on protocols that address some of the issues of receptor desensitization that are commonly associated with P2X receptor-mediated currents.
Introduction: The proarrhythmic potency of drugs is usually attributed to the IKr current block. During safety pharmacology testing analysis of IKr in cardiomyocytes was replaced by hERG test using automated patch-clamp systems in stable transfected cell lines. Aim of the present study was to compare the effect of proarrhythmic compounds on hERG and IKr currents and on cardiac action potential. Methods: The hERG current was measured by using both automated and manual patch-clamp methods on HEK293 cells. The native ion currents (IKr, INaL, ICaL) were recorded from rabbit ventricular myocytes by manual patch-clamp technique. Action potentials in rabbit ventricular muscle and undiseased human donor hearts were studied by conventional microelectrode technique. Results: Dofetilide, cisapride, sotalol, terfenadine and verapamil blocked hERG channels at 37 °C with an IC50 of 7 nM, 18 nM, 343 μM, 165 nM and 214 nM, respectively. Using manual patch-clamp, the IC50 values of sotalol and terfenadine were 78 µM and 31 nM, respectively. The IC50 values calculated from IKr measurements at 37 °C were 13 nM, 26 nM, 52 μM, 54 nM and 268 nM, respectively. Cisapride, dofetilide and sotalol excessively lengthened, terfenadine and verapamil did not influence the action potential duration. Terfenadine significantly inhibited INaL and moderately ICaL, verapamil blocked only ICaL. Conclusions: Automated hERG assays may over/underestimate proarrhythmic risk. Manual patch-clamp has substantially higher sensitivity to certain drugs. Action potential studies are also required to analyze complex multichannel effects. Therefore, manual patch-clamp and action potential experiments should be a part of preclinical safety tests.
Significance: Spider venom is a rich source of peptides, many targeting ion channels. We assessed a venom peptide, Hm1a, as a potential targeted therapy for Dravet syndrome, the genetic epilepsy linked to a mutation in the gene encoding the sodium channel alpha subunit NaV1.1. Cell-based assays showed Hm1a was selective for hNaV1.1 over other sodium and potassium channels. Utilizing a mouse model of Dravet syndrome, Hm1a restored inhibitory neuron function and significantly reduced seizures and mortality in heterozygote mice. Evidence from the structure of Hm1a and modeling suggest Hm1a interacts with NaV1.1 inactivation domains, providing a structural correlate of the functional mechanisms. This proof-of-concept study provides a promising strategy for future drug development in genetic epilepsy and other neurogenetic disorders. Abstract: Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.
Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2 ± 26.3 nM and 144.8 ± 35.1 nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10 μM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (CaVB) dogs. In rabbits, DHE increased the QT interval significantly by 12 ± 10% (0.05 mg/kg/5 min) and 60 ± 26% (0.5 mg/kg/5 min), and induced Torsade de Pointes arrhythmias (TdP, 0.5 mg/kg/5 min) in 2 rabbits. In CaVB dogs, 0.33 mg/kg/5 min DHE increased QT duration by 48 ± 10% (P 0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3 μM DHE and hortiamine induced EADs.hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in CaVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.
Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100 μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100 μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1 μM–10 μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10 μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB327. This effect was clearly depended on the presence of the agonist indicating a positive allosteric mechanism of these compounds. Besides potentiation at low concentrations, these compounds seem to interact at different binding sites on hα7-nAChRs since enhancement decreased at high concentrations.
Storage lesion of red blood cells (RBCs) is a well-recognizedprocess characterized by complex morphological and functional changes. Those changes deteriorate the life-saving quality of stored blood with a reported increase in mortality for some categories of patients receiving “old” versus “new” blood. The importance of RBC cation gradients (K+and Na+) dissipation in the process of storage lesion has been recently highlighted. Here we report a previously unrecognized nonselective cation channel in human RBCs (patch-clamp) activated whenever extracellular Ca2+ is removed and very likely contributing to the cation gradients dissipation when opened. In view of the existence of such a channel the use of non-Ca2+-chelating anticoagulants like heparin, preventing channel opening, can reduce cation gradients dissipation and help limit and delay RBCs storage lesion.
Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to “resensitize” i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by dose-response profiles of agonists, carbamoylcholine and epibatidine in the absence and presence of PNU-120596. Although less pronounced than PNU-120596 and the lead structure MB327, bispyridinium compounds, particularly those substituted at position 3 and 4, resensitized the nicotine desensitized hα7-nAChRs in a concentration-dependent manner and prolonged the mean channel open time. In summary, identification of more potent compounds able to restore nAChR function in OP intoxication is needed for development of a putative efficient antidote.
Background and Purpose: The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl)-propyl]-2-(trifluoromethyl)-(10)H-phenothiazine dihydrochloride; TFP) may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) and inhibited by nitric oxide (NO). We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO.Methods:Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. Results: Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP), an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. Conclusions: TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+.
An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) proposal is the use of human stem cell-derived cardiomyocytes and the confirmation of their predictive power in drug safety assays. The benefits of this cell source are clear; drugs can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if needed, and differentiation efficiencies are generally excellent, resulting in a virtually limitless supply of cardiomyocytes. There are, however, several challenges that will have to be surmounted before successful establishment of hSC-CMs as an all-round predictive model for drug safety assays. An important factor is the relative electrophysiological immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by creation of hybrid models, in which the dynamic clamp technique joins simulations of lacking cardiac ion channels (e.g., IK1) with hSC-CMs in real-time during patch clamp experiments. This approach has been used successfully in manual patch clamp experiments, but throughput is low. In this study, we combined dynamic clamp with automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform, resulting in an improved electrophysiological maturity.
Objective:To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever.Methods:We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV3.1 channels.Results:Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic–clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG–electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV3.1, increasing channel availability.Interpretation:MEAK has a relatively homogeneous presentation, resembling Unverricht–Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV3.1 subunit–containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics.
Genetic variants in the purinergic receptors P2RX4 and P2RX7 have been shown to affect susceptibility to multiple sclerosis (MS). In this study, we set out to evaluate whether rare coding variants of major effect could also be identified in these purinergic receptors. Sequencing analysis of P2RX4 and P2RX7 in 193 MS patients and 100 controls led to the identification of a rare three variant haplotype (P2RX7 rs140915863:C>T [p.T205M], P2RX7 rs201921967:A>G [p.N361S], and P2RX4 rs765866317:G>A [p.G135S]) segregating with disease in a multi-incident family with six family members diagnosed with MS (logarithm of odds = 3.07). Functional analysis of this haplotype in HEK293 cells revealed impaired P2X7 surface expression (P 0.01), resulting in over 95% inhibition of adenosine triphosphate (ATP)-induced pore function (P 0.001) and a marked reduction in phagocytic ability (P 0.05). In addition, transfected cells showed 40% increased peak ATP-induced inward current (P 0.01), and a greater Ca2+ response to the P2X4 135S variant compared with wild type (P 0.0001). Our study nominates rare genetic variants in P2RX4 and P2RX7 as major genetic contributors to disease, further supporting a role for these purinergic receptors in MS and the disruption of transmembrane cation channels leading to impairment of phagocytosis as the pathological mechanisms of disease.
The current study explored the Na+/K+-ATPase (NKA) inhibition-independent proarrhythmic mechanisms of cardiac glycosides (CGs) which are well-known NKA inhibitors. With the cytosolic Ca2+ chelated by EGTA and BAPTA or extracellular Ca2+ replaced by Ba2+, effects of bufadienolides (bufalin (BF) and cinobufagin (CBG)) and cardenolides (ouabain (Oua) and pecilocerin A (PEA)) on the L-type calcium current (I Ca,L) were recorded in heterologous expression CaV1.2-CHO cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). BF and CBG demonstrated a concentration-dependent (0.1 to100 µM) I Ca,L inhibition (maximal ≥50%) without and with the NKA activity blocked by 10 µM Oua. BF significantly shortened the action potential duration at 1.0 µM and shortened the extracellular field potential duration at 0.01~1.0 µM. On the other hand, BF and CBG at 100 µM demonstrated a strong inhibition (≥40%) of the rapidly activating component of the delayed rectifier K+ current (I Kr) in heterologous expression HEK293 cells and prolonged the APD of the heart of day-3 Zebrafish larva with disrupted rhythmic contractions. Moreover, hESC-CMs treated with BF (10 nM) for 24 hours showed moderate yet significant prolongation in APD90. In conclusion, our data indicate that CGs particularly bufadienolides possess cytosolic [Ca2+]i- and NKA inhibition- independent proarrhythmic potential through I Ca,L and I Kr inhibitions.
Aconitine (ACO) is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). ACO concentration-dependently (0.3 ~ 3.0 μM) shortened the action potentials (AP) durations (APD) in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC) currents (ICa,L) in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa) in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (IKr) were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of IKr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes.
In this study, we designed a library of compounds based on the structures of well-known ligands of the 18 kDa translocator protein (TSPO), one of the putative components of the mPTP. We performed diverse mitochondrial functional assays to assess their ability to restore cells from Aβ-induced toxicity in vitro and in vivo. Among tested compounds, compound 25 effectively improved cognitive function in animal models of AD. Given the excellent in vitro and in vivo activity and a favorable pharmacokinetic profile of compound 25, we believe that it can serve as a promising lead compound for a potential treatment option for AD.
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
BACKGROUND AND PURPOSE:Human ether-a-go-go-related gene (hERG; KV 11.1) channel inhibition is a widely accepted predictor of cardiac arrhythmia. hERG channel inhibition alone is often insufficient to predict pro-arrhythmic drug effects. This study used a library of dofetilide derivatives to investigate the relationship between standard measures of hERG current block in an expression system and changes in action potential duration (APD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The interference from accompanying block of CaV1.2 and NaV1.5 channels was investigated along with an in silico AP model.EXPERIMENTAL APPROACH:Drug-induced changes in APD were assessed in hiPSC-CMs using voltage-sensitive dyes. The IC50 values for dofetilide and 13 derivatives on hERG current were estimated in an HEK293 expression system. The relative potency of each drug on APD was estimated by calculating the dose (D150 ) required to prolong the APD at 90% (APD90 ) repolarization by 50%.KEY RESULTS:The D150 in hiPSC-CMs was linearly correlated with IC50 of hERG current. In silico simulations supported this finding. Three derivatives inhibited hERG without prolonging APD, and these compounds also inhibited CaV1.2 and/or NaV1.5 in a channel state-dependent manner. Adding CaV 1.2 and NaV 1.2 block to the in silico model recapitulated the direction but not the extent of the APD change.CONCLUSIONS AND IMPLICATIONS:Potency of hERG current inhibition correlates linearly with an index of APD in hiPSC-CMs. The compounds that do not correlate have additional effects including concomitant block of CaV1.2 and/or NaV1.5 channels. In silico simulations of hiPSC-CMs APs confirm the principle of the multiple ion channel effects.
The chloride (Cl-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is defective in cystic fibrosis (CF), and mutation of its encoding gene leads to various defects such as retention of the misfolded protein in the endoplasmic reticulum, reduced stability at the plasma membrane, abnormal channel gating with low open probability, and thermal instability, which leads to inactivation of the channel at physiological temperature. Pharmacotherapy is one major therapeutic approach in the CF field and needs sensible and fast tools to identify promising compounds. The high throughput screening assays available are often fast and sensible techniques but with lack of specificity. Few works used automated patch clamp (APC) for CFTR recording, and none have compared conventional and planar techniques and demonstrated their capabilities for different types of experiments. In this study, we evaluated the use of planar parallel APC technique for pharmacological search of CFTR-trafficking correctors and CFTR function modulators. Using optimized conditions, we recorded both wt- and corrected F508del-CFTR Cl- currents with automated whole-cell patch clamp and compared the data to results obtained with conventional manual whole-cell patch clamp. We found no significant difference in patch clamp parameters such as cell capacitance and series resistance between automated and manual patch clamp. Also, the results showed good similarities of CFTR currents recording between the two methods. We showed that similar stimulation protocols could be used in both manual and automatic techniques allowing precise control of temperature, classic I/V relationship, and monitoring of current stability in time. In conclusion, parallel patch-clamp recording allows rapid and efficient investigation of CFTR currents with a variety of tests available and could be considered as new tool for medium throughput screening in CF pharmacotherapy.
Two-pore domain potassium (K2P) channels influence basic cellular parameters such as resting membrane potential, cellular excitability, or intracellular Ca2+-concentration [Ca2+]i While the physiological importance of K2P channels in different organ systems (e.g., heart, central nervous system, or immune system) has become increasingly clear over the last decade, their expression profile and functional role in skeletal muscle cells (SkMC) remain largely unknown. The mouse SkMC cell line C2C12, wild-type mouse muscle tissue, and primary mouse muscle cells (PMMs) were analyzed using quantitative PCR, Western blotting, and immunohistochemical stainings as well as functional analysis including patch-clamp measurements and Ca2+ imaging. Mouse SkMC express TWIK-related acid-sensitive K+ channel (TASK) 2, TWIK-related K+ channel (TREK) 1, TREK2, and TWIK-related arachidonic acid stimulated K+ channel (TRAAK). Except TASK2 all mentioned channels were upregulated in vitro during differentiation from myoblasts to myotubes. TASK2 and TREK1 were also functionally expressed and upregulated in PMMs isolated from mouse muscle tissue. Inhibition of TASK2 and TREK1 during differentiation revealed a morphological impairment of myoblast fusion accompanied by a downregulation of maturation markers. TASK2 and TREK1 blockade led to a decreased K+ outward current and a decrease of ACh-dependent Ca2+ influx in C2C12 cells as potential underlying mechanisms. K2P-channel expression was also detected in human muscle tissue by immunohistochemistry pointing towards possible relevance for human muscle cell maturation and function. In conclusion, our findings for the first time demonstrate the functional expression of TASK2 and TREK1 in muscle cells with implications for differentiation processes warranting further investigations in physiologic and pathophysiologic scenarios.
K2P5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P5.1 and 14-3-3. The mutant K2P5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P5.1 and plays an important role in channel trafficking.
GIRK channels are activated by a large number of G protein-coupled receptors and regulate the electrical activity of neurons, cardiac atrial myocytes, and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the pathophysiology of neuropathic pain, drug addiction, and cardiac arrhythmias. In the heart, GIRK channels are selectively expressed in the atrium, and their activation inhibits pacemaker activity, thereby slowing the heart rate. In the present study, 19 new diterpenes, falcatins A–S, and the known euphorprolitherin D were isolated from Euphorbia falcata. The compounds were assayed on stable transfected HEK-hERG (KV11.1) and HEK-GIRK1/4 (Kir3.1 and Kir3.4) cells. Blocking activity on GIRK channels was exerted by 13 compounds (61–83% at 10 μM), and, among them, five possessed low potency on the hERG channel (4–20% at 10 μM). These selective activities suggest that myrsinane-related diterpenes are potential lead compounds for the treatment of atrial fibrillation.
Objective:Fracture risk is a serious comorbidity in epilepsy and may relate to the use of antiepileptic drugs (AEDs). Many AEDs inhibit ion channel function, and the expression of these channels in osteoblasts raises the question of whether altered bone signaling increases bone fragility. We aimed to confirm the expression of voltage-gated sodium (NaV) channels in mouse osteoblasts, and to investigate the action of carbamazepine and phenytoin on NaV channels.Methods:Immunocytochemistry was performed on primary calvarial osteoblasts extracted from neonatal C57BL/6J mice and additional RNA sequencing (RNASeq) was included to confirm expression of NaV. Whole-cell patch-clamp recordings were made to identify the native currents expressed and to assess the actions of carbamazepine (50 μm) or phenytoin (50 μm).Results:NaV expression was demonstrated with immunocytochemistry, RNA sequencing, and functionally, with demonstration of robust tetrodotoxin-sensitive and voltage-activated inward currents. Application of carbamazepine or phenytoin resulted in significant inhibition of current amplitude for carbamazepine (31.6 ± 5.9%, n = 9; p 0.001), and for phenytoin (35.5 ± 6.9%, n = 7; p 0.001).Significance:Mouse osteoblasts express NaV, and native NaV currents are blocked by carbamazepine and phenytoin, supporting our hypothesis that AEDs can directly influence osteoblast function and potentially affect bone strength.
Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases.
Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4+ T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.
Natural killer (NK) cells are a subset of cytotoxic lymphocytes that recognize and kill tumor‐ and virus‐infected cells without prior stimulation. Killing of target cells is a multistep process including adhesion to target cells, formation of an immunological synapse, and polarization and release of cytolytic granules. The role of distinct potassium channels in this orchestrated process is still poorly understood. The current study reveals that in addition to the voltage‐gated KV1.3 and the calcium‐activated KCa3.1 channels, human NK cells also express the two‐pore domain K2P channel TASK2 (TWIK‐related acid‐sensitive potassium channel). Expression of Task2 varies among NK‐cell subsets and depends on their differentiation and activation state. Despite its different expression in TASK2highCD56brightCD16− and TASK2lowCD56dimCD16+ NK cells, TASK2 is involved in cytokine‐induced proliferation and cytolytic function of both subsets. TASK2 is crucial for leukocyte functional antigen (LFA‐1) mediated adhesion of both resting and cytokine‐activated NK cells to target cells, an early step in killing of target cells. With regard to the following mechanism, TASK2 plays a role in release of cytotoxic granules by resting, but not IL‐15‐induced NK cells. Taken together, our data exhibit two‐pore potassium channels as important players in NK‐cell activation and effector function.
Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of ∼80%, with ∼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15 min), high quality seals (>2 GΩ) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with dose–response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation.
In excitatory neurons, SCN2A (NaV1.2) and SCN8A (NaV1.6) sodium channels are enriched at the axon initial segment. NaV1.6 is implicated in several mouse models of absence epilepsy, including a missense mutation identified in a chemical mutagenesis screen (Scn8aV929F). Here, we confirmed the prior suggestion that Scn8aV929F exhibits a striking genetic background-dependent difference in phenotypic severity, observing that spike-wave discharge (SWD) incidence and severity are significantly diminished when Scn8aV929F is fully placed onto the C57BL/6J strain compared with C3H. Examination of sequence differences in NaV subunits between these two inbred strains suggested NaV1.2V752F as a potential source of this modifier effect. Recognising that the spatial co-localisation of the NaV channels at the axon initial segment (AIS) provides a plausible mechanism for functional interaction, we tested this idea by undertaking biophysical characterisation of the variant NaV channels and by computer modelling. NaV1.2V752F functional analysis revealed an overall gain-of-function and for NaV1.6V929F revealed an overall loss-of-function. A biophysically realistic computer model was used to test the idea that interaction between these variant channels at the AIS contributes to the strain background effect. Surprisingly this modelling showed that neuronal excitability is dominated by the properties of NaV1.2V752F due to “functional silencing” of NaV1.6V929F suggesting that these variants do not directly interact. Consequent genetic mapping of the major strain modifier to Chr 7, and not Chr 2 where Scn2a maps, supported this biophysical prediction. While a NaV1.6V929F loss of function clearly underlies absence seizures in this mouse model, the strain background effect is apparently not due to an otherwise tempting Scn2a variant, highlighting the value of combining physiology and genetics to inform and direct each other when interrogating genetic complex traits such as absence epilepsy.
Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening
Red blood cell research is important for both, the clinical haematology, such as transfusion medicine or anaemia investigations, and the basic research fields like exploring general membrane physiology or rheology. Investigations of red blood cells include a wide spectrum of methodologies ranging from population measurements with a billion cells evaluated simultaneously to single-cell approaches. All methods have a potential for pitfalls, and the comparison of data achieved by different technical approaches requires a consistent set of standards. Here, we give an overview of common mistakes using the most popular methodologies in red blood cell research and how to avoid them. Additionally, we propose a number of standards that we believe will allow for data comparison between the different techniques and different labs. We consider biochemical analysis, flux measurements, flow cytometry, patch-clamp measurements and dynamic fluorescence imaging as well as emerging single-cell techniques, such as the use of optical tweezers and atomic force microscopy.
Large conductance, voltage- and Ca2+-gated K+ (BKCa) channels play a critical role in smooth muscle contractility and thus represent an emerging therapeutic target for drug development to treat vascular disease, gastrointestinal, bladder and uterine disorders. Several compounds are known to target the ubiquitously expressed BKCa channel-forming α subunit. In contrast, just a few are known to target the BKCa modulatory β1 subunit, which is highly expressed in smooth muscle and scarce in most other tissues. Lack of available high-resolution structural data makes structure-based pharmacophore modeling of β1 subunit-dependent BKCa channel activators a major challenge. Following recent discoveries of novel BKCa channel activators that act via β1 subunit recognition, we performed ligand-based pharmacophore modeling that led to the successful creation and fine-tuning of a pharmacophore over several generations. Initial models were developed using physiologically active cholane steroids (bile acids) as template. However, as more compounds that act on BKCa β1 have been discovered, our model has been refined to improve accuracy. Database searching with our best-performing model has uncovered several novel compounds as candidate BKCa β1 subunit ligands. Eight of the identified compounds were experimentally screened and two proved to be activators of recombinant BKCa β1 complexes. One of these activators, sobetirome, differs substantially in structure from any previously reported activator.
Development of calcium channel blockers is attractive, but has in the past been hampered by lack of high throughput electrophysiological technology. This limitation has been overcome by the implementation of automated patch clamp systems that allow identification of state-dependent compounds, which preferentially target pathologically overactive channels.We recently presented a fluorescence-based high-throughput screen for P/Q-type calcium channels followed by automated electrophysiology. Here, we provide a detailed description of the development of the secondary screen, and show the full analysis of the inactivation kinetics of the recombinant P/Q channel that served as a basis for the automated patch clamp protocol. Increasing the length of pre-depolarization shifted the inactivation to more hyperpolarized potentials. No steadystate inactivation was reached up to pre-depolarization durations of 3 min, while stability of the recordings progressively declined. As a compromise, a 3s pre-depolarization protocol was proposed for functional screening. In order to validate the electrophysiological screening, we compared kinetics and pharmacology of recombinant P/Q-type channels between automated and manual patch clamp measurements. Channel activation was similar under both conditions. By contrast, inactivation occurred at more hyperpolarized potentials in the automated system. Therefore, P/Q-type calcium channel inactivation is sensitive to the applied technological platform and needs to be adjusted when performing automated patch clamp recordings.Our results indicate that a thorough analysis of the inactivation kinetics is mandatory, when establishing an electrophysiological screening protocol for calcium channel blockers. As some data obtained by automated recordings may not be identical to manual patch clamp analysis, we recommend a proper initial validation of the screening assay and – if necessary – a posthoc adjustment of automated patch clamp values. The protocol presented here supports hit-to-lead and lead optimization efforts during the development of novel P/Q-type calcium channel blockers, and may be valuable for the generation of assays in other ion channel programs
IntroductionChip-based automated patch clamp systems are widely used in drug development and safety pharmacology, allowing for high quality, high throughput screening at standardized experimental conditions. The merits of automation generally come at the cost of large amounts of cells needed, since cells are not targeted individually, but randomly positioned onto the chip aperture from cells in suspension. While cell usage is of little concern when using standard cell lines such as CHO or HEK cells, it becomes a crucial constraint with cells of limited availability, such as primary or otherwise rare and expensive cells, like induced pluripotent stem (IPS) cell-derived cardiomyocytes or neurons.MethodsWe established application protocols for CHO cells, IPS cell-derived neurons (iCell® Neurons, Cellular Dynamics International), cardiomyocytes (Cor.4U®, Axiogenesis) and pancreatic islet cells, minimizing cell usage for automated patch clamp recordings on Nanion's Patchliner. Use of 5 μl cell suspension per well for densities between 55,000 cells/ml and 400,000 cells/ml depending on cell type resulted in good cell capture.ResultsWe present a new cell application procedure optimized for the Patchliner achieving > 80% success rates for using as little as 300 to 2000 cells per well depending on cell type. We demonstrate that this protocol works for standard cell lines, as well as for stem cell-derived neurons and cardiomyocytes, and for primary pancreatic islet cells. We present recordings for these cell types, demonstrating that high data quality is not compromised by altered cell application.DiscussionOur new cell application procedure achieves high success rates with unprecedentedly low cell numbers. Compared to other standard automated patch clamp systems we reduced the average amount of cells needed by more than 150 times. Reduced cell usage crucially improves cost efficiency for expensive cells and opens up automated patch clamp for primary cells of limited availability.
The transient receptor potential channel subtype A member 1 (TRPA1) is a nonselective cation channel widely viewed as having therapeutic potential, particularly for pain-related indications. Realization of this potential will require potent, selective modulators; however, currently the pharmacology of TRPA1 is poorly defined. As TRPA1 is calcium permeable, calcium indicators offer a simple assay format for high-throughput screening. In this report, we show that probenecid, a uricosuric agent used experimentally in screening to increase loading of calcium-sensitive dyes, activates TRPA1. Prolonged probenecid incubation during the dye-loading process reduces agonist potency upon subsequent challenge. When Chinese Hamster Ovary (CHO)-hTRPA1 or STC-1 cells, which endogenously express TRPA1, were dye loaded in the presence of 2 mM probenecid TRPA1, agonists appeared less potent; EC(50) for allyl isothiocyante agonists in CHO-hTRPA1 was increased from 1.5±0.19 to 7.32±1.20 μM (P0.01). No significant effect on antagonist potency was observed when using the agonist EC(80) concentration determined under the appropriate dye-loading conditions. We suggest an alternative protocol for calcium imaging using another blocker of anion transport, sulfinpyrazone. This blocker significantly augments indicator dye loading and the screening window, but is not a TRPA1 agonist and has no effect on agonist potency.
Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner and SyncroPatch 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress ® 7000A, IonWorks ® Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dyna flow ® HT (Cellectricon AB, Mölndal), QPatch HT (Sophion A/S, Copenhagen), IonFlux HT (Fluxion Bioscience Inc, USA), which have demonstrated the capability to generate recordings similar in quality to that of conventional patch clamping. Here we describe features of Nanion’s NPC-16 Patchliner and processes and protocols suited for this particularly flexible and successful high-throughput automated platform, which is based on planar patch-clamp technology. However, many of the protocols and notes given in this chapter can be applied to other automated patch-clamp platforms, similarly.
We synthesized a series of oxazolidinone-type antibacterials in which morpholine C-ring of linezolid has been modified by substituted 3-azabicyclo[3.3.0]octanyl rings. Acetamide or 1,2,3-triazole heterocycle was used as C-5 side chain of oxazolidinone. The resulting series of compounds was then screened in vitro against panel of susceptible and resistant Gram-positive, Gram-negative bacteria, and Mycobacterium tuberculosis (Mtb). Several analogs in this series exhibited potent in vitro antibacterial activity comparable or superior to linezolid against the tested bacteria. Compounds 10a, 10b, 11a, and 15a displayed highly potent activity against M. tuberculosis. Selected compound 10b showed good human microsomal stability and CYP-profile, and showed low activity against hERG channel.
The Patchliner temperature-controlled automated patch clamp system was evaluated for testing drug effects on potassium currents through human ether-à-go-go related gene (hERG) channels expressed in Chinese hamster ovary cells at 35–37°C. IC50 values for a set of reference drugs were compared with those obtained using the conventional voltage clamp technique. The results showed good correlation between the data obtained using automated and conventional electrophysiology. Based on these results, the Patchliner represents an innovative automated electrophysiology platform for conducting the hERG assay that substantially increases throughput and has the advantage of operating at physiological temperature. It allows fast, accurate, and direct assessment of channel function to identify potential proarrhythmic side effects and sets a new standard in ion channel research for drug safety testing.
Neurons derived from human-induced pluripotent stem cells were characterized using manual and automated patch-clamp recordings. These cells expressed voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels as expected from excitable cells. The NaV current was TTX sensitive, IC50 = 12 ± 6 nM (n = 5). About 50% of the CaV current was blocked by 10 µM of the L-type channel blocker nifedipine. Two populations of the KV channel were present in different proportions: an inactivating (A-type) and a noninactivating type. The A-type current was sensitive to 4-AP and TEA (IC50 = 163 ± 93 µM; n = 3). Application of γ-aminobutyric acid (GABA) activated a current sensitive to the GABAA receptor antagonist bicuculline, IC50 = 632 ± 149 nM (n = 5). In both devices, comparable action potentials were generated in the current clamp. With unbiased, automated patch clamp, about 40% of the cells expressed NaV currents, whereas visual guidance in manual patch clamp provided almost a 100% success rate of patching “excitable cells.” These results show high potential for pluripotent stem cell–derived neurons as a useful model for drug discovery, in combination with automated patch-clamp recordings for high-throughput and high-quality drug assessments at human neuronal ion channels in their correct cellular background.
In order to observe antinociceptive effect of Oxymatrine (OMT) and its effect on voltage-activated K+ channel, the acetic acid-induced abdominal contraction model of mouse was used to test the antinociceptive effect in vivo, and in vitro, the delayed rectifier K+ currents (Ik) in PC12 cells (rat pheochromocytoma cells) was recorded using the automated patch-clamp method. The results indicated that after application of OMT, the number of acetic acid-induced animal abdominal contraction was significantly decreased, Ik in PC12 cells was significantly decreased, and showed a concentration-dependent manner. After application of OMT, both the activation and inactivation curves of Ik of PC12 cells were shifted to negative potentials. This study revealed that OMT showed antinociceptive effect in mice. The inhibition of voltage-activated K+ channel might be one of mechanisms in which the enhanced both activation and inactivation of K+ channel were involved and might play important roles.
The aim of this study was to generate new insight into chemical regulation of transient receptor potential (TRP) channels with relevance to glucose homeostasis and the metabolic syndrome. Human TRP melastatin 2 (TRPM2), TRPM3, and TRP canonical 5 (TRPC5) were conditionally overexpressed in human embryonic kidney 293 cells and studied by using calcium-measurement and patch-clamp techniques. Rosiglitazone and other peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were investigated. TRPM2 was unaffected by rosiglitazone at concentrations up to 10 μM but was inhibited completely at higher concentrations (IC50, ∼22.5 μM). TRPM3 was more potently inhibited, with effects occurring in a biphasic concentration-dependent manner such that there was approximately 20% inhibition at low concentrations (0.1–1 μM) and full inhibition at higher concentrations (IC50, 5–10 μM). PPAR-γ antagonism by 2-chloro-5-nitrobenzanilide (GW9662) did not prevent inhibition of TRPM3 by rosiglitazone. TRPC5 was strongly stimulated by rosiglitazone at concentrations of ≥10 μM (EC50, ∼30 μM). Effects on TRPM3 and TRPC5 occurred rapidly and reversibly. Troglitazone and pioglitazone inhibited TRPM3 (IC50, 12 μM) but lacked effect on TRPC5, suggesting no relevance of PPAR-γ or the thiazolidinedione moiety to rosiglitazone stimulation of TRPC5. A rosiglitazone-related but nonthiazolidinedione PPAR-γ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine (GW1929), was a weak stimulator of TRPM3 and TRPC5. The natural PPAR-γ agonist 15-deoxy prostaglandin J2, had no effect on TRPM3 or TRPC5. The data suggest that rosiglitazone contains chemical moieties that rapidly, strongly, and differentially modulate TRP channels independently of PPAR-γ, potentially contributing to biological consequences of the agent and providing the basis for novel TRP channel pharmacology.
The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.
The renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential. In a high-throughput screen for small-molecule modulators of ROMK, we previously identified a potent and moderately selective ROMK antagonist, 7,13-bis(4-nitrobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (VU590), that also inhibits Kir7.1. Because ROMK and Kir7.1 are coexpressed in the nephron, VU590 is not a good probe of ROMK function in the kidney. Here we describe the development of the structurally related inhibitor 2,2′-oxybis(methylene)bis(5-nitro-1H-benzo[d]imidazole) (VU591), which is as potent as VU590 but is selective for ROMK over Kir7.1 and more than 65 other potential off-targets. VU591 seems to block the intracellular pore of the channel. The development of VU591 may enable studies to explore the viability of ROMK as a diuretic target.
T-type calcium channels are involved in a variety of physiological and pathophysiological processes, and thus could be therapeutic targets. However, there is no T-type channel selective blocker for use in clinical practice, demanding a need for the development of novel drugs where a higher-throughput screening system is required. Here we present pharmacological studies on CaV3.1 T-type channels using automated patch-clamp. The IC50 values obtained from automated patch-clamp and conventional one showed a good correlation (correlation coefficient of 0.82), suggesting that the automated patch-clamp is an efficient and reliable method for ranking the drug potencies for T-type channels.
Rationale: Transient receptor potential melastatin (TRPM)3 is a calcium-permeable ion channel activated by the neurosteroid pregnenolone sulfate and positively coupled to insulin secretion in β cells. Although vascular TRPM3 mRNA has been reported, there is no knowledge of TRPM3 protein or its regulation and function in the cardiovascular system. Objective: To determine the relevance and regulation of TRPM3 in vascular biology. Methods and Results: TRPM3 expression was detected at mRNA and protein levels in contractile and proliferating vascular smooth muscle cells. Calcium entry evoked by pregnenolone sulfate or sphingosine was suppressed by TRPM3 blocking antibody or knock-down of TRPM3 by RNA interference. Low-level constitutive TRPM3 activity was also detected. In proliferating cells, channel activity was coupled negatively to interleukin-6 secretion via a calcium-dependent mechanism. In freshly isolated aorta, TRPM3 positively modulated contractile responses independently of L-type calcium channels. Concentrations of pregnenolone sulfate required to evoke responses were higher than the known plasma concentrations of the steroids, leading to a screen for other stimulators. β-Cyclodextrin was one of few stimulators of TRPM3, revealing the channels to be partially suppressed by endogenous cholesterol, the precursor of pregnenolone. Elevation of cholesterol further suppressed channel activity and loading with cholesterol to generate foam cells precluded observation of TRPM3 activity. Conclusions: The data suggest functional relevance of TRPM3 in contractile and proliferating phenotypes of vascular smooth muscle cells, significance of constitutive channel activity, regulation by cholesterol, and potential value of pregnenolone sulfate in therapeutic vascular modulation.
Propranolol is a widely used, non-selective β-adrenergic receptor antagonist with proven efficacy in treating cardiovascular disorders and in the prevention of migraine headaches. At plasma concentrations exceeding those required for β-adrenergic receptor inhibition, propranolol also exhibits anti-arrhythmic (“membrane stabilizing”) effects that are not fully explained by β-blockade. Previous in vitro studies suggested that propranolol may have local anesthetic effects. We directly tested the effects of propranolol on heterologously expressed recombinant human cardiac (NaV1.5) and brain (NaV1.1, NaV1.2, NaV1.3) sodium channels using whole-cell patch-clamp recording. We found that block was not stereospecific as we observed approximately equal IC50 values for tonic and use-dependent block by R-(+) and S-(−) propranolol (tonic block: R: 21.4 μM vs S: 23.6 μM; use-dependent block: R: 2.7 μM vs S: 2.6 μM). Metoprolol and nadolol did not block NaV1.5 indicating that sodium channel block is not a class effect of β-blockers. The biophysical effects of R-(+)-propranolol on NaV1.5 and NaV1.1 resembled that of the prototypical local anesthetic lidocaine including the requirement for a critical phenylalanine residue (F1760 in NaV1.5) in the domain 4 S6 segment. Finally, we observed that brain sodium channels exhibited less sensitivity to R-(+)-propranolol than NaV1.5 channels. Our findings establish sodium channels as targets for propranolol and may help explain some beneficial effects of the drug in treating cardiac arrhythmias, and may explain certain adverse central nervous system effects.
Screening an extract library of >2500 southern Australian and Antarctic marine invertebrates and algae for modulators of glycine receptor (GlyR) chloride channels identified three Irciniidae sponges that yielded new examples of a rare class of glycinyl lactam sesterterpene, ircinialactam A, 8-hydroxyircinialactam A, 8-hydroxyircinialactam B, ircinialactam C, ent-ircinialactam C and ircinialactam D. Structure–activity relationship (SAR) investigations revealed a new pharmacophore with potent and subunit selective modulatory properties against α1 and α3 GlyR isoforms. Such GlyR modulators have potential application as pharmacological tools, and as leads for the development of GlyR targeting therapeutics to treat chronic inflammatory pain, epilepsy, spasticity and hyperekplexia.
Generation of cultured human cells stably expressing one or more recombinant gene sequences is a widely used approach in biomedical research, biotechnology, and drug development. Conventional methods are not efficient and have severe limitations especially when engineering cells to coexpress multiple transgenes or multiprotein complexes. In this report, we harnessed the highly efficient, nonviral, and plasmid-based piggyBac transposon system to enable concurrent genomic integration of multiple independent transposons harboring distinct protein-coding DNA sequences. Flow cytometry of cell clones derived from a single multiplexed transfection demonstrated approximately 60% (three transposons) or approximately 30% (four transposons) stable coexpression of all delivered transgenes with selection for a single marker transposon. We validated multiplexed piggyBac transposon delivery by coexpressing large transgenes encoding a multisubunit neuronal voltage-gated sodium channel (SCN1A) containing a pore-forming subunit and two accessory subunits while using two additional genes for selection. Previously unobtainable robust sodium current was demonstrated through 38 passages, suitable for use on an automated high-throughput electrophysiology platform. Cotransfection of three large (up to 10.8 kb) piggyBac transposons generated a heterozygous SCN1A stable cell line expressing two separate alleles of the pore-forming subunit and two accessory subunits (total of four sodium channel subunits) with robust functional expression. We conclude that the piggyBac transposon system can be used to perform multiplexed stable gene transfer in cultured human cells, and this technology may be valuable for applications requiring concurrent expression of multiprotein complexes.
The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K+ (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.
Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4–8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1–6 h depending on the experimental design and yields 16–33 cell recordings.
Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these channels. Here we show the activation of TRPC5 (canonical TRP 5) homomultimeric and TRPC5–TRPC1 heteromultimeric channels by extracellular reduced thioredoxin, which acts by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis, an inflammatory joint disease that disables millions of people worldwide. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, that endogenous TRPC5–TRPC1 channels of the cells are activated by reduced thioredoxin, and that blockade of the channels enhances secretory activity and prevents the suppression of secretion by thioredoxin. The data indicate the presence of a previously unrecognized ion-channel activation mechanism that couples extracellularthioredoxin to cell function.
The inhibitory glycine receptor (GlyR) is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific modulators. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384-well plate using nanogram quantities of plasmid DNA.
Stromal interaction molecule 1 (STIM1) is a predicted single membrane–spanning protein involved in store-operated calcium entry and interacting with ion channels including TRPC1. Here, we focus on endogenous STIM1 of modulated vascular smooth muscle cells, which exhibited a nonselective cationic current in response to store depletion despite strong buffering of intracellular calcium at the physiological concentration. STIM1 mRNA and protein were detected and suppressed by specific short interfering RNA. Calcium entry evoked by store depletion was partially inhibited by STIM1 short interfering RNA, whereas calcium release was unaffected. STIM1 short interfering RNA suppressed cell migration but not proliferation. Antibody that specifically bound STIM1 revealed constitutive extracellular N terminus of STIM1 and extracellular application of the antibody caused fast inhibition of the current evoked by store depletion. The antibody also inhibited calcium entry and cell migration but not proliferation. STIM1 interacted with TRPC1, and TRPC1 contributed partially to calcium entry and cationic current. However, the underlying processes could not be explained only by a STIM1-TRPC1 partnership because extracellular TRPC1 antibody suppressed cationic current only in a fraction of cells, TRPC1-containing channels were important for cell proliferation as well as migration, and cell surface localization studies revealed TRPC1 alone, as well as with STIM1. The data suggest a complex situation in which there is not only plasma membrane–spanning STIM1 that is important for cell migration and TRPC1-independent store-operated cationic current but also TRPC1-STIM1 interaction, a TRPC1dependent component of store-operated current, and STIM1-independent TRPC1 linked to cell proliferation.
Background and purpose: Isoform-specific ion channel blockers are useful for target validation in drug discovery and can provide the basis for new therapeutic agents and aid in determination of physiological functions of ion channels. The aim of this study was to generate a specific blocker of human TRPM3 channels as a tool to help investigations of this member of the TRP cationic channel family. Experimental approach: A polyclonal antibody (TM3E3) was made to a conserved peptide of the third extracellular (E3) loop of TRPM3 and tested for binding and functional effect. Studies of channel activity were made by whole-cell planar patch-clamp and fura-2 intracellular Ca2+ measurement. Key results: Ionic current mediated by TRPM3 was inhibited partially by TM3E3 over a period of 5–10 min. Ca2+ entry in TRPM3-expressing cells was also partially inhibited by TM3E3 in a peptide-specific manner and independently of the type of agonist used to activate TRPM3. TM3E3 had no effect on TRPC5, TRPV4, TRPM2 or an endogenous ATP response. Conclusions and implications: The data show the successful development of a specific TRPM3 inhibitor and give further confidence in E3 targeting as an approach to producing isoform-specific ion channel blockers.
Perforin-2 (MPEG1) is thought to enable the killing of invading microbes engulfed by macrophages and other phagocytes, forming pores in their membranes. Loss of perforin-2 renders individual phagocytes and whole organisms significantly more susceptible to bacterial pathogens. Here, we reveal the mechanism of perforin-2 activation and activity using atomic structures of pre-pore and pore assemblies, high-speed atomic force microscopy, and functional assays. Perforin-2 forms a pre-pore assembly in which its pore-forming domain points in the opposite direction to its membrane-targeting domain. Acidification then triggers pore formation, via a 180° conformational change. This novel and unexpected mechanism prevents premature bactericidal attack and may have played a key role in the evolution of all perforin family proteins.
Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1–like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
Muscle contraction requires a tight communication between Ca2+-permeable ion channels located in the plasma membrane (L-type calcium channels, CaVs ) and in the Sarcoplasmic Reticulum (Ryanodine Receptors, RyRs). In cardiac muscle, Ca2+ entering through CaV1.2 can stimulate the nearby RyR2 isoform, through a process of Ca2+-induced Ca2+ release. In skeletal muscle, however, the coupling is thought to occur mechanically, with voltage-dependent conformational changes in CaV1.1 being transmitted to RyR1, either through direct or indirect interactions. Mutations in RyR1 (as well as CaV1.1) can give rise to malignant hyperthermia (MH), a potentially lethal condition typically triggered by volatile anaesthetics. Other mutations cause central core disease (CCD), whereas some are linked to both MH and CCD. Similarly, mutations in RyR2 are linked to a form of stress-induced cardiac arrhythmia, known as CPVT (catecholaminergic polymorphic ventricular tachycardia). Our lab has been solving crystal structures of isolated RyR domains in WT and disease mutant forms, which show that many mutations cause conformational changes. More recently, we solved cryo-EM structures of RyR1 carrying the founding mutation (R615C) that links RyR1 to malignant hyperthermia. The structures show how many mutations can destabilize the closed state, leading to facilitated channel opening.
In addition, RyRs are heavily regulated by kinases (PKA, CaMKII) that can also facilitate channel opening. Excessive phosphorylation of RyRs has been linked to a range of acquired disorders, including atrial fibrillation and arrhythmias during heart failure. We elucidated how PKA recognizes the cardiac RyR2 via an unusual interface and show that phosphorylation may induce the formation of extra secondary structure elements.
Finally, I will discuss our efforts to understand the mechanical coupling between CaV1.1 and RyR1 in skeletal muscle. STAC3 is a small protein recently shown to be essential for the coupling. We found this protein to interact with a cytosolic loop of CaV1.1 and found that several mutations in STAC3, linked to myopathy, directly affect this interaction and the mechanical coupling.
A free standing lipid bilayer separating two aqueous compartments represents a fundamental prerequisite for the investigation of electrophysiological features of membrane spanning proteins like ion channels, porins or certain membrane active toxins. The convenient and reproducible preparation of these model bilayers and the often tedious workflow of conducting such an experiment on classic one channel setups, however, still remain an obstacle for easy and fast data generation.
Here we present Nanion’s Orbit mini device which is explicitly designed to meet the special requirements of experiments on artificial lipid bilayers: use of Ionera’s MECA (micro electrode cavity array) chip technology combined with state of the art low noise amplifiers (Elements S.R.L.) enable the fully parallel low-noise recording of four separate lipid bilayers at bandwidths up to 100 kHz. Today’s webinar consists of a general introduction of the system and a brief overview of it features, applications and optional add ons. We then demonstrate how to actually perform an experiment on the device showcasing translocation of Polyethylene glycol (PEG) polymers through the well established and commercially available porin alpha-Hemolysin.
Portable DNA sequencing and biosensing can advance research, bedside-diagnostics, and homeland security. I describe how label-free sensing is achieved with atom-scale designed membrane nanopores. In this strategy, nanopores act as electronic sensors that detect when individual molecules pass the pores’ nanoscale hole. The temporary blockages cause changes in ionic pore current. The approach has helped pioneer portable DNA sequencing with protein pores(1) to discriminate individual bases. More recently, synthetic pores have been built by folding DNA strands into defined channels(2). The DNA nanopores are relevant as they overcome the narrow size range of protein pores and thereby accommodate folded protein analytes. The DNA nanostructures are also easier to rationally design than proteins(3) and thereby enable new applications, also in synthetic biology(4).
(1) Nature 2014 516 250;
(2) Nat. Nanotechnol. 2016 11 152;
(3) Nat. Nanotechnol. 2017 12 619;
(4) Science 2016 352 890; Nat. Chem. 2017 9 611
This webinar covers the use of the lipid bilayer platforms from Nanion: the Orbit16 and the Orbit mini for characterization of membrane proteins like ion channels, bacterial porins and biological nanopores. Both bilayer systems support high quality low noise recordings, but differ in throughput capabilities and experimental features. The Orbit16, introduced in 2012 is a device for efficient formation of 16 lipid bilayers simultaneously, allowing for parallel bilayer-reconstitution of ion channels and nanopores
Lipid bilayer arrays are automatically formed by remotely actuated painting. Orbit 16 has proven to be a versatile device for research and scientific applications which is reflected by numerous publication in high rank journals such as Science, Nature, Nano Letters, ACS Nano etc. The Orbit mini, introduced in 2015, is a smaller system, allowing low noise, high bandwidth recordings from 4 bilayers simultaneously. Orbit mini supports temperature-controlled experiments, allowing both active cooling and heating, a benefit when investigating thermo-sensitive channels such as TRPA1 or TRPV1, which will be shown in this webinar. Micro Electrode Cavity Array chips (MECA chips, Ionera Technologies GmbH, Freiburg) are the core of both devices. The MECA chips have successfully been validated with a wide variety of different ion channels and pores including KcsA, gramicidin, α-hemolysin, Kv- and Nav-channels etc. In this webinar the basics of the MECA technology will be explained and its applications will be shown in detail. Join this webinar and see how these outstanding platforms can add up to your work: Orbit 16 and Orbit mini!
The transient receptor potential cation channel, subfamily V, member 1 (TRPV1), is a ligand-gated, non-selective cation channel widely expressed in the peripheral and central nervous system. The TRPV1 channel can be activated by a number of physical and chemical stimuli, including capsaicin (the active ingredient in chili peppers), noxious heat (typically >42˚C) and low pH. The TRPV1 channel is putatively involved in the perception and transmission of painful stimuli. Importantly, this channel is proposed to underlie many chronic pain states including inflammation, neuropathic pain and cancer pain, amongst others (1). These types of pain states are currently poorly managed by the pain medications available and this has led the pharmaceutical industry to seek novel targets for pain management, such as TRPV1. However, TRPV1 antagonists have so far failed in clinical trials due to an undesirable increase in core body temperature (2) resulting in hyperthermia. From these studies, it is proposed that tonically active TRPV1 channels are involved in maintaining normal body temperature and this could have significant influences on drug design. Finding novel compounds with differing effects on capsaicin activation and heat activation may be crucial in the discovery of lead compounds for the treatment of pain and other disease states.Here we present data collected on the 4-channel Orbit mini with temperature control showing the potential use of the Orbit mini to record heat activation of single channel TRPV1.
"The functionality of the Orbit mini is just incredible! Learning to use it takes only a few moments. Setting up an experiment, painting 4 individual bilayers and getting data so quickly, makes me feel almost sad. As I cannot deny the notion wasting a lot of time as PhD student working with different technology"
Tom Götze, Nanion Technologies
Simultaneous recording from four lipid bilayers
Chemistry is in a powerful position to synthetically replicate biomolecular structures. Adding functional complexity is key to increase the biomimetics’ value for science and technology yet is difficult to achieve with poorly controlled building materials. Here, we use defined DNA blocks to rationally design a triggerable synthetic nanopore that integrates multiple functions of biological membrane proteins. Soluble triggers bind via molecular recognition to the nanopore components changing their structure and membrane position, which controls the assembly into a defined channel for efficient transmembrane cargo transport. Using ensemble, single-molecule, and simulation analysis, our activatable pore provides insight into the kinetics and structural dynamics of DNA assembly at the membrane interface. The triggered channel advances functional DNA nanotechnology and synthetic biology and will guide the design of controlled nanodevices for sensing, cell biological research, and drug delivery.
Optogenetics in the conventional sense, i.e. the use of engineered proteins that gain their light sensitivity from naturally abundant chromophores, represents an exciting means to trigger and control biological activity by light. As an alternate approach, photopharmacology controls biological activity with the help of synthetic photoswitches. Here, we used an azobenzene-derived lipid analogue to optically activate the transmembrane mechanosensitive channel MscL which responds to changes in the lateral pressure of the lipid bilayer. In this work, MscL has been reconstituted in nanodiscs, which provide a native-like environment to the protein and a physical constraint to membrane expansion. We characterized this photomechanical system by FTIR spectroscopy and assigned the vibrational bands of the light-induced FTIR difference spectra of the trans and cis states of the azobenzene photolipid by DFT calculations. Differences in the amide I range indicated reversible conformational changes in MscL as a direct consequence of light switching. With the mediation of nanodiscs, we inserted the transmembrane protein in a free standing photoswitchable lipid bilayer, where electrophysiological recordings confirmed that the ion channel could be set to one of its sub-conducting states upon light illumination. In conclusion, a novel approach is presented to photoactivate and control cellular processes as complex and intricate as gravitropism and turgor sensing in plants, contractility of the heart, as well as sensing pain, hearing, and touch in animals.
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin‘s preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1–O4). Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs). Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.
We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen’s syndrome. The structural analysis (cryo–electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.
Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of β-barrel pore-forming toxins with a β-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.
Optical techniques, such as fluorescence microscopy, are of great value in characterizing the structural dynamics of membranes and membrane proteins. A particular challenge is to combine high-resolution optical measurements with high-resolution voltage clamp electrical recordings providing direct information on e.g. single ion channel gating and/or membrane capacitance. Here, we report on a novel chip-based array device which facilitates optical access with water or oil-immersion objectives of high numerical aperture to horizontal free-standing lipid membranes while controlling membrane voltage and recording currents using micropatterned Ag/AgCl-electrodes. We demonstrate both wide-field and confocal imaging, as well as time-resolved single photon counting on free-standing membranes spanning sub-picoliter CaVities are demonstrated while electrical signals, including single channel activity, are simultaneously acquired. This optically addressable microelectrode CaVity array will allow combined electrical-optical studies of membranes and membrane proteins to be performed as a routine experiment.
Protein–lipid interactions are vital for numerous transmembrane signaling pathways. However, simple tools to characterize these interactions remain scarce and are much needed to advance our understanding of signal transduction across lipid bilayers. To tackle this challenge, we herein engineer nanodisc as a robust fluorescent sensor for reporting membrane biochemical reactions. We circularize nanodiscs via split GFP and thereby create an intensity-based fluorescent sensor (isenND) for detecting membrane binding and remodeling events. We show that isenND responds robustly and specifically to the action of a diverse array of membrane-interacting proteins and peptides, ranging from synaptotagmin and synuclein involved in neurotransmission to viral fusion peptides of HIV-1 and SARS-CoV-2. Together, isenND can serve as a versatile biochemical reagent useful for basic and translational research of membrane biology.
Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles. Lastly, we present a road map to achieve the most efficient expression of prokaryotic IMPs in our yeast platform. Our findings demonstrate the great potential of S. cerevisiae as host for high-throughput recombinant overproduction of bacterial and archaeal IMPs for downstream biophysical characterization.
AMPA receptors (AMPARs) mediate the majority of excitatory neurotransmission. Their surface expression, trafficking, gating, and pharmacology are regulated by auxiliary subunits. Of the two types of TARP auxiliary subunits, type I TARPs assume activating roles, while type II TARPs serve suppressive functions. We present cryo-EM structures of GluA2 AMPAR in complex with type II TARP γ5, which reduces steady-state currents, increases single-channel conductance, and slows recovery from desensitization. Regulation of AMPAR function depends on its ligand-binding domain (LBD) interaction with the γ5 head domain. GluA2-γ5 complex shows maximum stoichiometry of two TARPs per AMPAR tetramer, being different from type I TARPs but reminiscent of the auxiliary subunit GSG1L. Desensitization of both GluA2-GSG1L and GluA2-γ5 complexes is accompanied by rupture of LBD dimer interface, while GluA2-γ5 but not GluA2-GSG1L LBD dimers remain two-fold symmetric. Different structural architectures and desensitization mechanisms of complexes with auxiliary subunits endow AMPARs with broad functional capabilities.
Ryanodine Receptors (RyRs) are massive channels that release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Hundreds of mutations are linked to malignant hyperthermia (MH), myopathies, and arrhythmias. Here, we explore the first MH mutation identified in humans by providing cryo-EM snapshots of the pig homolog, R615C, showing that it affects an interface between three solenoid regions. We also show the impact of apo-calmodulin (apoCaM) and how it can induce opening by bending of the bridging solenoid, mediated by its N-terminal lobe. For R615C RyR1, apoCaM binding abolishes a pathological ‘intermediate’ conformation, distributing the population to a mixture of open and closed channels, both different from the structure without apoCaM. Comparisons show that the mutation primarily affects the closed state, inducing partial movements linked to channel activation. This shows that disease mutations can cause distinct pathological conformations of the RyR and facilitate channel opening by disrupting interactions between different solenoid regions.
Acknowledging its unique conical lumen structure, Mycobacterium smegmatis porin A (MspA) was the first type of nanopore that has successfully sequenced DNA. Recent developments of nanopore single molecule chemistry have also suggested MspA to be an optimum single molecule reactor. However, further investigations with this approach require heavy mutagenesis which is labor intensive and requires high end instruments for purifications. We here demonstrate an efficient and economic protocol which performs rapid and multiplex preparation of a variety of MspA mutants. The prepared MspA mutants were demonstrated in operations such as nanopore insertion, sequencing, optical single channel recording (oSCR), nanopore single molecule chemistry and nanopore rectification. The performance is no different from that of pores however prepared by other means. The time of all human operations and the cost for a single batch of preparation have been minimized to 40 min and 0.4$, respectively. This method is extremely useful in the screening of new MspA mutants, which has an urgent requirement in further investigations of new MspA nanoreactors. Its low cost and simplicity also enable efficient preparations of MspA nanopores for both industrial manufacturing and academic research.
Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from E. coli. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpFE181CMTSES, while the larger sized blocker modification OmpFE181CGLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpFwt. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpFwt. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.
Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified, and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through caspase-activated Panx1 channels that can support their many physiological roles.
Connexin family proteins assemble into hexameric channels called hemichannels/connexons, which function as transmembrane channels or dock together to form gap junction intercellular channels (GJIChs). We determined the cryo–electron microscopy structures of human connexin 31.3 (Cx31.3)/GJC3 hemichannels in the presence and absence of calcium ions and with a hearing-loss mutation R15G at 2.3-, 2.5-, and 2.6-Å resolutions, respectively. Compared with available structures of GJICh in open conformation, Cx31.3 hemichannel shows substantial structural changes of highly conserved regions in the connexin family, including opening of calcium ion–binding tunnels, reorganization of salt-bridge networks, exposure of lipid-binding sites, and collocation of amino-terminal helices at the cytoplasmic entrance. We also found that the hemichannel has a pore with a diameter of ~8 Å and selectively transports chloride ions. Our study provides structural insights into the permeant selectivity of Cx31.3 hemichannel.
Inward rectifer potassium (Kir) channels play diverse and important roles in shaping action potentials in biological membranes. An increasing number of diseases are now known to be directly associated with abnormal Kir function. However, the gating of Kir still remains unknown. To increase our understanding of its gating mechanism, a dynamical view of the entire channel is essential. Here the gating activation was studied using a recent developped in silico method, MDeNM, which combines normal mode analysis and molecular dynamics simulations that showed for the very frst time the importance of interrelated collective and localized conformational movements. In particular, we highlighted the role played by concerted movements of the diferent regions throughout the entire protein, such as the cytoplasmic and transmembrane domains and the slide helices. In addition, the HDX-MS analysis achieved in these studies provided a comprehensive and detailed view of the dynamics associated with open/closed transition of the Kir channel in coherence with the theoretical results. MDeNM gives access to the probability of the diferent opening states that are in agreement with our electrophysiological experiments. The investigations presented in this article are important to remedy dysfunctional channels and are of interest for designing new pharmacological compounds.
Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of “big data.” The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.
In the past two decades, molecular dynamics simulations have become the method of choice for elucidating the transport mechanisms of ions through various membrane channels. Often, these simulations heavily rely on classical nonpolarizable force fields (FFs), which lack electronic polarizability in the treatment of the electrostatics. The recent advancements in the Drude polarizable FF lead to a complete set of parameters for water, ions, protein, and lipids, allowing for a more realistic modeling of membrane proteins. However, the quality of these Drude FFs remains untested for such systems. Here, we examine the quality of this FF set in two ways, i.e., (i) in simple ionic aqueous solution simulations and (ii) in more complex membrane channel simulations. First, the aqueous solutions of KCl, NaCl, MgCl2, and CaCl2 salts are simulated using the polarizable Drude and the nonpolarizable CHARMM36 FFs. The bulk conductivity has been estimated for both FF sets using applied-field simulations for several concentrations and temperatures in the case of all investigated salts and compared to experimental findings. An excellent improvement in the ability of the Drude FF to reproduce the experimental bulk conductivities for KCl, NaCl, and MgCl2 solutions can be observed but not in the case of CaCl2. Moreover, the outer membrane channel OmpC from the bacterium Escherichia coli has been employed to examine the ability of the polarizable and nonpolarizable FFs to reproduce ion transport-related quantities known from experiment. Unbiased and applied-field simulations have been performed in the presence of KCl using both FF sets. Unlike for the bulk systems of aqueous salt solutions, it has been found that the Drude FF is not accurate in modeling KCl transport properties across the OmpC porin.
The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridiumbotulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.
Physiological response to thermal stimuli in mammals is mediated by a structurally diverse class of ion channels, many of which exhibit polymodal behavior. To probe the diversity of biophysical mechanisms of temperature-sensitivity, we characterized the temperature-dependent activation of MthK, a two transmembrane calcium-activated potassium channel from thermophilic archaebacteria. Our functional complementation studies show that these channels are more efficient at rescuing K+ transport at 37°C than at 24°C. Electrophysiological activity of the purified MthK is extremely sensitive (Q10 >100) to heating particularly at low-calcium concentrations whereas channels lacking the calcium-sensing RCK domain are practically insensitive. By analyzing single-channel activities at limiting calcium concentrations, we find that temperature alters the coupling between the cytoplasmic RCK domains and the pore domain. These findings reveal a hitherto unexplored mechanism of temperature-dependent regulation of ion channel gating and shed light on ancient origins of temperature-sensitivity.
The mitochondrial F-ATP synthase is a complex molecular motor arranged in V-shaped dimers that is responsible for most cellular ATP synthesis in aerobic conditions. In the yeast F-ATP synthase, subunits e and g of the FO sector constitute a lateral domain, which is required for dimer stability and cristae formation. Here, by using site-directed mutagenesis we identified Arg-8 of subunit e as a critical residue in mediating interactions between subunits e and g, most likely through an interaction with Glu-83 of subunit g. Consistent with this hypothesis (i) substitution of Arg-8 in subunit e (eArg-8) with Ala or Glu or of Glu-83 in subunit g (gGlu-83) with Ala or Lys destabilized the digitonin-extracted F-ATP synthase, resulting in decreased dimer formation, as revealed by blue-native electrophoresis; and (ii) simultaneous substitution of eArg-8 with Glu and of gGlu-83 with Lys rescued digitonin-stable F-ATP synthase dimers. When tested in lipid bilayers for generation of Ca2+-dependent channels, wild-type dimers displayed the high-conductance channel activity expected for the mitochondrial megachannel/permeability transition pore, whereas dimers obtained at low digitonin concentrations from the Arg-8 variants displayed currents of strikingly small conductance. Remarkably, double replacement of eArg-8 with Glu and of gGlu-83 with Lys restored high-conductance channels indistinguishable from those seen in wild-type enzymes. These findings suggest that the interaction of subunit e with subunit g is important for generation of the full-conductance megachannel from F-ATP synthase.
Background: Human transient receptor potential (TRP) channels constitute a large family of ion-conducting membrane proteins that allow the sensation of environmental cues. As the dysfunction of TRP channels contributes to the pathogenesis of many widespread diseases, including cardiac disorders, these proteins also represent important pharmacological targets. TRP channels are typically produced using expensive and laborious mammalian or insect cell-based systems. Methods: We demonstrate an alternative platform exploiting the yeast Saccharomyces cerevisiae capable of delivering high yields of functional human TRP channels. We produce 11 full-length human TRP members originating from four different subfamilies, purify a selected subset of these to a high homogeneity and confirm retained functionality using TRPM8 as a model target. Results: Our findings demonstrate the potential of the described production system for future functional, structural and pharmacological studies of human TRP channels.
Fluoride ion channels of the Fluc family combat toxicity arising from accumulation of environmental F-. Although crystal structures are known, the densely packed pore region has precluded delineation of the ion pathway. Here we chart out the Fluc pore and characterize its chemical requirements for transport. A ladder of H-bond donating residues creates a ‘polar track’ demarking the ion-conduction pathway. Surprisingly, while track polarity is well conserved, polarity is nonetheless functionally dispensable at several positions. A threonine at one end of the pore engages in vital interactions through its β-branched methyl group. Two critical central phenylalanines that directly coordinate F- through a quadrupolar-ion interaction cannot be functionally substituted by aromatic, non-polar, or polar sidechains. The only functional replacement is methionine, which coordinates F- through its partially positive γ-methylene in mimicry of phenylalanine’s quadrupolar interaction. These results demonstrate the unusual chemical requirements for selectively transporting the strongly H-bonding F- anion.
The fusion pore is the first crucial intermediate formed during exocytosis, yet little is known about the mechanisms that determine the size and kinetic properties of these transient structures1. Here, we reduced the number of available SNAREs (proteins that mediate vesicle fusion) in neurons and observed changes in transmitter release that are suggestive of alterations in fusion pores. To investigate these changes, we employed reconstituted fusion assays using nanodiscs to trap pores in their initial open state. Optical measurements revealed that increasing the number of SNARE complexes enhanced the rate of release from single pores and enabled the escape of larger cargoes. To determine whether this effect was due to changes in nascent pore size or to changes in stability, we developed an approach that uses nanodiscs and planar lipid bilayer electrophysiology to afford microsecond resolution at the single event level. Both pore size and stability were affected by SNARE copy number. Increasing the number of vesicle (v)-SNAREs per nanodisc from three to five caused a twofold increase in pore size and decreased the rate of pore closure by more than three orders of magnitude. Moreover, pairing of v-SNAREs and target (t)-SNAREs to form trans-SNARE complexes was highly dynamic: flickering nascent pores closed upon addition of a v-SNARE fragment, revealing that the fully assembled, stable SNARE complex does not form at this stage of exocytosis. Finally, a deletion at the base of the SNARE complex, which mimics the action of botulinum neurotoxin A, markedly reduced fusion pore stability. In summary, trans-SNARE complexes are dynamic, and the number of SNAREs recruited to drive fusion determines fundamental properties of individual pores.
The Fluc family of F− ion channels protects prokaryotes and lower eukaryotes from the toxicity of environmental F−. In bacteria, these channels are built as dual-topology dimers whereby the two subunits assemble in antiparallel transmembrane orientation. Recent crystal structures suggested that Fluc channels contain two separate ion-conduction pathways, each with two F− binding sites, but no functional correlates of this unusual architecture have been reported. Experiments here fill this gap by examining the consequences of mutating two conserved F−-coordinating phenylalanine residues. Substitution of each phenylalanine specifically extinguishes its associated F− binding site in crystal structures and concomitantly inhibits F− permeation. Functional analysis of concatemeric channels, which permit mutagenic manipulation of individual pores, show that each pore can be separately inactivated without blocking F− conduction through its symmetry-related twin. The results strongly support dual-pathway architecture of Fluc channels.
DNA nanopores are bio-inspired nanostructures that control molecular transport across lipid bilayer membranes. Researchers can readily engineer the structure and function of DNA nanopores to synergistically combine the strengths of DNA nanotechnology and nanopores. The pores can be harnessed in a wide range of areas, including biosensing, single-molecule chemistry, and single-molecule biophysics, as well as in cell biology and synthetic biology. Here, we provide a protocol for the rational design of nanobarrel-like DNA pores and larger DNA origami nanopores for targeted applications. We discuss strategies for the pores’ chemical modification with lipid anchors to enable them to be inserted into membranes such as small unilamellar vesicles (SUVs) and planar lipid bilayers. The procedure covers the self-assembly of DNA nanopores via thermal annealing, their characterization using gel electrophoresis, purification, and direct visualization with transmission electron microscopy and atomic force microscopy. We also describe a gel assay to determine pore–membrane binding and discuss how to use single-channel current recordings and dye flux assays to confirm transport through the pores. We expect this protocol to take approximately 1 week to complete for DNA nanobarrel pores and 2–3 weeks for DNA origami pores.
Nanopores are key in portable sequencing and research given their ability to transport elongated DNA or small bioactive molecules through narrow transmembrane channels. Transport of folded proteins could lead to similar scientific and technological benefits. Yet this has not been realised due to the shortage of wide and structurally defined natural pores. Here we report that a synthetic nanopore designed via DNA nanotechnology can accommodate folded proteins. Transport of fluorescent proteins through single pores is kinetically analysed using massively parallel optical readout with transparent silicon-on-insulator CaVity chips vs. electrical recordings to reveal an at least 20-fold higher speed for the electrically driven movement. Pores nevertheless allow a high diffusive flux of more than 66 molecules per second that can also be directed beyond equillibria. The pores may be exploited to sense diagnostically relevant proteins with portable analysis technology, to create molecular gates for drug delivery, or to build synthetic cells.
Chapter 4: Electrophysiology on Channel-Forming Proteins in Artificial Lipid Bilayers: Next-Generation Instrumentation for Multiple Recordings in Parallel Abstract: Artificial lipid bilayers have been used for several decades to study channel-forming pores and ion channels in membranes. Until recently, the classical two-chamber setups have been primarily used for studying the biophysical properties of pore forming proteins. Within the last 10 years, instruments for automated lipid bilayer measurements have been developed and are now commercially available. This chapter focuses on protein purification and reconstitution of channel-forming proteins into lipid bilayers using a classic setup and on the commercially available systems, the Orbit mini and Orbit 16.
Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.
Electrophysiological studies of the interaction of polymers with pores formed by bacterial toxins provide a window on single molecule interaction with proteins in real time, report on the behavior of macromolecules in confinement, and enable label-free single molecule sensing. Using pores formed by the staphylococcal toxin α-hemolysin (aHL), a particularly pertinent observation was that, under high salt conditions (3–4 M KCl), the current through the pore is blocked for periods of hundreds of microseconds to milliseconds by poly(ethylene glycol) (PEG) oligomers (degree of polymerization approximately 10–60). Notably, this block showed monomeric sensitivity on the degree of polymerization of individual oligomers, allowing the construction of size or mass spectra from the residual current values. Here, we show that the current through the pore formed by aerolysin (AeL) from Aeromonas hydrophila is also blocked by PEG but with drastic differences in the voltage-dependence of the interaction. In contrast to aHL, AeL strongly binds PEG at high transmembrane voltages. This fact, which is likely related to AeL’s highly charged pore wall, allows discrimination of polymer sizes with particularly high resolution. Multiple applications are now conceivable with this pore to screen various nonionic or charged polymers.
In general, the method of choice to characterize the conductance properties of channel-forming bacterial porins is electrophysiology. Here, the classical method is to reconstitute single porins into planar lipid bilayers to derive functional information from the observed channel conductance. In addition to an estimated pore size, ion selectivity or transport properties in general are of importance. For the latter, measuring the ion current fluctuation can provide some information about the mode of transport of charged molecules penetrating the proteins. For instance, increasing the external voltage modifies the residence time in the channel: charged molecules with the ability to permeate through channels will travel faster whereas non-permeating molecules get pushed to the constriction zone with enhanced residence time. Here, we are interested in the ability of antibiotics to permeate channels and compare different techniques to reveal fast events.
Cell-free protein synthesis (CFPS) based on eukaryotic Sf21 lysate is gaining interest among researchers due to its ability to handle the synthesis of complex human membrane proteins (MPs). Additionally Sf21 cell-free systems contain endogenous microsomal vesicles originally derived from the endoplasmic reticulum (ER). After CFPS, MPs will be translocated into the microsomal vesicles membranes present in the lysates. Thus microsomal membranes offer a natural environment for de novo synthesized MPs. Despite the advantage of synthesizing complex MPs with post translational modifications directly into the microsomal membranes without any additional solubilization supplements, batch based Sf21 cell-free synthesis suffers from low yields. The bottleneck for MPs in particular after the synthesis and incorporation into the microsomal membranes is to analyze their functionality. Apart from low yields of the synthesized MPs with batch based cell-free synthesis, the challenges arise in the form of cytoskeleton elements and peripheral endogenous proteins surrounding the microsomes which may impede the functional analysis of the synthesized proteins. So careful sample processing after the synthesis is particularly important for developing the appropriate functional assays. Here we demonstrate how MPs (native and batch synthesized) from ER derived microsomes can be processed for functional analysis by electrophysiology and radioactive uptake assay methods. Treatment of the microsomal membranes either with a sucrose washing step in the case of human serotonin transporter (hSERT) and sarco/endoplasmic reticulum Ca2+/ATPase (SERCA) pump or with mild detergents followed by the preparation of proteoliposomes in the case of the human voltage dependent anionic channel (hVDAC1) helps to analyze the functional properties of MPs.
Controlled transport of biomolecules across lipid bilayer membranes is of profound significance in biological processes. In cells, cargo exchange is mediated by dedicated channels that respond to triggers, undergo a nanomechanical change to reversibly open, and thus regulate cargo flux. Replicating these processes with simple yet programmable chemical means is of fundamental scientific interest. Artificial systems that go beyond nature’s remit in transport control and cargo are also of considerable interest for biotechnological applications but challenging to build. Here, we describe a synthetic channel that allows precisely timed, stimulus-controlled transport of folded and functional proteins across bilayer membranes. The channel is made via DNA nanotechnology design principles and features a 416 nm2 opening cross-section and a nanomechanical lid which can be controllably closed and re-opened via a lock-and-key mechanism. We envision that the functional DNA device may be used in highly sensitive biosensing, drug delivery of proteins, and the creation of artificial cell networks.
Membrane nanopores are key for molecular transport in biology, portable DNA sequencing, label-free single-molecule analysis and nanomedicine. Transport traditionally relies on barrel-like channels of a few nanometres width, but there is considerable scientific and technological interest for much wider structures of tunable shape. Yet, these nanopores do not exist in nature and are challenging to build using existing de novo routes for proteins. Here, we show that rational design with DNA can drastically expand the structural and functional range of membrane nanopores. Our design strategy bundles DNA duplexes into pore subunits that modularly arrange to form tunable pore shapes and lumen widths of up to tens of nanometres. Functional units for recognition or signalling can be optionally attached. By dialling in essential parameters, we demonstrate the utility and potential of the custom-engineered nanopores by electrical direct single-molecule sensing of 10-nm-sized proteins using widely used research and hand-held analysis devices. The designer nanopores illustrate how DNA nanotechnology can deliver functional biomolecular structures to be used in synthetic biology, single-molecule enzymology and biophysical analysis, as well as portable diagnostics and environmental screening.
Nanion's Orbit 16 TC platform takes the pain out of bilayer painting and subsequent recordings as it enables fast and successful data generation thanks to the rapid automated formation of 16 bilayers at once and their subsequent fully parallel recording.
Bilayer recording is a well-established technique for in-depth studies of biophysical properties of ion channels and is particularly suited for functional studies on proteins residing in intracellular membranes. Moreover, this technique supports a host of powerful emerging analytical techniques using biological nanopores as molecular sensors. Despite its proven value, bilayer recording can be very frustrating due to the capricious nature of lipid bilayers, which have to be formed manually one by one and which often lack stability. We here show a new approach and device, which speeds up the entire process by the rapid and simultaneous formation of 16, highly stable micrometer-sized bilayers using microelectrode cavity array (MECA) chips. A study will be presented showing that the MECA supports high-resolution polymer sizing with a single biological nanopore in a parallel format.
Posttranslational modifications (PTMs) of proteins are crucial for cellular function but pose analytical problems, especially in distinguishing chemically identical PTMs at different nearby locations within the same protein. Current methods, such as liquid chromatography-tandem mass spectrometry, are technically tantamount to de novo protein sequencing. Nanopore techniques may provide a more efficient solution, but applying the concepts of nanopore DNA strand sequencing to proteins still faces fundamental problems. Here, we demonstrate the use of an engineered biological nanopore to differentiate positional isomers resulting from acetylation or methylation of histone protein H4, an important PTM target. In contrast to strand sequencing, we differentiate positional isomers by recording ionic current modulations resulting from the stochastic entrapment of entire peptides in the pore’s sensing zone, with all residues simultaneously contributing to the electrical signal. Molecular dynamics simulations show that, in this whole-molecule sensing mode, the non-uniform distribution of the electric potential within the nanopore makes the added resistance contributed by a PTM dependent on its precise location on the peptide. Optimization of the pore’s sensitivity in combination with parallel recording and automated and standardized protein fragmentation may thus provide a simple, label-free, high-throughput analytical platform for identification and quantification of PTMs.
The ongoing pandemic caused by the novel coroNaVirus (SARS-CoV-2) has led to more than 445 million infections and the underlying disease, COVID-19, resulted in more than 6 million deaths worldwide. The scientific world is already predicting future zoonotic diseases. Hence, rapid response systems are needed to tackle future epidemics and pandemics. Here, we present the use of eukaryotic cell-free systems for the rapid response to novel zoonotic diseases represented by SARS-CoV-2. Non-structural, structural and accessory proteins encoded by SARS-CoV-2 were synthesized by cell-free protein synthesis in a fast and efficient manner. The inhibitory effect of the non-structural protein 1 on protein synthesis could be shown in vitro. Structural proteins were quantitatively detected by commercial antibodies, therefore facilitating cell-free systems for the validation of available antibodies. The cytotoxic envelope protein was characterized in electrophysiological planar lipid bilayer measurements. Hence, our study demonstrates the potential of eukaryotic cell-free systems as a rapid response mechanism for the synthesis, functional characterization and antibody validation against a viral pathogen.
In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.
The chemical nature and precise position of posttranslational modifications (PTMs) in proteins or peptides are crucial for various severe diseases, such as cancer. State-of-the-art PTM diagnosis is based on elaborate and costly mass-spectrometry or immunoassay-based approaches, which are limited in selectivity and specificity. Here, we demonstrate the use of a protein nanopore to differentiate peptides─derived from human histone H4 protein─of identical mass according to the positions of acetylated and methylated lysine residues. Unlike sequencing by stepwise threading, our method detects PTMs and their positions by sensing the shape of a fully entrapped peptide, thus eliminating the need for controlled translocation. Molecular dynamics simulations show that the sensitivity to molecular shape derives from a highly nonuniform electric field along the pore. This molecular shape-sensing principle offers a path to versatile, label-free, and high-throughput characterizations of protein isoforms.
Single-entity electrochemistry allows the ultrasensitive detection of individual entities by incorporating high bandwidth electrochemical instruments. However, differences among instruments and shielding setups cause large deviations in the recorded signals, which leads to remarkable measurement errors in practical applications. Here, we developed a two-step method to calibrate instruments differences for achieving an accurate single-entity analysis. Two coefficients C1 and C2 were calculated with standard measurement through the model resistors of 1.00 GΩ. C1 obtained from the slope value of the current-voltage (I-V) curve is used to calibrate the shifting of the current statistic distribution. Then, C2, assessed from the standard deviation (STD) noises, is employed to calibrate the full-width half maximum of current statistic distributions. After applying in the model single-molecule experiments of Poly(dA)4 detection with aerolysin nanopores, we showed the effective calibration of measurement differences among four high bandwidth electrochemical instruments. Therefore, this method is generally applicable to all kinds of single-entity electrochemical measurements to reduce measurement errors from instrument differences.
Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi.
Divalent ions are known to have a severe effect on the translocation of several antibiotic molecules into (pathogenic) bacteria. In the present study we have investigated the effect of divalent ions on the permeability of norfloxacin across the major outer membrane channels from E. coli (OmpF and OmpC) and E. aerogenes (Omp35 and Omp36) at the single channel level. To understand the rate limiting steps in permeation, we reconstituted single porins into planar lipid bilayers and analyzed the ion current fluctuations caused in the presence of norfloxacin. Moreover, to obtain an atomistic view, we complemented the experiments with millisecond-long free energy calculations based on temperature-accelerated Brownian dynamics simulations to identify the most probable permeation pathways of the antibiotics through the respective pores. Both, the experimental analysis and the computational modelling, suggest that norfloxacin is able to permeate through the larger porins, i.e., OmpF, OmpC, and Omp35, whereas it only binds to the slightly narrower porin Omp36. Moreover, divalent ions can bind to negatively charged residues inside the porin, reversing the ion selectivity of the pore. In addition, the divalent ions can chelate with the fluoroquinolone molecules and alter their physicochemical properties. The results suggest that the conjugation with either pores or molecules must break when the antibiotic molecules pass the lumen of the porin, with the conjugation to the antibiotic being more stable than that to the respective pore. In general, the permeation or binding process of fluoroquinolones in porins occurs irrespective of the presence of divalent ions, but the presence of divalent ions can vary the kinetics significantly. Thus, a detailed investigation of the interplay of divalent ions with antibiotics and pores is of key importance in developing new antimicrobial drugs.
Efforts to sequence single protein molecules in nanopores have been hampered by the lack of techniques with sufficient sensitivity to discern the subtle molecular differences among all twenty amino acids. Here we report ionic current detection of all twenty proteinogenic amino acids in an aerolysin nanopore with the help of a short polycationic carrier. Application of molecular dynamics simulations revealed that the aerolysin nanopore has a built-in single-molecule trap that fully confines a polycationic carrier-bound amino acid inside the sensing region of the aerolysin. This structural feature means that each amino acid spends sufficient time in the pore for sensitive measurement of the excluded volume of the amino acid. We show that distinct current blockades in wild-type aerolysin can be used to identify 13 of the 20 natural amino acids. Furthermore, we show that chemical modifications, instrumentation advances and nanopore engineering offer a route toward identification of the remaining seven amino acids. These findings may pave the way to nanopore protein sequencing.
Lipid bilayer membranes formed from the artificial 1,3-diamidophospholipid Pad-PC-Pad have the remarkable property that their hydrophobic thickness can be modified in situ: the particular arrangement of the fatty acid chains in Pad-PC-Pad allows them to fully interdigitate below 37 °C, substantially thinning the membrane with respect to the noninterdigitated state. Two stimuli, traversing the main phase transition temperature of the lipid or addition of cholesterol, have previously been shown to disable the interdigitated state. Both manipulations cause an increase in hydrophobic thickness of about 25 Å due to enhanced conformational entropy of the lipids. Here, we characterize the interdigitated state using electrophysiological recordings from free-standing lipid-membranes formed on micro structured electrode CaVity arrays. Compared to standard membranes made from 1,2-diphytanoyl-sn-glycero-3-phosphocholin (DPhPC), pure Pad-PC-Pad membranes at room temperature had lowered electroporation threshold and higher capacitance. Ion channel formation by the peptide Gramicidin A was clearly facilitated in pure Pad-PC-Pad membranes at room temperature, with activity occurring at significantly lower peptide concentrations and channel dwell times increased by 2 orders of magnitude with respect to DPhPC-membranes. Both elevation of temperature beyond the phase transition and addition of cholesterol reduced channel dwell times, as expected if the reduced membrane thickness stabilized channel formation due to decreased hydrophobic mismatch.
Multidrug-resistant bacteria are a great concern and a problem that must be addressed. Extended-spectrum β-lactamases are a common defence mechanism of bacteria to make β-lactam (BL) antibiotics ineffective. β-Lactamase inhibitors (BLIs) are consequently designed and are often clinically prescribed with a BL antibiotic to hinder degradation. Current studies focusing on how BL antibiotics or BLIs interact solely with the bacterial outer membrane nanopores (porins) on reaching the periplasmic side using a nanopore-based sensing technique. In electrochemical studies, the bias voltage allows real-time monitoring of BL antibiotics, BLIs and their mixture through the porin pathway at the single-molecule level. Here we consider the most abundant membrane protein from Escherichia coli (i.e. OmpF), purify and reconstitute the membrane protein in an artificial lipid bilayer and then study its ex vivo electrochemical behaviour. We show the piperacillin/tazobactam mixture interacts with OmpF, whereas the substrate interacts under the maximum bandwidth. The power spectrum analysis of the ionic current trace demonstrates the ampicillin/sulbactram mixture requires more energy than ampicillin alone to pass through the porin pathway. Our results demonstrate that clinically relevant combinations (e.g. piperacillin/tazobactam and ampicillin/sulbactam) interact more strongly with OmpF than either the BL antibiotic or the BLI alone. We suggest a quick and relatively cheap screening method to test the ability of BL antibiotics/BLIs to cross the bacterial cellular membrane.
Cyclic β-sheet decapeptides from the tyrocidine group and the homologous gramicidin S were the first commercially used antibiotics, yet it remains unclear exactly how they kill bacteria. We investigated their mode of action using a bacterial cytological profiling approach. Tyrocidines form defined ion-conducting pores, induce lipid phase separation, and strongly reduce membrane fluidity, resulting in delocalization of a broad range of peripheral and integral membrane proteins. Interestingly, they also cause DNA damage and interfere with DNA-binding proteins. Despite sharing 50% sequence identity with tyrocidines, gramicidin S causes only mild lipid demixing with minor effects on membrane fluidity and permeability. Gramicidin S delocalizes peripheral membrane proteins involved in cell division and cell envelope synthesis but does not affect integral membrane proteins or DNA. Our results shed a new light on the multifaceted antibacterial mechanisms of these antibiotics and explain why resistance to them is virtually nonexistent. Importance:Cyclic β-sheet decapeptides, such as tyrocidines and gramicidin S, were among the first antibiotics in clinical application. Although they have been used for such a long time, there is virtually no resistance to them, which has led to a renewed interest in this peptide class. Both tyrocidines and gramicidin S are thought to disrupt the bacterial membrane. However, this knowledge is mainly derived from in vitro studies, and there is surprisingly little knowledge about how these long-established antibiotics kill bacteria. Our results shed new light on the antibacterial mechanism of β-sheet peptide antibiotics and explain why they are still so effective and why there is so little resistance to them.
Proteinaceous nanometer-scale pores have been used to detect and physically characterize many different types of analytes at the single-molecule limit. The method is based on the ability to measure the transient reduction in the ionic channel conductance caused by molecules that partition into the pore. The distribution of blockade depth amplitudes and residence times of the analytes in the pore are used to physically and chemically characterize them. Here we compare the current blockade events caused by flexible linear polymers of ethylene glycol (PEGs) and structurally well-defined tungsten polyoxymetallate nanoparticles in the nanopores formed by Staphylococcus aureus α -hemolysin and Aeromonas hydrophila aerolysin. Surprisingly, the variance in the ionic current blockade depth values for the relatively rigid metallic nanoparticles is much greater than that for the flexible PEGs, possibly because of multiple charged states of the polyoxymetallate clusters.
Small, hydrophilic molecules, including most important antibiotics in clinical use, cross the Gram-negative outer membrane through the water-filled channels provided by porins. We have determined the X-ray crystal structures of the principal general porins from three species of Enterobacteriaceae, namely Enterobacter aerogenes, Enterobacter cloacae and Klebsiella pneumoniae and determined their antibiotic permeabilities as well as those of the orthologues from Escherichia coli. Starting from the structure of the porins and molecules we propose a physical mechanism underlying transport and condense it in a computationally efficient scoring function. The scoring function shows good agreement with in-vitro penetration data and will enable the screening of virtual databases to identify molecules with optimal permeability through porins and help to guide the optimization of antibiotics with poor permeation.
We use two pore-forming proteins, alpha-hemolysin and aerolysin, to compare the polymer size-dependence of ionic current block by two types of ethyleneglycol polymers: 1) linear and 2) 3-arm star poly(ethylene glycol), both applied as a polydisperse mixture of average mass 1kDa under high salt conditions. The results demonstrate that monomer size sensitivity, as known for linear PEGs, is conserved for the star polymers with only subtle differences in the dependence of the residual conductance on monomer number. To explain this absence of a dominant effect of polymer architecture, we propose that PEG adsorbs to the inner pore wall in a collapsed, salted-out state, likely due to the effect of hydrophobic residues in the pore wall on the availability of water for hydration.
The pore forming characteristic of TDH1 and TDH2 variants of thermostable direct hemolysin (TDH), a major toxin involved in the pathogenesis of Vibrio parahaemolyticus, was studied on a planar lipid bilayer painted over individual picoliter CaVities containing microelectrodes assembled in a multiarray. Both proteins formed pores upon insertion into the lipid bilayer which was shown as a shift in the conductance from the baseline current. TDH2 protein was able to produce stable currents and the currents were influenced by external factors like concentration, type of salt and voltage. The pore currents were influenced and showed a detectable response in the presence of polymers which makes them suitable for biotechnology applications.
DNA nanopores are a recent class of bilayer-puncturing nanodevices that can help advance biosensing, synthetic biology, and nanofluidics. Here, we create archetypal lipid-anchored DNA nanopores and characterize them with a nanoprobe-based approach to gain essential information about their interactions with bilayers. The strategy determines the molecular accessibility of DNA pores with a nuclease and can thus distinguish between the nanopores' membrane-adhering and membrane-spanning states. The analysis reveals, for example, that pores interact with bilayers in two steps whereby fast initial membrane tethering is followed by slower reorientation to the puncturing state. Tethering occurs for pores with one anchor, while puncturing requires multiple anchors. Both low and high-curvature membranes are good substrates for tethering, but efficient insertion proceeds only for high-curvature bilayers of the examined lipid composition. This is likely due to the localized lipid misalignments and the associated lower energetic barrier for pore permeation. Our study advances the fields of DNA nanotechnology and nanopores by overcoming the considerable experimental hurdle of efficient membrane insertion. It also provides mechanistic insights to aid the design of advanced nanopores, and offers a useful route to probe bilayer orientation of DNA nanostructures.
Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine.
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.
The transport of macromolecules through nanopores is involved in many biological functions and is today at the basis of promising technological applications. Nevertheless the interpretation of the dynamics of the macromolecule/nanopore interaction is still misunderstood and under debate. At the nanoscale, inside biomimetic channels under an external applied voltage, electrophoresis, which is the electric force acting on electrically charged molecules, and electroosmotic flow (EOF), which is the fluid transport associated with ions, contribute to the direction and magnitude of the molecular transport. In order to decipher the contribution of the electrophoresis and electroosmotic flow, we explored the interaction of small, rigid, neutral molecules (cyclodextrins) and flexible, non-ionic polymers (poly(ethylene glycol), PEG) that can coordinate cations under appropriate experimental conditions, with two biological nanopores: aerolysin (AeL) and α-hemolysin (aHL). We performed experiments using two electrolytes with different ionic hydration (KCl and LiCl). Regardless of the nature of the nanopore and of the electrolyte, cyclodextrins behaved as neutral analytes. The dominant driving force was attributed to EOF, acting in the direction of the anion flow and stronger in LiCl than in KCl. The same qualitative behaviour was observed for PEGs in LiCl. In contrast, in KCl, PEGs behaved as positively charged polyelectrolytes through both AeL and aHL. Our results are in agreement with theoretical predictions about the injection of polymers inside a confined geometry (ESI). We believe our results to be of significant importance for better control of the dynamics of analytes of different nature through biological nanopores.
Cell-free protein synthesis (CFPS) represents a promising technology for efficient protein production targeting especially so called “difficult-to-express” proteins whose synthesis is challenging in conventional in vivo protein production platforms. Chinese hamster ovary (CHO) cells are one of the most prominent and safety approved cell lines for industrial protein production. In this study we demonstrated the ability to produce high yields of various protein types including membrane proteins and single chain variable fragments (scFv) in a continuous exchange cell-free (CECF) system based on CHO cell lysate that contains endogenous microsomal structures. We showed significant improvement of protein yield compared to batch formatted reactions and proved biological activity of synthesized proteins using various analysis technologies. Optimized CECF reaction conditions led to membrane protein yields up to 980 µg/ml, which is the highest protein yield reached in a microsome containing eukaryotic cell-free system presented so far.
Biological ion channels are molecular gatekeepers that control transport across cell membranes. Recreating the functional principle of such systems and extending it beyond physiological ionic cargo is both scientifically exciting and technologically relevant to sensing or drug release. However, fabricating synthetic channels with a predictable structure remains a significant challenge. Here, we use DNA as a building material to create an atomistically determined molecular valve that can control when and which cargo is transported across a bilayer. The valve, which is made from seven concatenated DNA strands, can bind a specific ligand and, in response, undergo a nanomechanical change to open up the membrane-spanning channel. It is also able to distinguish with high selectivity the transport of small organic molecules that differ by the presence of a positively or negatively charged group. The DNA device could be used for controlled drug release and the building of synthetic cell-like or logic ionic networks
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded β-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å3 pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.
Efficient use of membrane protein nanopores in ionic single-molecule sensing requires technology for the reliable formation of suspended molecular membranes densely arrayed in formats that allow high-resolution electrical recording. Here, automated formation of bimolecular lipid layers is shown using a simple process where a poly(tetrafluoroethylene)-coated magnetic bar is remotely actuated to perform a turning motion, thereby spreading phospholipid in organic solvent on a nonpolar surface containing a 1 mm2 4 × 4 array of apertures with embedded microelectrodes (microelectrode CaVity array). Parallel and high-resolution single-molecule detection by single nanopores is demonstrated on the resulting bilayer arrays, which are shown to form by a classical but very rapid self-assembly process. The technique provides a robust and scalable solution for the problem of reliable, automated formation of multiple independent lipid bilayers in a dense microarray format, while preserving the favorable electrical properties of the microelectrode CaVity array.
DNA nanotechnology excels at rationally designing bottom-up structures that can functionally replicate naturally occurring proteins. Here we describe the design and generation of a stable DNA-based nanopore that structurally mimics the amphiphilic nature of protein pores and inserts into bilayers to support a steady transmembrane flow of ions. The pore carries an outer hydrophobic belt comprised of small chemical alkyl groups which mask the negatively charged oligonucleotide backbone. This modification overcomes the otherwise inherent energetic mismatch to the hydrophobic environment of the membrane. By merging the fields of nanopores and DNA nanotechnology, we expect that the small membrane-spanning DNA pore will help open up the design of entirely new molecular devices for a broad range of applications including sensing, electric circuits, catalysis, and research into nanofluidics and controlled transmembrane transport.
High throughput and a long life-time of the devices are two crucial challenges in planar chip technology for electrophysiological measurements of ionic current recording through ion channel proteins. In this paper, we present a wafer-scale process for the generation of novel arrays of microelectrochemical cells for long-term and high-resolution current recording. At the bottom of each of the cells, which have typically diameters of around 60 μm and volumes of around 30 pL, a nanocrystalline silver/silver chloride secondary electrode is generated for ionic current recording. The top of the cell is closed by a lid containing a small (6–16 μm) opening which connects liquid in the chamber to a contacting liquid on the outside. The processes necessary for manufacturing such a chip through photolithography and wafer-scale bonding have been developed, the resulting structures were characterized and the procedures were optimized. Combining a large surface area of the electrode with a – in relation to the cell size – relatively large amount of silver/silver chloride allows for the recording of DC ionic currents for prolonged periods of time. First measurements were performed where the electrochemical cells were closed by model membranes containing single ion channel proteins. The currents generated by ions passing through these ion channels are reported. These measurements demonstrate the usefulness of the microelectrochemical cell array for long time ionic current recordings at – for these type of measurements – relatively high current levels.
We report on parallel high-resolution electrical single-molecule analysis on a chip-based nanopore microarray. Lipid bilayers of 20 μm diameter containing single alpha-hemolysin pores were formed on arrays of subpicoliter CaVities containing individual microelectrodes (microelectrode CaVity array, MECA), and ion conductance-based single molecule mass spectrometry was performed on mixtures of poly(ethylene glycol) molecules of different length. We thereby demonstrate the function of the MECA device as a chip-based platform for array-format nanopore recordings with a resolution at least equal to that of established single microbilayer supports. We conclude that devices based on MECAs may enable more widespread analytical use of nanopores by providing the high throughput and ease of operation of a high-density array format while maintaining or exceeding the precision of state-of-the-art microbilayer recordings.
We created nanometer-scale transmembrane channels in lipid bilayers using self-assembled DNA-based nanostructures. Scaffolded DNA origami was used to create a stem that penetrates and spans a lipid membrane, and a barrel-shaped cap that adheres to the membrane in part via 26 cholesterol moieties. In single-channel electrophysiological measurements, we find similarities to the response of natural ion channels, such as conductances on the order of 1 nS and channel gating. More pronounced gating was seen for mutations in which a single DNA strand of the stem protruded into the channel. In single-molecule translocation experiments, we highlight one of many potential applications of the synthetic channels, namely as single DNA molecule sensing devices.
Increasing the throughput and resolution of electrical recording of currents through ion conducting channels and pores is an important technical challenge both for the functional analysis of ion channel proteins and for the application of nanoscale pores in single molecule analytical tasks. We present a novel design based on sub-picoliter-CaVities arrayed in a polymer substrate and endowed with individual planar microelectrodes that allows low-noise and parallel electrical recording from ion channels and pores. Resolution of voltage-dependent current transitions of alamethicin channels as well as polyethylene-glycol-induced blocking events of alpha-hemolysin nanopores on the submillisecond time scale is demonstrated using this device.
Cardiac contractility assessment is of immense importance for the development of new therapeutics and their safe transition into clinical stages. While human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold promise to serve as a human-relevant model in preclinical phases of drug discovery and safety pharmacology, their maturity is still controversial in the scientific community and under constant development. We present a hybrid contractility and impedance/extracellular field potential (EFP) technology, adding significant pro-maturation features to an industry-standard 96-well platform. The impedance/EFP system monitors cellular functionality in real-time. Besides the beat rate of contractile cells, the electrical impedance spectroscopy readouts detect compound-induced morphological changes like cell density and integrity of the cellular monolayer. In the other component of the hybrid cell analysis system, the cells are cultured on bio-compliant membranes that mimic the mechanical environment of real heart tissue. This physiological environment supports the maturation of hiPSC-CMs in vitro, leading to more adult-like contractile responses including positive inotropic effects after treatment with isoproterenol, S-Bay K8644, or omecamtiv mecarbil. Parameters such as the amplitude of contraction force (mN/mm2) and beat duration also reveal downstream effects of compounds with influence on electrophysiological properties and calcium handling. The hybrid system provides the ideal tool for holistic cell analysis, allowing preclinical cardiac risk assessment beyond the current perspectives of human-relevant cell-based assays.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are attractive due to their unlimited availability and human origin, making them a promising tool for cardiac research and safety pharmacology. However, they can show an immature phenotype such as lower inward rectifier potassium current (IK1), atypical expression pattern of ion channels, divergent response to pharmacological agents and contractile behaviour compared to adult CMs. Thus, their detailed characterization and optimized recording environments are essential.
We aimed to characterize and modulate electrophysiological and contractile properties of hiPSC-CMs using automated dynamic clamp and contraction measurements on flexible substrate.
Here, we recorded iCell Cardiomyocytes2 in voltage and current clamp using a combined automated patch clamp (APC) and dynamic clamp device (Patchliner Dynamite8), and contractility recordings were made using the FLEXcyte 96. During the APC recordings simulated IK1 and seal compensation were applied to up to 8 hiPSC-CMs simultaneously, while the contractility recordings were conducted in 96-well plates. We have tested various compounds targeting cardiac ion channels and recorded their effects on action potential duration (APD), sodium, calcium and potassium currents, as well as their effect on the contraction capabilities of these cells. Additionally, different levels of static and cyclic pressure were applied to the cell monolayers with the aim to induce membrane deflection for reproducibility test of Frank-Starling mechanism and to imitate the physiological stretching experienced by CMs in the beating human heart during systolic and diastolic phases, respectively.
Seal compensation and virtual IK1 in hiPSC-CMs resulted in more stable and longer APs with low APD variability. Consequently, the dynamic clamp approach enabled reliable calcium, sodium and potassium channel pharmacology on action potentials of these cells. Culturing conditions that support contractility, i.e. flexible membrane substrates, demonstrate Ca2+ channel pharmacology equivalent to that expected from adult CMs while applied mechanical stimulation resulted in functional changes of hiPSC-CMs physiology.
Abstract:
Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. Integration into standard lab procedures remains a challenge for current in vitro systems. The FLEXcyte 96 system has the potential to scale-up mechanical testing towards medium-throughput analyses. We show here that, using stem cell-derived cardiomyocytes, this system enables predictive recordings of contractile behaviour in the presence of well-known reference compounds.
A short introductory video of the feature "contractile force"
A short introductory video of FLEXcyte.
Cardiac diseases remain one of the major causes of mortality and morbidity in our society with enormous costs for the health system. Arrhythmias and cardiomyopathy diseases are difficult to prevent/cure because the molecular mechanisms behind their onset are in most cases not fully clarified. Causes and effect are often confused, even when directly studying patients’ cardiomyocytes, because of the maladaptive remodeling imposed by electro-mechanical alterations. To overcome this limitation, studying the arrhythmogenic risk associated with genetic cardiac diseases using patient-derived iPS-CMs, provides a good model.Caveolinopathies are a group of muscular diseases that arise from mutation in the caveolin-3 gene (CAV3). Several CAV3 variants have been found in patients with both skeletal and cardiac pathologies. While electrophysiological alterations behind caveolinopathies have been partly elucidated using different models, the impact of such mutations on cardiomyocyte contraction and thus on the risk of developing cardiomyopathy, although quite probable, has never been studied before. Caveolin-3 along with cholesterol, forms membrane caveolae and plays a key role in the maintenance of plasma membrane integrity and interacts with several signaling proteins and ion channels.Here, CardioExcyte 96 and FLEXcyte 96 compared relative amplitude and kinetics of contraction and relaxation in patient/control hiPS-lines in order to shed light on the relations between electrical and mechanical dysfunctions. This analysis offered various advantages, such as the possibility of electrical stimulation, recordings in an environment with an elastic surface area resembling that of the native cardiac tissue, as well as high throughput.
In order to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Optimizing baseline function of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, hiPSC-CMs were cultured on flexible substrates using the FLEXcyte 96 system. The pro-maturation environment enables observation of inotropic and chronotropic compound effects, which are typically hard to detect with 2D monolayers on overly stiff substrates. For example, the beta-adrenergic agonist isoprenaline, or isoproterenol, is well known for its positive inotropic effects on the human heart, although common hiPSC-CM in vitro assays fail to display this physiological response by this compound.Sala et al. (2018) developed a method that allows for a comparison of cardiac contraction measurements derived from different measurement approaches. The method, called MUSCLEMOTION, builds on previously existing algorithms, is fully automated and can be used on videos, image stacks, or image sequences loaded in the open-source image-processing program ImageJ.It is an open-source, dynamic platform that can be expanded, improved, and integrated for customized applications. Dynamic changes in pixel intensity between image frames are determined and the output is expressed as a relative measure of movement during muscle contraction and relaxation. Here, we compare the previously depicted data sets from Sala et al. 2018 and compare it to FLEXcyte 96 data as recorded with Cardiosight-S® cardiomyocytes (Nexel).
High throughput Screening (HTS) scalable techniques with highly predictive cell models are needed to improve the expensive and time-consuming drug development process. Potentially dangerous consequences of side effects on the human heart make safety testing of heart related issues the main focus of pre-clinical drug development studies. However, one of the most commonly used gold standard technique for cardiac contractility measurements, the ex vivo Langendorff set-up, does not efficiently support modern drug development processes as it uses non-predictive animal models on a very low throughput level.Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combine a number of features fostering the drug development process such as high predictivity, large scale applicability with high throughput potential, low ethical concerns and cost effectiveness. Yet, when cultured on overly stiff substrates like glass or plastic, the cells are placed under unnecessary stress due to the missing auxotonic physiological environment provided by a flexible substrate.These unphysiological conditions lead to drastic transcriptional and metabolic deregulation in cardiomyocytes which affect the predictive value of this established cell model. To bridge the gap of predictive contractility measurements and HTS analysis for drug development studies, innoVitro co-developed the FLEXcyte 96 with Nanion Technologies as an add-on for the CardioExcyte 96 platform. With less than 10 μm in thickness and sophisticated surface modification, the polydimethylsiloxane (PDMS) membranes of the FLEXcyte 96 disposable plates offer physiological elasticity of native human heart tissue. As a result hiPSC-derived CM behave in an in vivo manner and finally reach their full potential as a CiPA confirmed model for drug development processes.Beta-adrenergic agonist isoproterenol and L-type calcium channel agonist S-Bay K8644 are both well known for their positive inotropic effects on the human heart, although common iPSC-CM in vitro assays fail to display this physiological response by showing negative inotropic effects instead.Here, we show that the auxotonic environment of the FLEXcyte 96 enables mature physiological responses of hiPSC-CMs on positive inotropic substances such as L-type calcium channel agonist S-Bay K8644, beta-adrenergic agonist isoproterenol and cardiac myosin activator omecamtiv mecarbil.
Background: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) offer a promising source for heart disease modeling and drug screening. Recent developments in organoid technology have made it possible to study how hiPSC-derived CMs interact together, and this culture system mimics the tissue environment and behavior of the cardiac cells in our body. However, the similarities and differences between conventional 2-dimensional (2D) culture and 3-dimensional (3D) organoid culture systems for CM differentiation have been incompletely elucidated. Methods: To study how the individual microenvironment formed by each culture system affects the properties of CMs differentiated from hiPSCs, we conducted a comparative study between 2D monolayer and direct 3D cardiac organoid differentiation from hiPSCs throughout the sequential differentiation stages. Results: The 3D differentiation system strongly exhibited higher mesoderm commitment and cardiac induction than 2D monolayer differentiation from hiPSCs. In the late stage of differentiation, the 3D cardiac organoids showed a higher frequency of a mature myofibrillar isoform switching in sarcomere structure of differentiated CMs than was observed in monolayer culture, although over 94% of cardiac troponin T-positive cells resulted at the end point of differentiation in both systems. Furthermore, the accelerated structural maturation in 3D cardiac organoids resulted in increased expression of cardiac-specific ion channel genes and Ca2+ transient properties, with a high signal amplitude and rapid contractility. Conclusion: The present study provides details surrounding the 2D and 3D culture methods for CM differentiation from hiPSCs and focuses on 3D cell culture as an improved strategy for approaching and applying cardiac maturation.
In cancer research, the intense development of targeted therapeutics such as tyrosine kinase inhibitors (TKIs) has brought tremendous improvement to the survival rate of cancer patients over the last two decades. The goal to reduce diverse toxic side effects of cancer treatment with targeted therapy has been widely achieved in comparison to traditional anti-cancer treatments like anthracyclines. Nevertheless, both therapeutics, TKIs and anthracyclines, still lead to adverse cardiotoxic side effects such as left ventricular dysfunction and heart failure.The severity of these side effects depends on dosage and time span of treatment which brings chronic assessment of cardiotoxicity into focus.However, acute testing (min to hours) of cell models with low predictive value remains the primary application so far, due to the inability of common cell-based assays to analyze cellular behavior reliably over prolonged periods of time.
Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte 96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell–cell and cell–substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers attached to glass or plastic (Young's modulus (E) >1 GPa), detached (substrate-free) and attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions.
Background/ Aims:Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication.Methods:In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca2+ channels (S-Bay K8644/verapamil) and Na+ channels (veratridine/ lidocaine).Results:The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data.Conclusion:We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.
Translatability of data obtained from hiPSC-CMs to human physiology is the subject of current scientific discussion; Contractility data derived from hiPSC-CMs in an environment that reflects the mechanical properties of real human cardiac tissue in a higher throughput format (FLEXcyte 96) is physiologically relevant; Example data on commercially available cell types with the FLEXcyte 96 system show a high degree of consistency with clinical data
In 2013 the Cardiac Safety Research Consortium (CSRC), the Health and Environmental Sciences Institute (HESI), and the US Food and Drug Administration (FDA) proposed a new paradigm to improve assessment of the proarrythmic risk of therapeutic compounds. Until now, drug safety testing has focussed on interaction with the hERG channel and QT prolongation which can lead to potentially fatal torsades de pointes (TdP). Although this approach has been largely successful in preventing new drugs reaching the market with unexpected potential to cause TdP, it is also possible that potentially valuable therapeutics have failed due to this early screening. The new paradigm, the Comprehensive In-vitro Proarrhythmia Assay (CiPA) was introduced to provide a more complete assessment of proarrythmic risk by evaluating and implementing currently available high throughput methods. An important part of this remains electrophysiological evaluation of not only hERG, but also other cardiac channels including NaV1.5, CaV1.2, KVLQT1 and Kir2.1. Additionally, new technologies, such as impedance measurements, and cells such as stem cell-derived cardiomyocytes, may provide useful tools for high throughput safety assessment. Here, we present high quality data with reliable pharmacology on hERG expressing CHO cells, NaV1.5, CaV1.2 or KVLQT1 expressed in HEK293 cells and Kir2.1 expressed in RBL cells on the SyncroPatch 384PE or Patchliner. Additionally, electrophysiological recordings on the Patchliner and Impedance measurements on the CardioExcyte 96 of stem cell-derived cardiomyocytes are shown
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are gaining interest in cardiac safety screening. Given their recapitulation of native behavior, availability, ease of use and standardized production, they are likely to provide a viable alternative to acutely isolated cardiomyocytes to assess the pro-arrhythmic potentials of drug candidates. In 2013 the Comprehensive In-vitro Proarrhythmia Assay (CiPA) was introduced to provide a more complete assessment of pro- arrythmic risk by evaluating and implementing currently available high throughput methods and evaluating the potential use of hiPSC-CMs as a model system for cardiac safety testing. Until now, drug safety testing has focussed on interaction with the hERG channel and QT prolongation which can lead to potentially fatal torsades de pointes (TdP). Although this approach has been largely successful in preventing new drugs reaching the market with unexpected potential to cause TdP, it is also possible that potentially valuable therapeutics have failed due to this early screening. The CiPA initiative has proposed an expansion of patch clamp assessment beyond hERG to include, e.g. NaV1.5 and CaV1.2. In addition, techniques such as multi-electrode array (MEA) and impedance are being thoroughly evaluated as complementary techniques to patch clamp. Here we present data recorded using the automated patch clamp platforms, the Patchliner, SyncroPatch 96 and SyncroPatch 384PE on Cellartis® Cardiomyocytes (Takara Bio Europe Cat nr. Y10075). Recordings of NaV1.5 and CaV1.2 are shown. Impedance and EFP recordings were also performed using the CardioExcyte 96, and the effects of verapamil and sotalol are shown.
Drug development is a costly and time-consuming process, with high drug failure rates both in early and late stages of the development process. Pre-clinical cardiac safety, toxicity and efficacy testing, usually performed using animal models with low predictive value or primary human cells, are one of the main reasons for high drug attrition rates.
To improve the drug development process, a suitable technology is required to acquire high quality data from physiologically relevant models on high throughput level. Standard cultivation methods for stem cell-derived cardiomyocytes are still based on stiff glass or plastic surfaces, creating an unphysiological environment to what cells would experience naturally and hinder them to further mature in vitro. In contrast, the FLEXcyte 96 plates mimic flexible mechanical conditions of real biological tissue and thereby enhancing the development of a mature cardiomyocyte phenotype which cannot be elicited with other assays commonly used. In combination with the FLEXcyte 96 platform, it is possible to analyze mature cardiac contractility on a 96 well high throughput level, both after acute and chronic compound treatment, ranging from 5 minutes to 5 days.
Hence, the FLEXcyte 96 system enables high throughput at lower costs and delivers highly predictive functional information on drug candidates early in the drug development process.
In this webinar we highlight impedance-based platforms (CardioExcyte 96 and FLEXcyte 96) and a high-throughput automated patch clamp (APC) instrument, the SyncroPatch 384.
The broad range and versatility of cell-based assays easily performed with these Automated Patch Clamp and cell monitoring systems, make them an excellent choice for integration into a core cell screening center/therapy/ biomanufacturing facility and traditional academic labs around the globe.
Nanion invites you to a webinar on the CardioExcyte 96 - a hybrid device for impedance- and MEA-type recordings from intact, beating networks of stem cell-derived cardiomyocytes.
Combining impedance- and MEA-recordings increases the significance of toxicity screens as both the contractility and the electrical excitability of the cellular network are taken into account.
G-protein coupled receptors (GPCRs) are among the most heavily addressed drug targets in medicinal chemistry and pharmacology. It has been estimated that about 40 % of all prescription pharmaceuticals on the market address GPCRs in different target tissues. The screening for new agonists or antagonists has been largely based on assays studying genetically engineered cells for the (i) potential binding of the ligand to their receptors or (ii) the production of second messengers upon receptor activation. Both approaches require invasive experimental procedures. Thus, they need to be performed as endpoint assays that do not reveal the time course of the cell response or details about intrinsic signal amplification. In contrast to that, non-invasive and label-free impedance monitoring has been developed over the last decades providing the response of target cells to receptor activation in real time. The technique is referred to as electric cell-substrate impedance sensing or short ECIS. In ECIS the cells are grown on planar gold-film electrodes that are integrated into regular cell culture dishes. Most recently, these electrode bearing dishes have been made commercially available in standard 96well format. The impedance of the cell-covered electrodes is measured with non-invasive electrical signals and reports on the cell response with a time resolution that is adjustable from minutes to milliseconds. This article will highlight several different approaches how non-invasive impedance measurements are used to characterize the pharmacology of GPCRs in cell-based assays comprising agonist assays, antagonist assays, dose-response relationships, signal transduction profiling and it will introduce a new dosing scheme that increases the experimental throughput significantly.
Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines.
Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed.Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values.
With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended
The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 μm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1–1 μM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.
The endothelium of our blood vessels is under the control of various G protein-coupled receptors (GPCRs), regulating endothelial barrier function, vascular tone, angiogenesis and inflammation. Some of these GPCRs signal via Gq,11 protein, which activates Ca2+-release from the IP3-sensitive internal stores of the endoplasmic reticulum (ER). Calcium store depletion can subsequently activate so-called store-operated Ca2+ entry (SOCE) via the ER-resident Ca2+-sensor stromal-interacting molecule 1 (STIM1) and Orai1 Ca2+ entry channels.
We used Impedance measurements and ratiometric Calcium imaging to investigate the role of calcium entry via Orai1 channels downstream of barrier-regulating GPCRs in response to their agonists Thrombin, Histamine and Sphingosine-1-Phosphate (S1P) in human endothelial cells.
Source: The 64th Annual Meeting of the Biophysical Society, San Diego, CA (USA) Feb 15-19. 2020 About: Metrion Biosciences is a UK-based Contract Research Organization (CRO) focussed on delivering a range of high quality ion channel screening and drug discovery services. We provide sophisticated electrophysiology assays to support medicinal chemistry optimisation programmes, CiPA-compliant cardiac safety.
Drug induced hepatic toxicity is one of the main reasons for regulatory actions and market withdrawals in the last 50 years [1]. In Europe and the USA, the major cause of acute liver failure is indeed Drug Induced Liver Injury (DILI) [2]. Current existing in vitro models employed to predict DILI mostly focus on hepatocytes. Other cell types of the liver, such as liver sinusoidal endothelial cells (LSECs), are often overlooked. It is thus questionable whether, hepatotoxicity can be sufficiently predicted by analyzing hepatocytes only. LSECs are highly specialized endothelial cells forming the hepatic sinusoidal wall. Besides their high endocytic potential, LSECs have been demonstrated to markedly contribute to liver homeostasis, immunity, and may partially explain unexpected hepatotoxicity of selected drug candidates. Several reports in the literature have highlighted a high sensitivity of LSECs towards hepatotoxic drugs [3]. It has been suggested that LSECs act as an early direct target for acetaminophen (paracetamol) induced toxicity, causing early swelling and loss of uptake activity and fenestrations before effects on hepatocytes are observed [4]. LSECs are further important cellular targets during sinusoidal obstruction syndrome (a distinctive and potentially fatal form of hepatic injury that occurs predominantly, if not only, after drug or toxin exposure). The use of primary LSECs for comprehensive in vitro studies is compromised by poor cell yields, rapid dedifferentiation, contamination with other endothelial cells, and limited proliferation after isolation [5]. In this study upcyte® LSECs have been developed as a complementary tool to predict hepatotoxicity, uptake and drug interactions. In addition to conventional toxicity readouts such as ATP levels, upcyte® LSECs have been successfully tested using an impedance based system.
Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract synchronously. Slowed cardiac conduction velocity (CV) is associated with an increased risk of re-entrant excitation, leading to a pre-disposition to life-threatening arrhythmias1. CV is determined by the ion channel properties of cardiac myocytes and by their interconnections. It is strictly dependent on the maximum upstroke velocity of an action potential, which is determined by the sodium current2. In addition, gap junctions play a key role because they ultimately determine how much depolarizing sodium current passes from excited to non-excited regions of the network. Uncoupling of gap junctions causes discontinuities leading to slower CV. Defective intercellular coupling between the cardiomyocytes results in increased subthreshold depolarization, which slowly inactivates the voltage-gated sodium channels, further reducing the sodium current and excitability3.In the case of collagenous scar tissue the uncoupling of myocyte–myocyte connections and subsequent coupling of myocytes with fibroblasts impairs the electrical conduction. In fact, collagen deposition results in electrically isolated fibers of viable myocardium, discontinuing the conduction path and globally reducing the action potential propagation velocity and consequently promoting the onset of re-entrant arrhythmias4. Since CV plays a pivotal role in cardiovascular diseases, it is essential to investigate the effect of a new compound on the cardiac CV.In this study, we have investigated the effect of the sodium channel blocker lidocaine (30 and 100 μM) on CV in hiPSC-CMs (NEXEL Cardiosight®-S) using the CardioExcyte 96.
Drug Induced Liver Injury (DILI) is the major cause of acute liver failure in the USA and Europe and is one of the main reasons for regulatory actions and market withdrawals. Indeed, hepatic toxicity has accounted for 15 of the 47 drugs withdrawn from the market in the period 1975 - 2007. DILI is classified as intrinsic or dosedependent, acetaminophen (paracetamol) being the most important example of this class, or idiosyncratic which is unpredictable and not directly dependent on dose. A number of factors contribute to an individual’s susceptibility to develop idiosyncratic DILI including age, sex, alcohol consumption, drug interactions and genetic variability. Although improvements have been made to cellular and animal models to predict intrinsic (dose-dependent) DILI, it is almost impossible to predict idiosyncratic DILI. Withdrawal of compounds at a late stage (or postmarketing) due to idiosyncratic DILI is costly and can lead to incorrect withdrawal of potentially useful compounds. Monocyte-derived hepatocyte-like (MH) cells have been developed as a tool to investigate longterm hepatotoxicity, metabolism and drug interactions. Furthermore, patient-derived MH cells could provide a tool for diagnosis or exclusion of idiosyncratic DILI and provide the causative agent in polymedicated patients.In this study, MH cells (MetaHeps®) were used on the CardioExcyte 96 and changes in impedance, and therefore confluency, were used as a measure of toxicity. Intrinsic (dose-dependent) effects of paracetamol could be identified consistent with other methods of liver injury detection. Therefore, the CardioExcyte 96 in combination with patient-specific MH cells provides a novel tool for investigating intrinsic and idiosyncratic DILI.
New anticancer agents have led to higher life expectancy for patients surviving cancer. However, treatment related morbidity factors such as cardiac toxicity have become important issues for long-term cancer survivors. Cardiotoxic side effects such as arrhythmia, thromboembolism and myocardial ischemia are common with anti-cancer drugs such as the anthracyclines. This has led to the need for a sub-speciality of medicine, cardio-oncology or oncocardiology, to promote cardiovascular health whilst providing the best therapy to fight cancer. It is important to be able to assess the cardiotoxic risk of new and existing cancer therapies in order to facilitate effective cardiovascular health during chemotherapy. In addition, advances in human stem cell derived cardiomyocytes (hiPSC-CMs) and, indeed, patient-derived hiPSC-CMs offers new possibilities for personalized medicine, being able to assess a patient’s risk of developing cardiovascular complications based on their own cells, thus taking into account their own genetic factors. Using the measurement of electrical impedance coupled with human stem cell-derived cardiomyocytes (hSC-CMs) we could confirm the cardiotoxic effects of paclitaxel, also known as Taxol, a microtuble stabilizing drug approved for the treatment of breast, ovarian and lung cancer. In addition, we investigated different combinations of cylophosphamide (CP), doxorubicin (DOX) and 5-Fluorouracil (5F) and found that any combination which included DOX was highly cardiotoxic.
Microtubules are important for cell support, acting as a kind of internal scaffold providing both shapeand an organized structure. Another important role of microtubules is the formation of the mitotic spindle which is critical in cell division. For this reason,compounds which control microtubule dynamics such as Taxol and Vinca alkaloids are important as anti-cancer therapeutics and biological research tools. Other compounds e.g. combretastin A-4 (CA4), have been shown to be powerful inhibitors of tubule polymerization. Until now, the use of such compounds in both biological research and as anti-cancer agentshas been limited because of their non-specificity; their bioactivity cannot be spatially or temporally directed,e.g. against particular tissues or cells. As an anti-cancer agent, CA4 was taken into Phase III clinical trials but was discontinued due to the cardio- or neurotoxic side effects at high doses as healthy organs were affected. The use of light to control the activity of microtubule inhibitors may offer a solution to combat the specificity problem by controlling the activation of the compound using visible light in a spatial, temporal and reversible fashion. The CytoSwitch startup project at the LMU Munich is developing photostatins as anti-cancer agents with reduced side-effects. Furthermore, CytoSwitch will commercialize photostatins as research tools for biological research.
Cardiomyocytes derived from human inducedpluripotent stem cells (hiPSCs) are gaining interest in cardiac safety screening. Given their relative abundance, availability, ease of use and standardized production, they are likely to provide a viable alternative to acutely isolated cardiomyocytes to assess the pro-arrythmic potentials of drug candidates. Although automated patch clamp can provide excellent information about the effects of compounds on cardiac ion channels and possible effects on the cardiac action potential, other techniques, such as impedance, also provide crucial and complementary information about complex physiological parameters such as beat rate, amplitude and duration. The CardioExcyte 96 is a new hybrid screening tool combining impedance (cell contractility) and extracellular field potential (EFP) recordings. These measurements are non-invasive, label-free and have a temporal resolution of 1 ms. The recordings are made from cells within a network thus providing a physiologically relevant environment for measuring drug-induced changes in beat parameters. This hybrid technology addresses the lack of easy-to-use high-throughput screening for in-vitro assays, and permits the reliable investigation of short- and long-term pharmacological effects. Here we present data recorded on the CardioExcyte 96 using Cor.4U hiPSCs from Axiogenesis. The effects of the compounds blebbistatin, E4031 and nifedipine on the impedance and EFP signals are shown.
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are gaining interest in cardiac safety screening. Given their recapitulation of native behavior, availability, ease of use and standardized production, they are likely to provide a viable alternative to acutely isolated cardiomyocytes to assess the pro-arrhythmic potentials of drug candidates. Although automated patch clamp can provide excellent information about the effects of compounds on cardiac ion channels and possible effects on the cardiac action potential, other outputs such as extracellular field potential (EFP) and impedance, also provide crucial and complementary information about complex physiological parameters such as beat rate, amplitude and duration. The CardioExcyte 96 is a new hybrid screening tool combining impedance (cell contractility) and EFP recordings. These measurements are non-invasive, label free and have a temporal resolution of 1 ms. The recordings are made from cells within a network thus providing a physiologically relevant environment for measuring drug-induced changes in contractileparameters. This hybrid technology is a high-throughput screening tool which permits the reliable investigation of short- and long-term pharmacological effects.Here we present data recorded on the CardioExcyte 96 using iCell® Cardiomyocytes2 from Cellular Dynamics International (CDI). When handled according to the manufacture’s instructions, impedance and EFP signals were stable 4 days afterplating and compound effects could be robustly measured and analyzed.
Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coroNaVirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6–3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24–48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are gaining interest in cardiac safety screening. Given their recapitulation of native behavior, availability, ease of use and standardized production, they are likely to provide a viable alternative to acutely isolated cardiomyocytes to assess the pro-arrhythmic potentials of drug candidates. Although automated patch clamp can provide excellent information about the effects of compounds on cardiac ion channels and possible effects on the cardiac action potential, other outputs such as extracellular field potential (EFP) and impedance, also provide crucial and complementary information about complex physiological parameters such as beat rate, amplitude and duration. The CardioExcyte 96 is a hybrid screening tool combining impedance (cell contractility) and EFP recordings. These measurements are non-invasive, label-free and have a temporal resolution of 1 ms. The recordings are made from cells within a network thus providing a physiologically relevant environment for measuring drug-induced changes in contractileparameters. This hybrid technology is an easy-to-use screening tool which permits the reliable investigation of short- and long-term pharmacological effects. Here we present data recorded on the CardioExcyte 96 using Pluricyte® Cardiomyocytes from Ncardia. The effects of the CaV blocker, nifedipine, hERG blockers, dofetilide and E4031, and NaV blocker, mexiletine, on EFP and impedance parameters are shown.
Population aging has led to increased sick sinus syndrome (SSS) incidence; however, no effective and safe medical therapy has been reported thus far. Yixin-Fumai granules (YXFMs), a Chinese medicine granule designed for bradyarrhythmia treatment, can effectively increase SSS patients’ heart rate. Senescence-induced sinoatrial node (SAN) degeneration is an important part of SSS pathogenesis, and older people often show high levels of oxidative stress; reactive oxygen species (ROS) accumulation in the SAN causes abnormal SAN pacing or conduction functions. The current study observed the protective effects of YXFMs on senescent SAN and explored the relationship between the NRF-2/HO-1 pathway, SHOX2, and T-type calcium channels. We selected naturally senescent C57BL/6 mice with bradycardia to simulate SSS; electrocardiography, Masson’s trichrome staining, and DHE staining were used to assess SAN function and tissue damage. Immunofluorescence staining and Western blotting were used to assay related proteins. In vitro, we treated human-induced pluripotent stem cell-derived atrial myocytes (hiPSC-AMs) and mouse atrial myocyte-derived cell line HL-1 with D-galactose to simulate senescent SAN-pacemaker cells. CardioExcyte96 was used to evaluate the pulsatile function of the hiPSC-AMs, and the mechanism was verified by DCFH-DA, immunofluorescence staining, RT-qPCR, and Western blotting. The results demonstrated that YXFMs effectively inhibited senescence-induced SAN hypofunction, and this effect possibly originated from sCaVenging of ROS and promotion of NRF-2, SHOX2, and T-type calcium channel expression. In vitro experiment results indicated that ML385, si-SHOX2, LDN193189, and Mibefradil reversed YXFMs’ effects. Moreover, we, for the first time, found that ROS accumulation may hinder SHOX2 expression; YXFMs can activate SHOX2 through the NRF-2/HO-1 pathway-mediated ROS sCaVenging and then regulate CACNA1G through the SHOX2/BMP4/GATA4/NKX2-5 axis, improve T-type calcium channel function, and ameliorate the SAN dysfunction. Finally, through network pharmacology and molecular docking, we screened for the most stable YXFMs compound that docks to NRF-2, laying the foundation for future studies.
Variants in SCN5A encoding NaV1.5 are associated with cardiac arrhythmias. We aimed to determine the mechanism by which c.638G>A in SCNA5 resulting in p.Gly213Asp (G213D) in NaV1.5 altered Na+ channel function and how flecainide corrected the defect in a family with multifocal ectopic Purkinje-related premature contractions (MEPPC)-like syndrome. Methods and results Five patients carrying the G213D variant were treated with flecainide. Gating pore currents were evaluated in Xenopus laevis oocytes. The 638G>A SCN5A variant was introduced to human-induced pluripotent stem cell (hiPSC) by CRISPR–Cas9 gene editing and subsequently differentiated to cardiomyocytes (hiPSC-CM). Action potentials and sodium currents were measured in the absence and presence of flecainide. Ca2+ transients were measured by confocal microscopy. The five patients exhibited premature atrial and ventricular contractions which were suppressed by flecainide treatment. G213D induced gating pore current at potentials negative to −50 mV. Voltage-clamp analysis in hiPSC-CM revealed the activation threshold of INa was shifted in the hyperpolarizing direction resulting in a larger INa window current. The G213D hiPSC-CMs had faster beating rates compared with wild-type and frequently showed Ca2+ waves and alternans. Flecainide applied to G213D hiPSC-CMs decreased window current by shifting the steady-state inactivation curve and slowed the beating rate. Conclusion The G213D variant in NaV1.5 induced gating pore currents and increased window current. The changes in INa resulted in a faster beating rate and Ca2+ transient dysfunction. Flecainide decreased window current and inhibited INa, which is likely responsible for the therapeutic effectiveness of flecainide in MEPPC patients carrying the G213D variant.
Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β1-adrenoceptors, arrestin-biased signalling via β2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol’s cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through β2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the β-adrenoceptor system.
Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated heart failure (HF) morbidity and mortality in patients with diabetes mellitus (DM). Patients with DCM exhibit subclinical diastolic dysfunction, progression toward systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of patients with DM—with the increased risk of sudden death. However, the molecular underpinnings of this fatal disease remain to be elucidated.
Current in vivo and in vitro models fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate novel and advanced physiological cardiac models for in vitro testing. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells, mixed within optimal alginate/gelatin (Al/Ge) hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 days after printing. Vascular endothelial growth factor (VEGF) promoted endothelial cell branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate for the first time that bioprinted CSs within Al/Ge hydrogels can be used to biofabricate durable, viable and functional human heart tissues for long term in vitro testing.
The regenerative capacity of the heart after myocardial infarction (MI) is limited. Our previous study showed that ectopic introduction of Cdk1/CyclinB1 and Cdk4/CyclinD1 complexes (4F) promotes cardiomyocyte proliferation in 15-20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after MI. Here, we aim to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Also, we aim to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. Temporal bulk and single-cell RNAseq and further biochemical validations of mature hiPS-CMs treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population after 48 h post-infection with 4F, which was associated with sarcomere disassembly and metabolic reprogramming. Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic non-integrating lentivirus (NIL) encoding the 4F; each is driven by a TNNT2 promoter (TNNT2-4F-NIL). TNNT2-4F-NIL or control virus was injected intramyocardially one week after MI in rats or pigs. TNNT2-4F-NIL treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus treated animals four weeks post-injection. In conclusion, the present study provides a mechanistic demonstration of the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors using a novel transient and cardiomyocyte-specific viral construct.
Background: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. Methods: Single nucleus RNA-sequencing (snRNA-seq) of 54,140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA-sequencing and the assay for transposase-accessible chromatin using sequencing (ATAC-seq) were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. Results: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. Conclusions: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.
Duchenne muscular dystrophy (DMD) related cardiomyopathy is the leading cause of early mortality in DMD patients. There is an urgent need to gain a better understanding of the disease molecular pathogenesis and develop effective therapies to prevent the onset of heart failure. In the present study, we used DMD human induced pluripotent stem cells (DMD-hiPSCs) derived cardiomyocytes (CMs) as a platform to explore the active compounds in commonly used Chinese herbal medicine (CHM) herbs. Single CHM herb (DaH, ZK, and CQZ) reduced cell beating rate, decreased cellular ROS accumulation, and improved structure of DMD hiPSC-CMs. Cross-comparison of transcriptomic profiling data and active compound library identified nine active chemicals targeting ROS neutralizing Catalase (CAT) and structural protein vascular cell adhesion molecule 1 (VCAM1). Treatment with Quecetin, Kaempferol, and Vitamin C, targeting CAT, conferred ROS protection and improved contraction; treatment with Hesperidin and Allicin, targeting VCAM1, induced structure enhancement via induction of focal adhesion. Lastly, overexpression of CAT or VCAM1 in DMD hiPSC-CMs reconstituted efficacious effects and conferred increase in cardiomyocyte function. Together, our results provide a new insight in treating DMD cardiomyopathy via targeting of CAT and VCAM1, and serves as an example of translating Bed to Bench back to Bed using a muti-omics approach.
Long noncoding RNAs (lncRNAs) control cardiac gene expression during heart development and disease. It is accordingly plausible for the same lncRNA to regulate both cardiac development, as well as play a role in adult heart disease progression. lncRNA regulators of early cardiomyocyte (CM) lineage commitment have been identified and characterised, however those controlling later CM specification remain unknown.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for genetic models of cardiac diseases. We report an arrhythmia syndrome consisting of Early Repolarization Syndrome (ERS) and Short QT Syndrome (SQTS). The index patient (MMRL1215) developed arrhythmia-mediated syncope after electrocution and was found to carry six mutations. Functional alterations resulting from these mutations were examined in patient-derived hiPSC-CMs. Electrophysiological recordings were made in hiPSC-CMs from MMRL1215 and healthy controls. ECG analysis of the index patient showed slurring of the QRS complex and QTc = 326 ms. Action potential (AP) recordings from MMRL1215 myocytes showed slower spontaneous activity and AP duration was shorter. Field potential recordings from MMRL1215 hiPSC-CMs lack a “pseudo” QRS complex suggesting reduced inward current(s). Voltage clamp analysis of ICa showed no difference in the magnitude of current. Measurements of INa reveal a 60% reduction in INa density in MMRL1215 hiPSC-CMs. Steady inactivation and recovery of INa was unaffected. mRNA analysis revealed ANK2 and SCN5A are significantly reduced in hiPSC-CM derived from MMRL1215, consistent with electrophysiological recordings. The polygenic cause of ERS/SQTS phenotype is likely due to a loss of INa due to a mutation in PKP2 coupled with and a gain of function in IK,ATP due to a mutation in ABCC9.
Many small molecule kinase inhibitors (SMKIs) used to fight cancer have been associated with cardiotoxicity in the clinic. Therefore, preventing their failure in clinical development is a priority for preclinical discovery. Our study focused on the integration and concurrent measurement of ATP, apoptosis dynamics and functional cardiac indexes in human stem cell-derived cardiomyocytes (hSC-CMs) to provide further insights into molecular determinants of compromised cardiac function. Ten out of the fourteen tested SMKIs resulted in a biologically relevant decrease in either beating rate or base impedance (cell number index), illustrating cardiotoxicity as one of the major safety liabilities of SMKIs, in particular of those involved in the PI3K–AKT pathway. Pearson's correlation analysis indicated a good correlation between the different read-outs of functional importance. Therefore, measurement of ATP concentrations and apoptosis in vitro could provide important insight into mechanisms of cardiotoxicity. Detailed investigation of the cellular signals facilitated multi-parameter evaluation allowing integrative assessment of cardiomyocyte behavior. The resulting correlation can be used as a tool to highlight changes in cardiac function and potentially to categorize drugs based on their mechanisms of action.
Background: Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated hospitalization and mortality in patients with diabetes mellitus (DM). DCM patients exhibit subclinical diastolic dysfunction, progression towards systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of DM patients – with the increased risk of sudden death. However, the molecular underpinnings of hypoglycemia-aggravated DCM remain to be elucidated. Methods and Results: Here we used the established streptozotocin-induced type 1 diabetic cardiomyopathy (T1 DCM) murine model to investigate how hypoglycemia aggravates DCM progression. We showed that chronic hyper- or hypoglycemic challenges dampened cardiac diastolic function in vivo as well as myocardial contractility and calcium handling in isolated cardiomyocytes. Similar contractile defects were recapitulated using neonatal mouse ventricular myocytes (NMVMs) under glucose fluctuation challenges. Using immunoprecipitation mass spectrometry, we identified and validated that hypoglycemia challenge activates the MEK/ERK and PI3K/Akt pathways which results in Cx43 phosphorylation by Src protein in cardiomyocytes. Cx43 dissociation and accumulation at mitochondrial inner membrane was confirmed both in human and murine cardiomyocytes. To determine causality, we overexpressed a mitochondrial targeting Cx43 (mtCx43) using AAV2. At normal blood glucose levels, mtCx43 overexpression recapitulated cardiomyocytes contractile deficiencies, cardiac diastolic dysfunction as well as aberrant electrophysiology both in vitro as well as in vivo. Conclusions: Hypoglycemia challenges results in the accumulation of mtCx43 through the MEK/ERK/Src and PI3K/Akt/Src pathways. We provide evidence that Cx43 mislocalization is present in diabetes mellitus patient hearts, STZ-induced DCM murine model, and glucose fluctuation challenged NMVMs. Mechanistically, we demonstrated that mtCx43 is responsible for inducing aberrant contraction and disrupts electrophysiology in cardiomyocytes and our results support targeting of mtCx43 in treating DCM. Translational perspective: Severe hypoglycemia drives cardiac dysfunction and aggressive ventricular arrhythmias in patients with DCM that leads to sudden cardiac death. Here we demonstrate that Cx43 mislocalization to mitochondria occurs upon hypoglycemic challenge and mtCx43 accumulation is responsible for cardiac diastolic dysfunction, cardiomyocyte contractile dysfunction, and aberrant electrophysiology in vivo. Our findings give support for therapeutic targeting of MEK/ERK/Src and PI3K/Akt/Src pathways to prevent mtCx43-driven DCM.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) has been considered as one of the most important causes of children’s sudden cardiac death. Mutations in the genes for RyR2 and CASQ2, two mainly subtypes of CPVT, have been identified. However, the mutation in the gene of TECRL was rarely reported, which could be another genetic cause of CPVT. We evaluated myocardial contractility, electrophysiology, calcium handling in Tecrl knockout (Tecrl KO) mice and human induced pluripotent stem cell-derived cardiomyocytes. Immediately after epinephrine plus caffeine injection, Tecrl KO mice showed much more multiple premature ventricular beats and ventricular tachycardia. The Tecrl KO mice demonstrate CPVT phenotypes. Mechanistically, intracellular calcium amplitude was reduced, while time to baseline of 50 was increased in acute isolated cardiomyocytes. RyR2 protein levels decreased significantly upon cycloheximide treatment in TECRL deficiency cardiomyocytes. Overexpression of TECRL and KN93 can partially reverse cardiomyocytes calcium dysfunction, and this is p-CaMKII/CaMKII dependent. Therefore, a new CPVT mouse model was constructed. We propose a previously unrecognized mechanism of TECRL and provide support for the therapeutic targeting of TECRL in treating CPVT.
Anthracyclines are a class of chemotherapy drugs that are highly effective for the treatment of human cancers, but their clinical use is limited by associated dose-dependent cardiotoxicity. The precise mechanisms by which individual anthracycline induces cardiotoxicity are not fully understood. Human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) are emerging as a physiologically relevant model to assess drugs cardiotoxicity. Here, we describe an assay platform by coupling hiPSC-CMs and impedance measurement, which allows real-time monitoring of cardiomyocyte cellular index, beating amplitude, and beating rate. Using this approach, we have performed comparative studies on a panel of four anthracycline drugs (doxorubicin, epirubicin, idarubicin, and daunorubicin) which share a high degree of structural similarity but are associated with distinct cardiotoxicity profiles and maximum cumulative dose limits. Notably, results from our hiPSC-CMs impedance model (dose-dependent responses and EC50 values) agree well with the recommended clinical dose limits for these drugs. Using time-lapse imaging and RNAseq, we found that the differences in anthracycline cardiotoxicity are closely linked to extent of cardiomyocyte uptake and magnitude of activation/inhibition of several cellular pathways such as death receptor signaling, ROS production, and dysregulation of calcium signaling. The results provide molecular insights into anthracycline cardiac interactions and offer a novel assay system to more robustly assess potential cardiotoxicity during drug development.
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of humanInduced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Cardiac maturation lays the foundation for postnatal heart development and disease, yet little is known about the contributions of the microenvironment to cardiomyocyte maturation. By integrating single-cell RNA-sequencing data of mouse hearts at multiple postnatal stages, we construct cellular interactomes and regulatory signaling networks. Here we report switching of fibroblast subtypes from a neonatal to adult state and this drives cardiomyocyte maturation. Molecular and functional maturation of neonatal mouse cardiomyocytes and human embryonic stem cell-derived cardiomyocytes are considerably enhanced upon co-culture with corresponding adult cardiac fibroblasts. Further, single-cell analysis of in vivo and in vitro cardiomyocyte maturation trajectories identify highly conserved signaling pathways, pharmacological targeting of which substantially delays cardiomyocyte maturation in postnatal hearts, and markedly enhances cardiomyocyte proliferation and improves cardiac function in infarcted hearts. Together, we identify cardiac fibroblasts as a key constituent in the microenvironment promoting cardiomyocyte maturation, providing insights into how the manipulation of cardiomyocyte maturity may impact on disease development and regeneration.
Ryanodine receptors are responsible for the massive release of calcium from the 25 sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 26 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the 27 effect of MCa and its analogue MCaE12A on isolated cardiac ryanodine receptor (RyR2), and 28 showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations 29 promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ 30 transients, calcium sparks and contraction 31 on cardiomyocytes isolated from adult rats or differentiated from human induced 32 pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes 33 and promotes abnormal opening of RyR2. We also investigated the effect of MCaE12A on 34 pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A 35 improves pacemaker activity of sinus node cells obtained from mice lacking L-type CaV1.3 36 channel, or following selective pharmacologic inhibition of calcium influx via CaV1.3. Our 37 results identify MCaE12A as a high affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca 38 2+ homeostasis and 39 dynamic of cardiac cells.
OBJECTIVE: Metformin, introduced in 1957, is widely used as an anti-diabetic drug and has considerable benefits in cardiovascular disease reportedly, dependent or independent on its glucose-lowering effects. Aim of this study was to investigate the effect of metformin on gap junction and the inducibility of AF. METHODS: Beagle dogs were subjected to acute or chronic pacing at right atrial appendage by a pacemaker to develop an AF model and electrophysiological parameters were measured. In vitro study, a cell fast pacing model was developed by CardioExcyte 96. We performed Western blot, histology immunohistochemical staining and electron microscopy to detect the effect of metformin. RESULTS: In chronic AF model, the inducibility and duration of AF increased obviously after pacing for 6 weeks compared with sham-operated group (Inducibility, 3.33 ± 5.77 vs. 85.33 ± 7.89%, P0.0001; Duration, 0.8 ± 0.84 vs. 11 ± 2.67 ms, P0.0001). Effective refractory periods (ERP) decreased at left and right left atrium and atrial appendages compared with sham-operated group (123.95 ± 6.57 vs. 89.96 ± 7.39 ms P0.0001). Metformin attenuated the pacing-induced increase in EPR (89.96 ± 7.39 vs. 105.83 ± 7.45 ms, P0.05), AF inducibility and AF duration (Inducibility, 85.33 ± 7.89 vs. 64.17 ± 7.36%, Duration, 11 ± 2.67 vs. 8.62 ± 1.15 ms, P0.05). The expression of Cx43 shows a significant downregulation(about 38%, P0.001) after chronic pacing and treating with metformin could alleviate this decrease(P0.01). However, the effect of metformin in acute pacing model is limited. The immunohistochemical staining of cardiac tissue also shown that there is more lateralized Cx43 under pacing condition (87.67 ± 2.52 vs. 60.8 ± 9.13%, P0.005). These pacing-induced lateralize Cx43 could be alleviated by the metformin (48.4 ± 8.62 vs. 60.8 ± 9.13%, P0.05). Additionally, metformin could affect the interactions of ZO-1 with p-Src/Cx43 via decrease the abnormal cAMP level after pacing (84.04 ± 4.58 vs. 69.34 ± 4.5 nmol/L, P0.001). CONCLUSIONS:Metformin could alleviate the vulnerability of AF and attenuate the downregulation of gap junction under pacing condition via AMPK pathway and decreasing the P-Src level.
Left ventricular noncompaction cardiomyopathy (LVNC) is a hereditary heart disease characterized by an excessive trabecular meshwork of deep intertrabecular recesses within the ventricular myocardium. The guidelines for management of LVNC patients aim to improve quality of life by preventing cardiac heart failure. However, the mechanism underlying LVNC-associated heart failure remains poorly understood.
IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, KV11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities.
Advancing maturation of stem cell‐derived cardiac muscle represents a major barrier to progress in cardiac regenerative medicine. Cardiac muscle maturation involves a myriad of gene, protein, and cell‐based transitions, spanning across all aspects of cardiac muscle form and function. We focused here on a key developmentally controlled transition in the cardiac sarcomere, the functional unit of the heart. Using a gene‐editing platform, human induced pluripotent stem cell (hiPSCs) were engineered with a drug‐inducible expression cassette driving the adult cardiac troponin I (cTnI) regulatory isoform, a transition shown to be a rate‐limiting step in advancing sarcomeric maturation of hiPSC cardiac muscle (hiPSC‐CM) toward the adult state. Findings show that induction of the adult cTnI isoform resulted in the physiological acquisition of adult‐like cardiac contractile function in hiPSC‐CMs in vitro. Specifically, cTnI induction accelerated relaxation kinetics at baseline conditions, a result independent of alterations in the kinetics of the intracellular Ca2+ transient. In comparison, isogenic unedited hiPSC‐CMs had no cTnI induction and no change in relaxation function. Temporal control of adult cTnI isoform induction did not alter other developmentally regulated sarcomere transitions, including myosin heavy chain isoform expression, nor did it affect expression of SERCA2a or phospholamban. Taken together, precision genetic targeting of sarcomere maturation via inducible TnI isoform switching enables physiologically relevant adult myocardium‐like contractile adaptations that are essential for beat‐to‐beat modulation of adult human heart performance. These findings have relevance to hiPSC‐CM structure‐function and drug‐discovery studies in vitro, as well as for potential future clinical applications of physiologically optimized hiPSC‐CM in cardiac regeneration/repair.
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation(false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Doxorubicin is an important anticancer drug in the clinic. Unfortunately, it causes cumulative and dose-dependent cardiotoxic side effects. As the population of cancer survivors who have been exposed to treatment continues to grow, there is increased interest in assessing the long-term cardiac effects of doxorubicin and understanding the underlying mechanisms at play. In this study, we investigated doxorubicin-induced transcriptomic changes using RNA-sequencing (RNAseq) and a cellular model comprised of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Analyses of predicted upstream regulators identified the p53 protein as a key regulator of transcriptomic changes induced by doxorubicin. Clustering and pathway analyses showed that increased death receptor (DR) expression and enrichment of the extrinsic apoptotic pathway are significantly associated with doxorubicin-induced cardiotoxicity. Increased expression of p53 and DRs were confirmed via immunoblotting. Our data pinpoints increased DR expression as an early transcriptomic indicator of cardiotoxicity, suggesting that DR expression might function as a predictive biomarker for cardiac damage.
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) provide an in vitro model of the human myocardium. Complex 3D scaffolded culture methods improve the phenotypical maturity of iPSC-CMs, although typically at the expense of throughput. We have developed a novel, scalable approach that enables the use of iPSC-CM 3D spheroid models in a label-free readout system in a standard 96-well plate-based format. Spheroids were accurately positioned onto recording electrodes using a magnetic gold–iron oxide nanoparticle approach. Remarkably, both contractility (impedance) and extracellular field potentials (EFPs) could be detected from the actively beating spheroids over long durations and after automated dosing with pharmacological agents. The effects on these parameters of factors, such as co-culture (including human primary cardiac fibroblasts), extracellular buffer composition, and electrical pacing, were investigated. Beat amplitudes were increased greater than 15-fold by co-culture with fibroblasts. Optimization of extracellular Ca2+ fluxes and electrical pacing promoted the proper physiological response to positive inotropic agonists of increased beat amplitude (force) rather than the increased beat rate often observed in iPSC-CM studies. Mechanistically divergent repolarizations in different spheroid models were indicated by their responses to BaCl2 compared with E-4031. These studies demonstrate a new method that enables the pharmacological responses of 3D iPSC-CM spheroids to be determined in a label-free, standardized, 96-well plate-based system. This approach could have discovery applications across cardiovascular efficacy and safety, where parameters typically sought as readouts of iPSC-CM maturity or physiological relevance have the potential to improve assay predictivity.
The Raf kinase inhibitor protein (RKIP) activates β-adrenoceptors (β-AR) and thereby induces a well-tolerated cardiac contractility and prevents heart failure in mice. Different to RKIP-mediated β-AR activation, chronic activation of β-AR by catecholamines was shown to be detrimental for the heart. RKIP is an endogenous inhibitor of G protein coupled receptor kinase 2 (GRK2); it binds GRK2 and thereby inhibits GRK2 mediated β-AR phosphorylation and desensitization. Here, we evaluate RKIP-mediated effects on β-AR to explore new strategies for β-AR modulation. Co-immunoprecipitation assays and pull-down assays revealed subtype specificity of RKIP for the cardiac GRK isoforms GRK2 and GRK3 – not GRK5 – as well as several RKIP binding sites within their N-termini (GRK21−185 and GRK31−185). Overexpression of these N-termini prevented β2-AR phosphorylation and internalization, subsequently increased receptor signaling in HEK293 cells and cardiomyocyte contractility. Co-immunoprecipitation assays of β2-AR with these N-terminal GRK fragments revealed a direct interaction suggesting a steric interference of the fragments with the functional GRK-receptor interaction. Altogether, N-termini of GRK2 and GRK3 efficiently simulate RKIP effects on β-AR signaling in HEK293 cells and in cardiomyocytes by their binding to β2-AR and, thus, provide important insights for the development of new strategies to modulate β2-AR signaling.
Background Commercial genetic testing for Long QT Syndrome (LQTS) has rapidly expanded, but the inability to accurately predict whether a rare variant is pathogenic has limited its clinical benefit. Novel missense variants are routinely reported as “Variant of Unknown Significance (VUS)” and cannot be used to screen family members at-risk for sudden cardiac death. Better approaches to determine pathogenicity of VUS are needed. Objective To rapidly determine the pathogenicity of a CACNA1C variant reported by commercial genetic testing as a VUS using a patient-independent induced pluripotent stem cell (hiPSC) model. Methods Using CRISPR/Cas9 genome editing, CACNA1C-p.N639T was introduced into a previously-established hiPSC from an unrelated healthy volunteer, thereby generating a patient-independent hiPSC model. Three independent heterozygous N639T hiPSC lines were generated and differentiated into cardiomyocytes (CM). Electrophysiological properties of N639T hiPSC-CM were compared to those of isogenic and population control hiPSC-CM by measuring the extracellular field potential (EFP) of 96-well hiPSC-CM monolayers, and by patch-clamp. Results Significant EFP prolongation was observed only in optically-stimulated but not in spontaneously-beating N639T hiPSC-CM. Patch clamp studies revealed that N639T prolonged the ventricular action potential by slowing voltage-dependent inactivation of CaV1.2 currents. Heterologous expression studies confirmed the effect of N639T on CaV1.2 inactivation. Conclusion The patient-independent hiPSC model enabled rapid generation of functional data to support reclassification of a CACNA1C VUS to “likely pathogenic”, thereby establishing a novel LQTS type 8 mutation. Furthermore, our results indicate the importance of controlling beating rates to evaluate functional significance of LQTS VUS in high-throughput hiPSC-CM assays.
Particulate matter (PM) is one of the most important environmental issues worldwide, which is associated with not only pulmonary but also cardiovascular diseases. However, the underlying biological mechanisms of PM related cardiovascular dysfunction remained poorly defined, especially mediated by the pathway of direct impact on vascular and heart. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide an ideal platform for studying PM-exposed cellular diseases model in vitro. Here, we investigated the direct effects of particulate matter 2.5 (PM2.5) on hiPSC-CMs and the potential mechanism at non-cytotoxic concentrations. Cell viability, contraction amplitude and spontaneous beating rate of iPSC-CMs after direct exposure to PM2.5 showed that the concentration of lower than 100 µg/ml would not lead to cytotoxic effects. Calcium-mediated optical mapping illustrated that there was a concentration-dependent reduction in quantification of calcium transient amplitude and an increase in the incidence of early after depolarizations due to PM2.5 treatment. Furthermore, there were dramatic dosage-dependent shortening in action potential duration and decrease in L-type calcium peak current density. The Ingenuity Pathway Analysis of our transcriptive study indicated that PM2.5 exposure preferentially influenced the expression of genes involved in calcium signaling. Among them the up-regulation of TRPC3 potentially played an important role in the electrophysiological alteration of PM2.5 on hiPSC-CMs, which could be ameliorated by pretreatment with pyr3, the inhibitor of TRPC3. In conclusion, our results demonstrated that exposure to PM2.5 was capable of increasing propensity to cardiac arrhythmias which could be attenuated with TRPC3 inhibition.
BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for many applications including safety pharmacology. However, a deficiency or complete absence of several K+ currents suggests repolarization reserve is low in hiPSC-CMs. We determined whether a dual Ito and IKr activator can improve repolarization reserve in hiPSC-CMs resulting in a more electrophysiologically mature phenotype. METHODS AND RESULTS: Human iPSC were maintained on growth factor and differentiated into the cardiac phenotype by addition of selective Wnt molecules. Current and voltage clamp recordings in single cells were made using patch electrodes. Extracellular field potentials were made using a microelectrode array on hiPSC monolayers. Action potential recordings from hiPSC-CMs following application of an IKr inhibitor resulted in depolarization of the membrane potential and prolongation of the APD. A flattening of the T-wave was noted on the pseudo-ECG. In contrast, application of the IKr and Ito agonist, NS3623, resulted in hyperpolarization of the membrane, slowing of the spontaneous rate and shortening of the APD. Voltage clamp recording showed a significant increase in IKr; no enhancement of Ito in hiPSC-CMs was noted. AP clamp experiments revealed that IKr plays a role in both phase 3 repolarization and phase 4 depolarization. mRNA analysis revealed that KCNH2 is abundantly expressed in hiPSC-CM, consistent with electrophysiological recordings. CONCLUSIONS: Although NS3623 is a dual Ito and IKr activator in ventricular myocytes, application of this compound to hiPSC-CMs enhanced only IKr and no effect on Ito was noted. Our results suggest IKr enhancement can improve repolarization reserve in this cell type. The disconnect between a dramatic increase in Ito in adult myocytes versus the lack of effect in hiPSC-CMs suggest that the translation of pharmacological effects in hiPSC-CM to adult myocytes should be viewed with caution.
The main adverse effect of tyrosine kinase inhibitors, such as sunitinib, is cardiac contractile dysfunction; however, the molecular mechanisms of this effect remain largely obscure. MicroRNAs (miRNAs) are key regulatory factors in both cardiovascular diseases and the tyrosine kinase pathway. Therefore, we analyzed the differential expression of miRNAs in the myocardium in mice after exposure to sunitinib using miRNA microarray. A significant downregulation of miR-146a was observed in the myocardium of sunitinib-treated mice, along with a 20% decrease in left ventricle ejection fraction (LVEF). The downregulation of miR-146a was further validated by RT-qPCR. Among the potential targets of miR-146a, we focused on Pln and Ank2, which are closely related to cardiac contractile dysfunction. Results of luciferase reporter assay confirmed that miR-146a directly targeted the 3' untranslated region of Pln and Ank2. Significant upregulation of PLN and ANK2 at the mRNA and protein levels was observed in the myocardium of sunitinib-treated mice. Cardiac-specific overexpression of miR-146a prevented the deteriorate effect of SNT on calcium transients, thereby alleviating the decreased contractility of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). SiRNA knockdown of PLN or ANK2 prevented sunitinib-induced suppression of contractility in hiPSC-CMs. Therefore, our in vivo and in vitro results showed that sunitinib downregulated miR-146a, which contributes to cardiac contractile dysfunction by regulating the downstream targets PLN and ANK2, and that upregulation of miR-146a alleviated the inhibitory effect of SNT on cardiac contractility. Thus, miR-146a could be a useful protective agent against sunitinib-induced cardiac dysfunction.
This book is dedicated to label-free, non-invasive monitoring of cell-based assays and it comprises the most widely applied techniques. Each approach is described and critically evaluated by an expert in the field such that researchers get an overview on what is possible and where the limitations are. The book provides the theoretical basis for each technique as well as the most successful and exciting applications. Label-free bioanalytical techniques have been known for a long time as valuable tools to monitor adsorption processes at the solid-liquid interface in general – and biomolecular interaction analysis (BIA) in particular. The underlying concepts have been progressively transferred to the analysis of cell-based assays. The strength of these approaches is implicitly given with the name 'label-free': the readout is independent of any label, reagent or additive that contaminates the system under study and potentially affects its properties. Thus, label-free techniques provide an unbiased analytical perspective in the sense that the sample is not manipulated by additives but pure. They are commonly based on physical principles and read changes in integral physical properties of the sample like refractive index, conductivity, capacitance or elastic modulus to mention just a few. Even though it is not implied in the name, label-free approaches usually monitor the cells under study non-invasively meaning that the amplitude of the signal (e.g. electric field strength, mechanical elongation) that is used for the measurement is too low to interfere or affect. In contrast to label-based analytical techniques that are commonly restricted to a single reading at a predefined time point, label-free approaches allow for a continuous observation so that the dynamics of the biological system or reaction become accessible.
BACKGROUND AND PURPOSE: Oxycodone is a potent semi-synthetic opioid that is commonly used for the treatment of severe acute and chronic pain. However, treatment with oxycodone can lead to cardiac electrical changes, such as long-QT syndrome, potentially inducing sudden cardiac arrest. Here, we investigate whether the cardiac side effects of oxycodone can be explained by modulation of the cardiac sodium channel NaV1.5. EXPERIMENTAL APPROACH: Heterologously expressed NaV1.5, NaV1.7 or NaV1.8 were used for whole-cell patch-clamp electrophysiology. A variety of voltage-clamp protocols was used to test the effect of oxycodone on different channel gating modalities. Human stem cell-derived cardiomyocytes were used to measure the effect of oxycodone on cardiomyocyte beating. KEY RESULTS: Oxycodone concentration-dependently and use-dependently inhibits NaV1.5 with an IC50 of 483.2 μM. In addition, oxycodone slows recovery of NaV1.5 from fast inactivation and increases slow inactivation. At high concentrations, these effects lead to a reduced beat rate in cardiomyocytes and to arrhythmia. In contrast, no effects could be observed on NaV1.7 or NaV1.8. CONCLUSION AND IMPLICATIONS: Oxycodone leads to an accumulation of NaV1.5 in inactivated states with a slow time course. While the concentrations needed to elicit cardiac arrhythmia in vitro are comparably high, some patients under long-term treatment with oxycodone as well as drug abusers and addicts might suffer from severe cardiac side effects induced by the slow effects of oxycodone on NaV1.5.
Background Cardiotoxicity remains an important concern in drug discovery and clinical medication. Meanwhile, Sophora tonkinensis Gapnep. (S. tonkinensis) held great value in the clinical application of traditional Chinese medicine, but cardiotoxic effects were reported, with matrine, oxymatrine, cytisine, and sophocarpine being the primary toxic components. Methods In this study, impedance and extracellular field potential (EFP) of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were recorded using the cardio non-labeled cell function analysis and culture system (CardioExcyte 96). The effects of matrine, oxymatrine, cytisine, and sophocarpine (2, 10, 50 μM) on cell viability; level of lactate dehydrogenase (LDH), creatine kinase MB isoenzyme (CK-MB), and cardiac troponin I (CTn-I); antioxidant activities; production of reactive oxygen species (ROS) and malondialdehyde (MDA); and disruption of intracellular calcium homeostasis were also added into the integrated assessment. Results The results showed that matrine and sophocarpine dose-dependently affected both impedance and EFP, while oxymatrine and cytisine altered impedance significantly. Our study also indicated that cardiotoxicity of matrine, oxymatrine, cytisine, and sophocarpine was related to the disruption of calcium homeostasis and oxidative stress. Four alkaloids of S. tonkinensis showed significant cardiotoxicity with dose dependence and structural cardiotoxicity synchronized with functional changes of cardiomyocytes. Conclusions This finding may provide guidance for clinical meditation management. Furthermore, this study introduced an efficient and reliable approach, which offers alternative options for evaluating the cardiotoxicity of the listed drugs and novel drug candidates.
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2016 Safety Pharmacology Society (SPS), Canadian Society of Pharmacology and Therapeutics (CSPT), and Japanese Safety Pharmacology Society (JSPS) joint meeting held in Vancouver, B.C., Canada. This issue of JPTM continues the tradition of providing a publication summary of articles primarily presented at the joint meeting with direct bearing on the discipline of SP. As the regulatory landscape is expected to evolve with revision announced for the existing guidance document on non-clinical proarrhythmia risk assessment (ICHS7B) there is also imminent inception of the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative. Thus, the field of SP is dynamically progressing with characterization and implementation of numerous alternative non-clinical safety models. Novel method development and refinement in all areas of the discipline are reflected in the content.
Modelling disease with hPSCs is hindered because the impact on cell phenotype from genetic variability between individuals can be greater than from the pathogenic mutation. While ‘footprint-free’ Cas9/CRISPR editing solves this issue, existing approaches are inefficient or lengthy. Here, a simplified PiggyBac strategy shortened hPSC editing by 2 weeks and required one round of clonal expansion and genotyping rather than two, with similar efficiencies to the longer conventional process. Success was shown across 4 cardiac-associated loci (ADRB2, GRK5, RYR2, ACTC1) by genomic cleavage and editing efficiencies of 8-93% and 8-67%, respectively, including mono- and/or bi-allelic events. Pluripotency was retained, as was differentiation into high purity cardiomyocytes (CMs; 88-99%). Using the GRK5 isogenic lines as an exemplar, chronic stimulation with the b-adrenoceptor agonist, isoprenaline, reduced beat rate in hPSC-CMs expressing GRK5-Q41 but not GRK5-L41; this was reversed by the b-blocker, propranolol. This simplified, footprint-free approach will be useful for mechanistic studies.
Introduction: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines.Methods: Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed.Results: Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values.Discussion: With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.
Background Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known.ObjectivesTo study the effects of the TnT-I79N mutation in human cardiomyocytes. Methods Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. Results Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. Conclusions The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential.
Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na+, Ca2+ and K+ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.
Background: Long-term ventricular pacing has deleterious effects and becomes more significant when cumulative percent ventricular pacing (Cum%VP) exceeds 40% of time. However, cellular disturbances and pathways by which pacing leads to myocardial disorders are not well understood. Attempts to resolve these questions have been hampered by difficulties in obtaining human cardiac tissue and the inability to build a longer-lasting (lasting longer than weeks) pacing model in vitro. Methods: Human induced pluripotent stem cell-derived ventricular cardiomyocytes (VCMs) were cultured in the presence of electrical stimulation for 2 weeks. Quantitative structural and electrophysiological analyses were used to define the functional disturbances of pacing. Results: Compared to controls, paced VCMs exhibited a remarkable reduction in the contractile protein expression, an increased apoptosis ratio and electrophysiological remodelling in a Cum%VP-dependent manner. Investigation of the protein expression levels revealed that long-term pacing universally activated both ER stress and downstream calpain. Moreover, the inhibition of calpain attenuated the adverse effects on the structural remodelling and increased the ICa, L in paced VCMs. Conclusions: The results demonstrated that pacing VCMs for 2 weeks in vitro led to a series of structural and electrophysiological dysfunctions. The increased ER stress and downstream calpain could be a central mechanism underlying the disease pathogenesis. This finding could represent a new therapeutic target in the management of long-term pacing patients.
Current in vitro approaches to cardiac safety testing typically focus on mechanistic ion channel testing to predict in vivo proarrhythmic potential. Outside of the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, structural and functional cardiotoxicity related to chronic dosing effects are of great concern as these effects can impact compound attrition. Development and implementation of an in vitro cardiotoxicity screening platform that effectively identifies these liabilities early in the discovery process should reduce costly attrition and decrease preclinical development time. Impedence platforms have the potential to accurately identify structural and functional cardiotoxicity and have sufficient throughput to be included in a multi-parametric optimization approach. Human induced pluripotent stem cell cardiomyocytes (hIPSC-CMs) have demonstrated utility in cardiac safety and toxicity screening. The work described here leverages these advantages to assess the predictive value of data generated by two impedance platforms. The response of hIPSC-CMs to compounds with known or predicted cardiac functional or structural toxicity was determined. The compounds elicited cardiac activities and/or effects on “macro” impedance often associated with overt structural or cellular toxicity, detachment, or hypertrophy. These assays correctly predicted in vivo cardiotox findings for 81% of the compounds tested and did not identify false positives. In addition, internal or literature Cmax values from in vivo studies correlated within 4 fold of the in vitro observations. The work presented here demonstrates the predictive power of impedance platforms with hIPSC-CMs and provides a means toward accelerating lead candidate selection by assessing preclinical cardiac safety earlier in the drug discovery process.
Measurement of contractility using impedance is a novel method for gaining information about a drug candidate’s potential to disturb cardiac cell contraction. The impedance signal is recorded from a monolayer of cardiac cells, most commonly derived from human-induced pluripotent stem cells (hiPSCs), which are becoming an attractive model for safety testing, especially in the light of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative introduced in 2013. The goal of this initiative is, in part, to standardize assays, targets, and cell types but also to evaluate the potential of new technologies, in this context, such as impedance. The CardioExcyte 96 is a hybrid system that combines the impedance readout (a measure of cell contractility) with extracellular field potential (EFP) recordings. This chapter focuses on cell handling of hiPSC cardiomyocytes (CMs) and the short- and long-term investigation into pharmacological effects of a wide range of pharmacological agents, including flecainide, nifedipine, isoproterenol, and E4031 using the CardioExcyte 96.
Drug–drug interactions pose a difficult drug safety problem, given the increasing number of individuals taking multiple medications and the relative complexity of assessing the potential for interactions. For example, sofosbuvir-based drug treatments have significantly advanced care for hepatitis C virus-infected patients, yet recent reports suggest interactions with amiodarone may cause severe symptomatic bradycardia and thus limit an otherwise extremely effective treatment. Here, we evaluated the ability of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) to recapitulate the interaction between sofosbuvir and amiodarone in vitro, and more generally assessed the feasibility of hiPSC-CMs as a model system for drug–drug interactions. Sofosbuvir alone had negligible effects on cardiomyocyte electrophysiology, whereas the sofosbuvir-amiodarone combination produced dose-dependent effects beyond that of amiodarone alone. By comparison, GS-331007, the primary circulating metabolite of sofosbuvir, had no effect alone or in combination with amiodarone. Further mechanistic studies revealed that the sofosbuvir-amiodarone combination disrupted intracellular calcium (Ca2+) handling and cellular electrophysiology at pharmacologically relevant concentrations, and mechanical activity at supra-pharmacological (30x Cmax) concentrations. These effects were independent of the common mechanisms of direct ion channel block and P-glycoprotein activity. These results support hiPSC-CMs as a comprehensive, yet scalable model system for the identification and evaluation of cardioactive pharmacodynamic drug–drug interactions.
Introduction While extracellular field potential (EFP) recordings using multi-electrode arrays (MEAs) are a well-established technique for monitoring changes in cardiac and neuronal function, impedance is a relatively unexploited technology. The combination of EFP, impedance and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has important implications for safety pharmacology as functional information about contraction and field potentials can be gleaned from human cardiomyocytes in a beating monolayer. The main objectives of this study were to demonstrate, using a range of different compounds, that drug effects on contraction and electrophysiology can be detected using a beating monolayer of hiPSC-CMs on the CardioExcyte 96. Methods hiPSC-CMs were grown as a monolayer on NSP-96 plates for the CardioExcyte 96 (Nanion Technologies) and recordings were made in combined EFP and impedance mode at physiological temperature. The effect of the hERG blockers, E4031 and dofetilide, hERG trafficking inhibitor, pentamidine, β-adrenergic receptor agonist, isoproterenol, and calcium channel blocker, nifedipine, was tested on the EFP and impedance signals. Results Combined impedance and EFP measurements were made from hiPSC-CMs using the CardioExcyte 96 (Nanion Technologies). E4031 and dofetilide, known to cause arrhythmia and Torsades de Pointes (TdP) in humans, decreased beat rate in impedance and EFP modes. Early afterdepolarization (EAD)-like events, an in vitro marker of TdP, could also be detected using this system. Isoproterenol and nifedipine caused an increase in beat rate. A long-term study (over 30 h) of pentamidine, a hERG trafficking inhibitor, showed a concentration and time-dependent effect of pentamidine. Discussion In the light of the new Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative to improve guidelines and standardize assays and protocols, the use of EFP and impedance measurements from hiPSCs may become critical in determining the proarrhythmic risk of potential drug candidates. The combination of EFP offering information about cardiac electrophysiology, and impedance, providing information about contractility from the same area of a synchronously beating monolayer of human cardiomyocytes in a 96-well plate format has important implications for future cardiac safety testing.
Existing methods to stimulate neural activity include electrical optical and chemical techniques. They have enabled the development of novel therapies that are used in clinical settings, in addition to helping understand aspects of neural function and disease mechanisms. Despite their beneficial impact, these approaches are fundamentally limited. Electrical stimulation is invasive, requiring direct contact with the target of interest. Inserting electrodes into the brain may lead to inflammation, bleeding, cell death, and local cytokine concentration increases in microglia that precipitate astrocyte formation around the electrodes that, in turn, reduce long-term effectiveness. In addition, it may have non-specific effects depending on the electric field generated by the electrodes and the stimulation parameters used. Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (tMS) are new and non-invasive, yet they have poor spatial resolution on the order of 1 cm. Furthermore, approaches combining genetic tools with light or small molecules achieve cellular specificity. Optogenetics, which involves the use of light and genetically encoded membrane proteins, has enabled elucidation of cellular circuits in animal models. However, it remains an invasive technique and applications are limited by the depth of penetration of light in tissue. In contrast, chemogenetics, using small molecule sensitive designer receptors, is limited by poor temporal resolution and is unfortunately impractical for many neural applications that require millisecond response times
Reduced haloperidol (1) was previously reported to act as a potent sigma-1 receptor (S1R) ligand with substantially lower affinity to the dopamine D2 receptor (D2R) compared to haloperidol. It was also found to facilitate brain-derived neurotrophic factor (BDNF) secretion from astrocytic glial cell lines in a sigma-1 receptor (S1R)-dependent manner. Although an increase in BDNF secretion may have beneficial effects in some neurological conditions, the therapeutic utility of reduced haloperidol (1) is limited because it can be oxidized back to haloperidol in the body, a potent dopamine D2 receptor antagonist associated with well-documented adverse effects. A difluorinated analogue of reduced haloperidol, (±)-4-(4-chlorophenyl)-1-(3,3-difluoro-4-(4-fluorophenyl)-4-hydroxybutyl)piperidin-4-ol (2), was synthesized in an attempt to minimize the oxidation. Compound (±)-2 was found to exhibit high affinity to S1R and facilitate BDNF release from mouse brain astrocytes. It was also confirmed that compound 2 cannot be oxidized back to the corresponding haloperidol analogue in liver microsomes. Furthermore, compound 2 was distributed to the brain following intraperitoneal administration in mice and reversed the learning deficits in active avoidance tasks. These findings suggest that compound 2 could serve as a promising S1R ligand with therapeutic potential for the treatment of cognitive impairments.
Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.
Despite the identification of the high incidence red cell antigen Era nearly 40 years ago, the molecular background of this antigen, together with the other two members of the Er blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of individuals with serologically defined Er alloantibodies identified several missense mutations within the PIEZO1 gene, encoding amino acid substitutions within the extracellular domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier molecule for the Er blood group antigens was demonstrated using immunoprecipitation, CRISPR/Cas9-mediated gene knockout and expression studies in an erythroblast cell line. We report the molecular bases of five Er blood group antigens: the recognised Era, Erb and Er3 antigens; and two novel high incidence Er antigens, described here as Er4 and Er5, establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe hemolytic disease of the fetus and newborn (HDFN). Demonstration of Piezo1, present at just a few hundred copies on the surface of the red blood cell, as the site of a new blood group system highlights the potential antigenicity of even low abundance membrane proteins and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in transfusion biology and beyond.
In an effort to develop novel azole antifungals with potent activity and high selectivity, a series of (2R,3R)-3-((3-substitutied-phenyl-isoxazol-5-yl)methoxy)-2-(2,4-difluorophenyl)-1-(1H-tetrazol-1-yl)butan-2-ol derivatives were designed and synthesized based on our previously work. All compounds exhibited moderate to excellent in vitro antifungal activities against Candida albicans SC5314 and Cryptococcus neoformans H99, but inactive against Aspergillus fumigatus 7544. Among them, the most active compound 10h displayed outstanding antifungal activity against fluconazole-resistant C. albicans 103, C. glabrata 537 and C. auris 922 with MIC values of ≤0.008 μg/mL. In addition, compound 10h was superior to FLC in inhibiting the filamentation of FLC-resistant C. albicans 103. Notably, compound 10h showed no inhibition of human CYP3A4 with IC50 values of >100 μM, low cytotoxicity at 32 μg/mL and low hERG inhibition with IC50 values of 6.22 μM, suggesting a low risk of drug-drug interactions and good safety profiles. Furthermore, compound 10h exhibited excellent PK profiles and showed remarkable in vivo efficacy in a mouse model of C. albicans and C. neoformans infection. Taken together, compound 10h will be further investigated as a promising lead antifungal agent.
Drug‑induced cardiotoxicity is one of the main causes of drug failure, which leads to subsequent withdrawal from pharmaceutical development. Therefore, identifying the potential toxic candidate in the early stages of drug development is important. Human induced pluripotent stem cell‑derived cardiomyocytes (hiPSC‑CMs) are a useful tool for assessing candidate compounds for arrhythmias. However, a suitable model using hiPSC‑CMs to predict the risk of torsade de pointes (TdP) has not been fully established. The present study aimed to establish a predictive TdP model based on hiPSC‑CMs. In the current study, 28 compounds recommended by the Comprehensive in vitro Proarrhythmia Assay (CiPA) were used as training set and models were established in different risk groups, high‑ and intermediate‑risk versus low‑risk groups. Subsequently, six endpoints of electrophysiological responses were used as potential model predictors. Accuracy, sensitivity and area under the curve (AUC) were used as evaluation indices of the models and seven compounds with known TdP risk were used to verify model differentiation and calibration. The results showed that among the seven models, the AUC of logistic regression and AdaBoost model was higher and had little difference in both training and test sets, which indicated that the discriminative ability and model stability was good and excellent, respectively. Therefore, these two models were taken as submodels, similar weight was configured and a new TdP risk prediction model was constructed using a soft voting strategy. The classification accuracy, sensitivity and AUC of the new model were 0.93, 0.95 and 0.92 on the training set, respectively and all 1.00 on the test set, which indicated good discrimination ability on both training and test sets. The risk threshold was defined as 0.50 and the consistency between the predicted and observed results were 92.8 and 100% on the training and test sets, respectively. Overall, the present study established a risk prediction model for TdP based on hiPSC‑CMs which could be an effective predictive tool for compound‑induced arrhythmias.
Background
Cardiac safety of new drugs is essential for public health. Nav1.5 is the cardiac sodium channel responsible for action potentials in cardiomyocytes.
Objective
For high-throughput cardiotoxicity assays in the development of antiarrhythmic drugs, we have established an electrophysiologically validated stable HEK293 cell line expressing human Nav1.5 (hNav1.5). To validate the cell line, we examined the effects of lidocaine, an antiarrhythmic agent, and compared its effects using conventional and automated patch-clamp systems.
Results
We isolated three stable cell lines originating from a single clonal cell and selected one stable cell line that produced a minimum 5 nA of hNav1.5 currents without any change in biophysical properties compared to the current from the transiently expressed hNav1.5. We further compared the pharmacological effects of lidocaine on this cell line using the conventional patch-clamp and automated patch-clamp systems. Lidocaine blocked hNav1.5 currents in a concentration- and voltage-dependent manner. The IC50 values at holding potentials of − 90 mV, near the resting membrane potential of cardiomyocytes, and − 120 mV were 18.4 ± 2.6 μM and 775.6 ± 37.1 μM, respectively. In the automated patch-clamp system, the IC50 values at holding potentials of − 90 mV and − 120 mV were 17.9 ± 2.0 μM and 578.7 ± 74.3 μM, respectively, indicating no difference between the systems. In both systems, lidocaine caused significant shifts toward hyperpolarization in the steady-state inactivation curves by ~ 20 mV and induced slower recovery from inactivation and stronger use-dependent inhibition.
Conclusion
The new HEK293 cell line stably expressing hNav1.5 channels produced a current that could be tested using both conventional and automated patch-clamp systems with similar results. This current would be strong enough to evaluate cardiac safety, thus allowing the use of the automated patch-clamp system for drug screening and functional kinetic studies to reveal the mechanism of drug action.