Using single-chain variable fragments (scFv) to map the β3-subunit binding site on the pain-sensing sodium channel Nav1.7

Hengrui Liu, Samir Hamaia, Samantha Salvage, Manas Kohli, Christopher Huang, and Tony Jackson
Department of Biochemistry, Hopkins Building, Downing Site, Tennis Ct Rd, Cambridge CB2 1QW

Introduction

β3-subunit is co-expressed with Nav1.7 in pain-sensing neurons, but its binding site remains unknown. We used in silico modelling to predict the β3 binding site. We used scFvs against Nav1.7 domain I extracellular loop (L1) and domain IV extracellular loop (L4) to test this model.

Hypothesis: L1 scFv should bind in the presence of β3 Ig domain, but L4 scFv should not.

Methods & Results

Steady-state cell binding assay

Real-time cell binding assay

Conclusion: These results supported the in silico modeling of β3 binding to Nav1.7.

Effect of β3 or scFv on Nav1.7 inactivation

Conclusion: Unlike β3, the L4 scFv had no effect on Nav1.7 inactivation.