Unlocking the (Reversal) Potential of SSM Electrophysiology: Transporter Stoichiometry with the SURFE²R N1

Nathan Thomas
Henzler-Wildman Lab
University of Wisconsin – Madison

Stoichiometry is a crucial determinant of transporter function

LacY

1 proton per lactose

(West and Mitchell, 1972)

PepT_{Sa}

5 protons per dipeptide

(Parker, Mindell, and Newstead, 2014)

-160mV PMF can drive:

400-fold lactose gradient

-160mV PMF can drive:

10 trillion-fold dipeptide gradient

*Assumes tight coupling

MDR efflux pump EmrE is not tightly coupled

Multiple pathways – multiple stoichiometries?

How to measure transport stoichiometry

$$nH_{out}^+ + mGdm_{in}^+ \rightleftharpoons nH_{in}^+ + mGdm_{out}^+$$

$$nH_{out}^+ + mGdm_{in}^+ \rightleftharpoons nH_{in}^+ + mGdm_{out}^+$$

$$nH_{out}^+ + mGdm_{in}^+ \rightleftharpoons nH_{in}^+ + mGdm_{out}^+$$

$$E_{rev} = \frac{n\mu_i + m\mu_s}{-F(nz_i + mz_s)}$$

$$2H_{out}^+ + 1Gdm_{in}^+ \rightleftharpoons 2H_{in}^+ + 1Gdm_{out}^+$$

$$E_{rev} = \frac{n\mu_i + m\mu_s}{-F(nz_i + mz_s)}$$

Issues with reversal potential assays

- Technically difficult and time consuming
 - Need to ensure internal solutions are accurate
 - Different internal conditions require separate reconstitutions
- Need fluorophores or radioactivity to monitor transport
- Relatively large amounts of sample required

Can SSM-electrophysiology be used to measure stoichiometry?

Overview of an SSM-electrophysiology experiment

SURFE²R N1 Reversal Potential Assay

Assay Scheme – Proton gradient drives guanidinium transport

Buffer Flow:

100nM H⁺ ______

Current:

Assay Scheme – Guanidinium gradient drives proton transport

Transport current can be reversed

Transport current can be reversed

Peak current does not reverse at published reversal potential

Peak current does not reverse at published reversal potential

Integrate on-signal

Integrated signal agrees with published stoichiometry

Signal is independent of protein concentration

No significant currents for empty liposomes or transport-dead mutants

Transported Charge is a linear function of chemical potential

Transported Charge is a linear function of chemical potential

 $R^2 = 0.998$

x-intercept = 1.98 ± 0.06

Sensor internal solution can be changed

- Reconstitute and prepare sensors at pH 7, 1 mM Gdm⁺
- Flow pH 6.7, 1 mM Gdm⁺ buffer over sensor
 - Monitor solution exchange until no current is observed about 3 mL
- Repeat reversal potential assay
 - Internal buffer: 200 nM H+, 1 mM Gdm+
 - External buffer: 100 nM H+, varied Gdm+

Sensor internal solution can be changed

 $R^2 = 0.999$

x-intercept = 2.02 ± 0.06

EmrE has variable stoichiometry

EmrE has variable stoichiometry

35 experimental conditions tested <3 hours, using <50 picomol protein

Advantages of SURFE²R Reversal Potential

No need for fluorescent probes or radioactive isotopes

- Much higher throughput hundreds of measurements in a day
- Requires very little sample
 - 10⁻¹⁰ mol protein per sensor
 - Up to 100 measurements per sensor
 - Can measure multiple conditions on each sensor

Acknowledgements

Henzler-Wildman Lab

Grant Hisao

Vilius Karauskas

Adam Lewis

Peyton Spreacker

Andrea Killian

Nanion Technologies

Dr. Maria Barthmes

Dr. Andre Bazzone

Funding

NIH 1R01GM095839 and T32 GM007215 Nanion SURFE²R N1 Grant 2018

SURFE²R Reversal Potential

Derivation of reversal potential equation

For coupled antiport:

Eq. 1
$$nGdm_i^+ + mH_o^+ \longrightarrow nGdm_o^+ + mH_i^+$$

Eq. 2
$$\Delta G_{antiport} = n\Delta G_{i\rightarrow o}^{Gdm^{+}} - m\Delta G_{i\rightarrow o}^{H^{+}}$$

When
$$\Delta G_{antiport} = 0$$
,

Eq. 3
$$\frac{m}{n} = \frac{\Delta G_{i \to o}^{Gdm^{+}}}{\Delta G_{i \to o}^{H^{+}}}$$

Assay Scheme – Guanidinium gradient drives proton transport

Thermodynamics of proton coupled drug efflux

SSM Reversal Assay is quantitative

