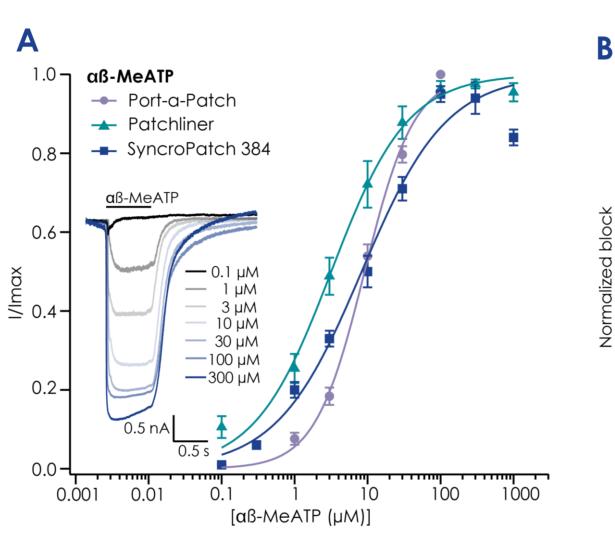
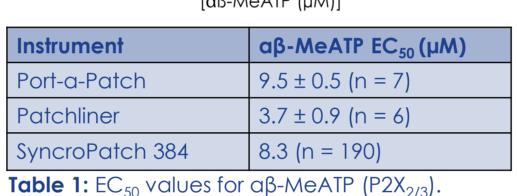
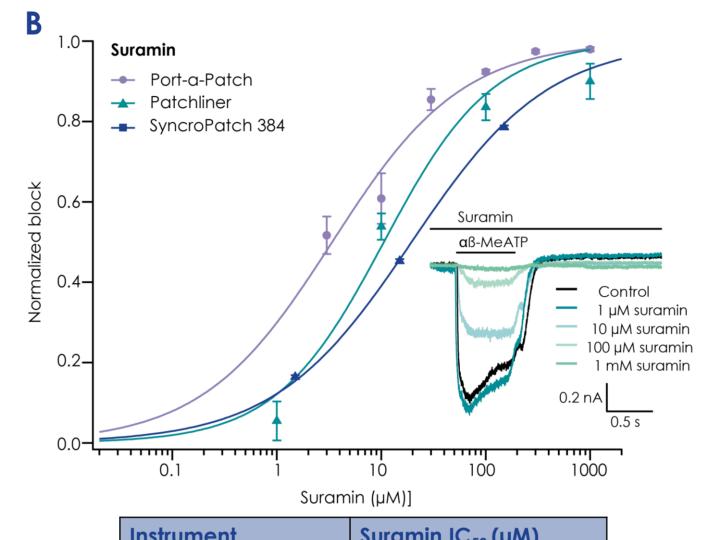
Pharmacology of $P2X_3$ and $P2X_{2/3}$ receptors in cell lines and hiPSC-derived neurons: An automated patch clamp study

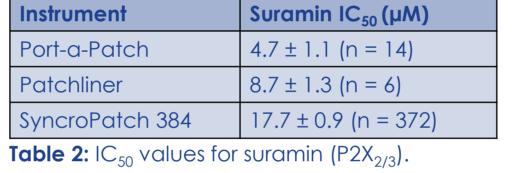
Elena Sirtori¹, Jean-Francois Rolland¹, Riccardo Rizzetto¹, Elena-Laura Budusan², Jan Rathje³, Tom A. Goetze³, Nadine Becker³, Alison Obergrussberger³, Irene Lu⁴, Tim Strassmaier⁴, Aaron Randolph⁴, Vincent Truong⁵, Patrick Walsh⁵, Niels Fertig³

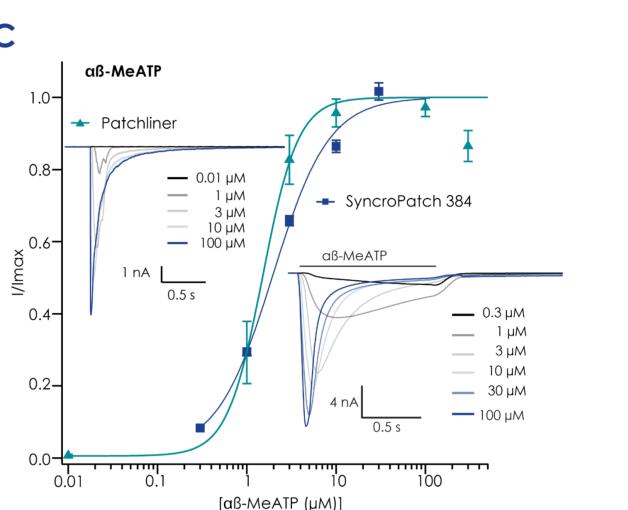
Axxam SpA, Milan, Italy, ²University of Queensland, Brisbane, Australia; ³Nanion Technologies, Munich, Germany; ⁴Nanion Technologies Inc, New Jersey, USA, ⁵Anatomic Inc., Minneapolis, MN, USA <u>ali@nanion.de</u>, <u>Jeanfrancois.rolland.jr@axxam.com</u>, <u>vince@anatomic.tech</u>

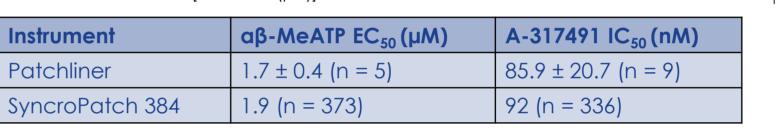



Introduction


P2X receptors are ligand-gated ion channels activated by extracellular ATP. They are permeable to small monovalent cations, some having significant divalent or anion permeability. The $P2X_2$ and $P2X_3$ subunits are predominantly expressed in primary sensory neurons and have been proposed to play a role in thermal sensation, taste and pain. They form functional hetero- or homotrimers which are activated by ATP or a β -methylene ATP (a β -MeATP). The stoichiometry of P2X_{2/3} heteromers appears to be dependent on the relative abundance of the two subunits. A mixture of $P2X_2$ and $P2X_3$ homomers as well as $P2X_{2/3}$ heteromers are likely to exist, which can be distinguished through their biophysical and pharmacological properties. The receptors open in response to an increase in extracellular ATP which occurs under pathological conditions such as tissue damage. The resulting depolarization leads to propagation of the pain signal. Due to its role in nociception and pain signaling, these receptors are considered to be important targets for pain management.


Here we present data collected on three different automated patch clamp (APC) systems at two different sites showing activation and inhibition of $P2X_{2/3}$ and P2X₃ receptors expressed in CHO cells with rapid and brief application of ligand and pre-incubation of inhibitors. In addition, we show P2X-mediated current responses from hiPSC-derived nociceptors (RealDRGTM).


Cross-platform comparison of pharmacology of $P2X_{2/3}$ and P2X₃ channels



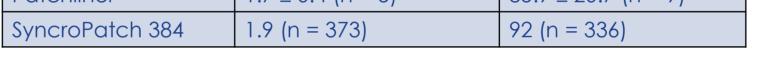


Table 3: EC_{50} values for a β -MeATP and IC_{50} values for A-317491 (P2X₃).

 $C_{50} = 92 \text{ nM} \text{ (n = 50 - 58 per conc)}$

Figure 1: A. Concentration response curves (CRCs) for activation of P2X_{2/3} expressed in CHO cells on the Port-a-Patch, Patchliner and SyncroPatch 384 by aβ-methylene ATP (aβ-MeATP) shown overlaid with example traces for P2X_{2/3} recorded on the Patchliner shown in the inset. The EC₅₀s for aβ-MeATP (**Table 1**) were in good agreement with the literature 1-4. aβ-MeATP activates P2X₃ containing receptors thus activating P2X₃ homomeric and P2X_{2/3} heteromeric receptors and not P2X₂ homomers²⁻⁴. Given the slow desensitization of the recordings, activation by aβ-MeATP is consistent with P2X_{2/3} heteromers and not P2X₃ homomers (see Ref. 4 and data in C). B. Inhibition of P2X_{2/3} by suramin. P2X_{2/3} was activated by 30 μM aβ-MeATP (Port-a-Patch and Patchliner) or 10 μM ATP (SyncroPatch 384) and the cells were pre-incubated in suramin for 1 – 3 min prior to co-application with ligand. The IC₅₀ values (Table 2) were all in good agreement with the literature²⁻⁴. C. Concentration response curves for activation of P2X₃ by aβ-MeATP for the Patchliner and SyncroPatch 384 are shown overlaid. The EC₅₀ values (**Table 3**) showed little difference between the 2 devices and are in good agreement with the literature $^{2-4}$, 6 . D. P2X₃ was inhibited by A-317491 (a P2X₃-selective compound) on both the Patchliner and SyncroPatch 384 when activated by 10 μM aβ-MeATP with similar IC₅₀ values (**Table 3**) and in good agreement with the literature⁵. Example traces from the Patchliner are shown in the inset. **E.** Stability of P2X_{2/3} recorded on the SyncroPatch 384. Raw traces showing current activation by 10 µM ATP repeated 3 times in the same cell (upper panel). Online analysis plot (bottom panel) shows stable peak amplitudes versus time, differing by no more than 5% when ATP was applied.

Reproducibility and effect of temperature on P2X₃ currents

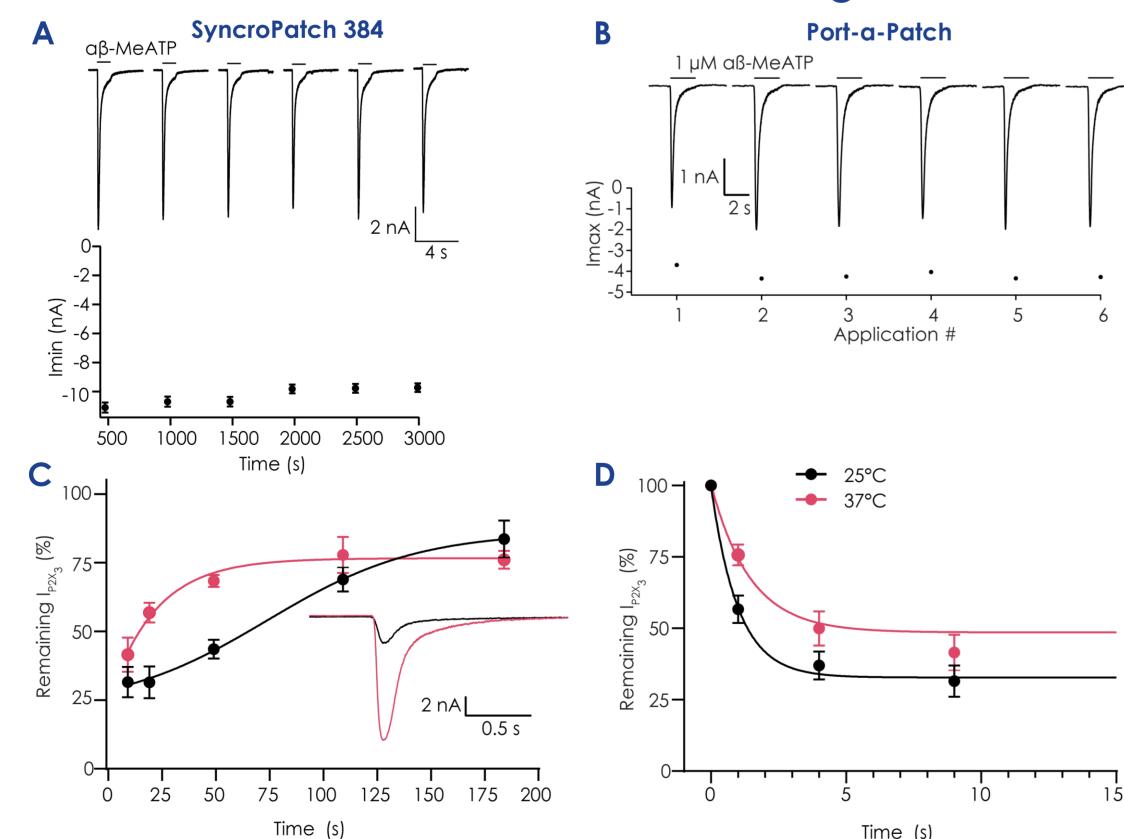


Figure 2: A & B. Raw traces from CHO cells expressing P2X₃ showing current activation by 10 μM aβ-MeATP repeated 6 times in the same cell on the SyncroPatch 384 (A) and activation by 1 μM aβ-MeATP repeated 6 times on the Port-a-Patch (B) showing highly stable responses. P2X₃ currents activated by 1 µM aβ-MeATP recorded on the Port-a-Patch were larger in amplitude when heated to physiological temperature compared with room temperature (C, inset). Heating to physiological temperature resulted in a faster recovery of P2X₃ currents when the agonist was applied in longer intervals (C) but had negligible effects on tachyphylaxis (D).

P2X receptors in hiPSC-derived nociceptors - RealDRGTM

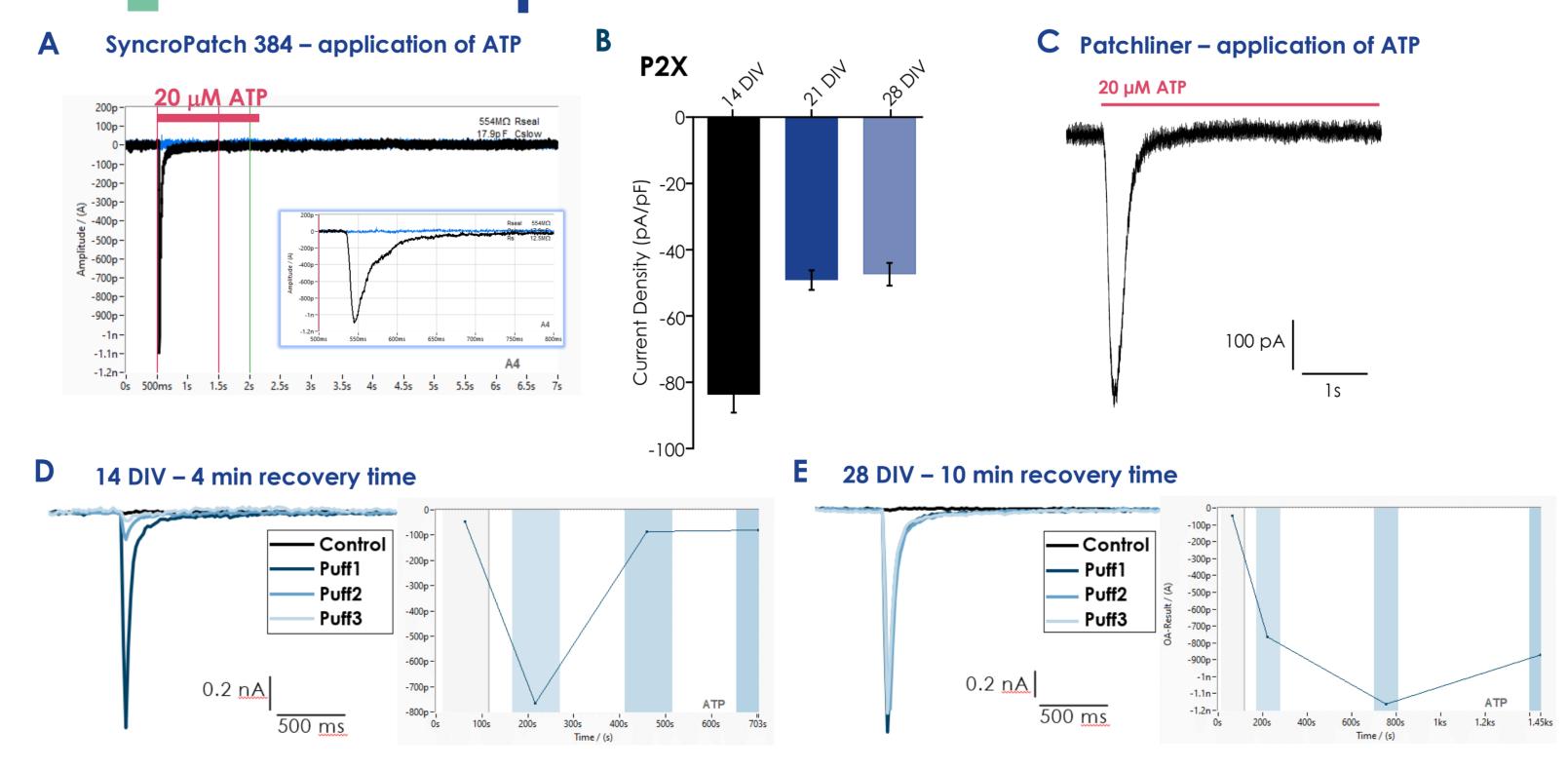


Figure 3: A. P2X-mediated responses from hiPSC-derived nociceptors (RealDRGTM) receptors were recorded when activated using 20 μM ATP on the SyncroPatch 384. B. Current density of ATP-activated currents decreased during maturation (further experiments are required to confirm this observation). **C.** P2X receptors in RealDRGTM were activated using 20 µM ATP on the Patchliner. **D.** With a recovery time of 4 min between ATP applications, desensitization meant that currents could not be repetitively activated upon a 2nd or 3rd application of ATP. **E** When a recovery time of 10 min was used, P2X could be repetitively activated 3 times within the same cell with a current amplitude similar in amplitude to the 1st application (D, E Experiments on the SyncroPatch 384).

Conclusions

- Ion channel currents mediated by $P2X_{2/3}$ heteromers expressed in CHO cells were activated by a \(\beta \)-MeATP on the Port-a-Patch, Patchliner and SyncroPatch 384 with similar EC_{50} values and **inhibited by suramin** with expected IC_{50} s.
- P2X₃ homomers were successfully recorded on the Patchliner and SyncroPatch 384, displaying faster activation and inactivation kinetics compared to the $P2X_{2/3}$ heteromers.
- Currents mediated by P2X₃ were highly reproducible, activated by aβ-MeATP on the Port-a-Patch, Patchliner and SyncroPatch 384.
- P2X₃-mediated currents were blocked by A-317491 on the **Patchliner** and **SyncroPatch 384** with similar $IC_{50}s$.
- Increased temperature caused an increase in amplitude and faster recovery from desensitization.
- P2X-mediated responses were detected in RealDRGTM sensory neurons.

References

- 1. Ralevic & Burnstock. 1998. Pharmacol. Rev. 50: 413-492
- 2. North & Suprenant. 2000. Annu. Rev. Pharmacol. Toxicol. 40
- 3. Khakh et al., 2001. Pharmacol. Rev. 53: 107-118
- 4. Dunn et al., 2001. Prog. in Neurobiol. 65: 107–134
- 5. Jarvis, et al., 2002. PNAS 99(26): 17179–17184 6. Pratt, et al., 2005. J. Neurosci. 25(32):7359–7365

