• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

我们的产品目录

SyncroPatch 384/768PE

SyncroPatch 384/768PE

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

CardioExcyte 96

CardioExcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Cardiomyocytes - Tetracaine dose response curves as recorded with Cor.4U cells

Icon CE   Tetracaine Cor4UCardioExcyte data and applications:
Cells were kindly provided by Axiogenesis.

Impedance amplitude is not changed by addition of increasing concentrations of Tetracaine (left panel), while beat rate of Cor.4U® cells is decreasing. For example, 29.6µM of Tetracaine decreased the beat rate by ~60% when compared to pre-addition values. Cumulative dose-response relationships indicate Tetracaine potency for same-well additions. Representative raw traces for impedance signals (middle panel) clearly indicate a decrease in cell monolayer beat rate with increasing concentrations of Tetracaine.
Extracellular Field Potential (EFP) spike amplitude is decreased by cumulative Tetracaine dose applications to the same monolayer of Cor.4U® hIPSC-CMs (top right), in agreement with compound mechanism of action. Representative raw traces for EFP signals (bottom graph) clearly indicate a decrease in spike amplitude.

返回总览

Nanion运营博客

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok