• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

CardioExcyte 96

CardioExcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

hERG - "Characterization of hERG (HEK293) on Nanion's Port-a-Patch"

icon pap   Port-a-Patch application note:   logo pdf   (0.7 MB)
Cells were kindly provided by Millipore.  

Summary:

The hERG gene (KCNH2) encodes a potassium ion channel responsible for the repolarizing IKr current in the cardiac action potential (Sanguinetti et al., 1995). Abnormalities in this channel may lead to either Long QT Syndrome (LQT2) (with loss-of-function mutations) or Short QT syndrome (with gain-of-function mutations), both potentially fatal cardiac arrhythmia, due to repolarization disturbances of the cardiac action potential. Given the importance of this channel in maintaining cardiac function, it has become an important target in compound safety screening. A large range of therapeutic agents with diverse chemical structures have been reported to induce long QT syndrome. These include antihistamines (e.g. terfenadine), gastrointestinal prokinetic agents (e.g. cisapride) and others. In this report we present data that were collected on the Port-a-Patch. Cells (HEK293 stably expressing hERG, supplied by Millipore) were tested. Current amplitudes, IVs and cisapride as well as quinidine dose-response curves were analyzed.

返回总览

Nanion运营博客

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok