• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2010 - TRPV channels mediate temperature-sensing in human corneal endothelial cells

icon pap  Port-a-Patch publication in Experimental Eye Research (2010)

Authors: 
Mergler S., Valtink M., Coulson-Thomas V.J., Lindemann D., Reinach P.S., Engelmann K., Pleyer U.

 

Journal: 
Experimental Eye Research (2010) 90:758-770


Abstract: 

The physiology and transparency of the cornea are dependent on corneal endothelial function. The role of temperature sensitive ion channels in maintaining such activity is unknown. This study was undertaken to probe for the functional expression of such pathways in human corneal endothelial cells (HCEC). We used HCEC-12, an immortalized population derived from whole corneal endothelium, and two morphologically distinct clonal cell lines derived from HCEC-12 (HCEC-H9C1, HCEC-B4G12) to probe for gene expression and function of transient receptor potential (TRP) channels of the vanilloid (V) isoform subfamily (i.e. TRPV1–3) in these cell types. Expression of TRPV isotypes 1, 2 and 3 were detected by RT-PCR. Protein expression of TRPV1 in situ was confirmed by immunostaining of corneoscleral remnants after keratoplasty. TRPV1–3 functional activity was evident based on capsaicin-induced Ca2+ transients and induction of these responses through rises in ambient temperature from 25 °C to over 40 °C. The currents underlying Ca2+ transients were characterized with a novel high throughput patch-clamp system. The TRPV1 selective agonist, capsaicin (CAP) (10–20 μM) increased non-selective cation whole-cell currents resulting in calcium increases that were fully blocked by either the TRPV1 antagonist capsazepine (CPZ) or removal of extracellular calcium. Similarly, heating from room temperature to over 40 °C increased the same currents resulting in calcium increases that were significantly reduced by the TRP channel blockers lanthanum chloride (La3+) (100 μM) and ruthenium-red (RuR) (10 μM), respectively. Moreover, application of the TRPV channel opener 2-aminoethoxydiphenyl borate (2-APB) (400 μM) led to a reversible increase in intracellular Ca2+ indicating putative TRPV1–3 channel activity. Taken together, TRPV activity modulation by temperature underlies essential homeostatic mechanisms contributing to the support of corneal endothelial function under different ambient conditions.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.