• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2015 - The Functional Property Changes of Muscular Nav1.4 and Cardiac Nav1.5 Induced by Scorpion Toxin BmK AGP-SYPU1 Mutants Y42F and Y5F

icon pap  Port-a-Patch publication in Biochemistry (2015)

Authors: 
Meng x., Xu Y., Zhao M., Wang F., Ma Y., Jin Y., Liu Y., Song Y., Zhang J.

 

Journal: 
Biochemistry (2015) 54:2988-2996


Abstract: 

Scorpion toxins are invaluable therapeutic leads and pharmacological tools which influence the voltage-gated sodium channels. However, the details were still unclear about the structure–function relationship of scorpion toxins on VGSC subtypes. In the previous study, we reported one α-type scorpion toxin Bmk AGP-SYPU1 and its two mutants (Y5F and Y42F) which had been demonstrated to ease pain in mice acetic acid writhing test. However, the function of Bmk AGP-SYPU1 on VGSCs is still unknown. In this study, we examined the effects of BmK AGP-SYPU1 and its two mutants (Y5F and Y42F) on hNav1.4 and hNav1.5 heterologously expressed CHO cell lines by using Na+-specialized fluorescent dye and whole-cell patch clamp. The data showed that BmK AGP-SYPU1 displayed as an activator of hNav1.4 and hNav1.5, which might indeed contribute to its biotoxicity to muscular and cardiac system and exhibited the functional properties of both the α-type and β-type scorpion toxin. Notably, Y5F mutant exhibited lower activatory effects on hNav1.4 and hNav1.5 compared with BmK AGP-SYPU1. Y42F was an enhanced activator and confirmed that the conserved Tyr42 was the key amino acid involved in bioactivity or biotoxicity. These data provided a deep insight into the structure–function relationship of BmK AGP-SYPU1, which may be the guidance for engineering α-toxin with high selectivity on VGSC subtypes.


Download here

返回总览

Nanion运营博客

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.