• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2017 - Pharmacological Characterization of the NMDA A-B-C by Automated Patch Clamp

icon sp96   SyncroPatch 384PE (a predecessor model of SyncroPatch 384) poster, BPS Meeting 2017  logo pdf   (4.9 MB)

Abstract:

N-Methyl-D-Aspartate receptors (NMDAR) are one of the key players in basic and complex excitatory neurotransmission. Seven subunits of NMDAR have been identified: GluN1, GluN2A-D and GluN3A-B1. Assembled as a tetramer1, they consist of two NR1 subunits and either two NR2 subunits or a combination of NR2 and NR3 subunits. Unique properties of NMDAR are the activation of the channel by simultaneous binding of glutamate and glycine, a voltage-dependent block by magnesium ions, a relatively slow current kinetic and a predominantly calcium carried conductance. The exceptional calcium entry through open NMDARs triggers on the one hand a number of regulatory processes important in development and synaptic plasticity processes of learning and memory. On the other hand NMDARs are proposed to play a pathophysiological role in a number of neurological disorders such as epilepsy and Alzheimer’s. Given the importance in the treatment of such neurological diseases, it is of great interest developing clinically relevant NMDAR antagonists that would block excitotoxic NMDAR activation, without interfering with NMDAR function needed for normal synaptic transmission and plasticity.
This study focuses on the basic biophysical properties of different NMDAR subtypes and the pharmacological relevance of modulation of NMDARs. Among others, we show activation kinetics of GluN2A, GluN2B, GluN2C and GluN2D subunit containing NMDARs. Moreover, we present data from the target screen of the positive allosteric modulator CIQ and blockers which were recorded with high throughput. All experiments were performed on the SyncroPatch384PE, the only APC device, which is able to stack the solutions inside a pipette and rapidly apply it to the cell, allowing for brief and accurate solution exchange (<10ms) and exposure times (<200ms). NMDAR expressing cell lines were kindly provided by Chantest.

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.