• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2018 - Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-field Microscopy

icon vpp   Vesicle Prep Pro publication in the International Journal of Molecular Sciences (2018)

Authors:
Bhat A., Huan K., Cooks T., Boukari H., Lu Q.

Journal:
International Journal of Molecular Sciences (2018) 19(4):1014


Abstract:

Noble metallic nanoparticles (NPs) such as gold and silver nanoparticles (AuNPs and AgNPs) have been shown to exhibit anti-tumor effect in anti-angiogenesis, photothermal and radio therapeutics. On the other hand, cell membranes are critical locales for specific targeting of cancerous cells. Therefore, NP-membrane interactions need be studied at molecular level to help better understand the underlying physicochemical mechanisms for future applications in cancer nanotechnology. Herein, we report our study on the interactions between citrate stabilized colloidal AuNPs/AgNPs (10 nm in size) and giant unilamellar vesicles (GUVs) using hyperspectral dark-field microscopy. GUVs are large model vesicle systems well established for the study of membrane dynamics. GUVs used in this study were prepared with dimyristoyl phosphatidylcholine (DMPC) and doped with cholesterol at various molar concentrations. Both imaging and spectral results support that AuNPs and AgNPs interact very differently with GUVs, i.e., AuNPs tend to integrate in between the lipid bilayer and form a uniform golden-brown crust on vesicles, whereas AgNPs are bejeweled on the vesicle surface as isolated particles or clusters with much varied configurations. The more disruptive capability of AuNPs is hypothesized to be responsible for the formation of golden brown crusts in AuNP-GUV interaction. GUVs of 20 mol% CHOL:DMPC were found to be a most economical concentration for GUVs to achieve the best integrity and the least permeability, consistent with the finding from other phase studies of lipid mixture that the liquid-ordered domains have the largest area fraction of the entire membrane at around 20 mol% of cholesterol.


Download here

返回总览

Nanion运营博客

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.