• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2020 - A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm

icon pl   Patchliner and   icon sp96   SyncroPatch 384PE (a predecessor model of the SyncroPatch 384i instrument) publication in Toxicology and Applied Pharmacology (2020)

Authors:
Ridder B.J., Leishman D.J., Bridgland-Taylor M., Samieegohar M., Han X, Wu W.W., Randolph A., Tran P., Sheng J., Danker T., Lindqvist A., Konrad D., Hebeisen S., Polonchuk L., Gissinger E., Renganathan M., Koci B., Wei H., Fan J., Levesque P., Kwagh J., Imredy J., Zhai J., Rogers M., Humphries E., Kirby R., Stoelzle-Feix S., Brinkwirth N., Rotordam M.G., Becker N., Friis S., Rapedius M., Goetze T.A., Strassmaier T., Okeyo G., Kramer J., Kuryshev Y., Wu C., Himmel H., Mirams G.R., Strauss D.G., Bardenet R., Li Z.

 

Journal:
Toxicology and Applied Pharmacology (2020) doi: 10.1016/j.taap.2020.114961 (ahead of print)


Highlights:

  • A new regulatory paradigm promotes the integration of nonclinical and clinical data.
  • Lack of uncertainty quantification hindered using hERG potency in the new paradigm.
  • A systematic method was established to address this limitation.
  • Analysis supports using different safety margin thresholds in different context.

Abstract: 

- Introduction
hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed.

- Methods
A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian Hierarchical Modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.

- Results
A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.

- Discussion
This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Download here.

返回总览

Nanion运营博客

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.