• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2015 - A sulfur‐based transport pathway in Cu+‐ATPases

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in EMBO Reports (2015)

Authors:
Mattle D., Zhang L., Sitsel O., Pedersen L.T., Moncelli M.R., Tadini-Buoninsegni F., Gourdon P., Rees D.C., Nissen P., Meloni G.

Journal:
EMBO Reports (2015)16:728-740


Abstract:

Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB‐type Cu+‐ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu+ across cellular membranes. Crystal structures of a copper‐free Cu+‐ATPase are available, but the mechanism of Cu+ recognition, binding, and translocation remains elusive. Through X‐ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid‐supported membranes using wild‐type and mutant forms of the Legionella pneumophila Cu+‐ATPase (LpCopA), we identify a sulfur‐lined metal transport pathway. Structural analysis indicates that Cu+ is bound at a high‐affinity transmembrane‐binding site in a trigonal‐planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high‐affinity site and subsequent release through the exit pathway.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.