• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2020 - Unlocking the Reversal Potential of Solid Supported Membrane Electrophysiology to Determine Transport Stoichiometry

Icon N1   SURFE²R N1 pre-publication in bioRxiv (2020)

Authors:
Henzler-Wildman K.A., Thomas N.E.

Journal:
bioRxiv (2020) doi: org/10.1101/2020.05.07.082438


Abstract:

Transport stoichiometry provides insight into the mechanism and function of ion-coupled transporters, but measuring transport stoichiometry is time-consuming and technically difficult. With the increasing evidence that many ion-coupled transporters employ multiple transport stoichiometries under different conditions, improved methods to determine transport stoichiometry are required to accurately characterize transporter activity. Reversal potential was previously shown to be a reliable, general method for determining the transport stoichiometry of ion-coupled transporters (Fitzgerald & Mindell, 2017). Here, we develop a new technique for measuring transport stoichiometry with greatly improved throughput using solid supported membrane electrophysiology (SSME). Using this technique, we are able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx. Our SSME method requires only small amounts of transporter and provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.