• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384i

SyncroPatch 384i

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16

Orbit 16

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2020 - Computer modeling of whole-cell voltage-clamp analyses to delineate guidelines for good practice of manual and automated patch-clamp

 icon sp96   SyncroPatch 384PE (a predecessor model of the SyncroPatch 384i instrument) pre-publication in BioRxiv (2020)

Authors:
Montnach J., Lorenzini M., Lesage A., Simon I., Nicolas S., Moreau E., Marionneau C., Baró I., De Waard M., Loussouar G.

Journal:

BioRxiv (2020) doi: 10.1101/2020.04.27.062182


Abstract: 

The patch-clamp technique has contributed to major advances in the characterization of ion channels. The recent development of high throughput patch-clamp provides a new momentum to the field. However, whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that current amplitude profoundly impacts the precision of the analyzed characteristics of the ion current under study. For voltagegated channels, the higher the current amplitude is, the less precise the characteristics of voltagedependence are. Similarly, in ion channel pharmacology, the characteristics of dose-response curves are hindered by high current amplitudes. In addition, the recent development of high throughput patch-clamp technique is often associated with the generation of stable cell lines demonstrating high current amplitudes. It is therefore critical to set the limits for current amplitude recordings to avoid inaccuracy in the characterization of channel properties or drug actions, such limits being different from one channel to another. In the present study, we use kinetic models of a voltage-gated sodium channel and a voltage-gated potassium channel to edict simple guidelines for good practice of whole-cell voltage-clamp recordings.


Download here.

返回总览

Nanion运营博客

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.