• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384i: HTS Automated Patch Clamp

    SyncroPatch 384i: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

2020 - VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons

icon sp96  SyncroPatch 768 PE (a predecessor model of the SyncroPatch 384 instrument) publication in ACS Chemical Neuroscience (2020)

Authors:
Spitznagel B.D., Mishra N.M., Qunies A.M., Prael F.J., Du Y., Kozek K.A., Lazarenko R.M., Denton J.S., Emmitte K.A., Weaver C.D.

Journal:
ACS Chemical Neuroscience (2020) doi: 10.1021/acschemneuro.0c00583


Abstract:

Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a highthroughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.