• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

2022 - Accurate in silico simulation of the rabbit Purkinje fiber electrophysiological assay to facilitate early pharmaceutical cardiosafety assessment: Dream or reality?

icon sp96 SyncroPatch 384 publication in Journal of Pharmacological and Toxicological Methods (2022)

Authors:
Mohr M., Chambard J.M., Ballet V., Schmidt F.

Journal:
Journal of Pharmacological and Toxicological Methods (2022) doi:10.1016/j.vascn.2022.107172


Abstract: 

As a branch of quantitative systems toxicology, in silico simulations are of growing attractiveness to guide preclinical cardiosafety risk assessments. Traditionally, a cascade of in vitro/in vivo assays has been applied in pharmaceutical research to screen out molecules at risk for cardiac side effects and prevent subsequent risk for patients. Drug cardiosafety assessments typically employ early mechanistic, hazard-oriented in silico/in vitro assays for compound inhibition of cardiac ion channels, followed by induced pluripotent stem cells (iPSCs) or tissue-based models such as the rabbit Purkinje fiber assay, which includes the major mechanisms contributing to action potential (AP) genesis. Additionally, multiscale simulation techniques based on mathematical models have become available, which are performed in silico ‘at the heart’ of compound triage to substitute Purkinje tests and increase translatability through mechanistic interpretability. To adhere to the 3R principle and reduce animal experiments, we performed a comparative benchmark and investigated a variety of mathematical cardiac AP models, including a newly developed minimalistic model specifically tailored to the AP of rabbit Purkinje cells, for their ability to substitute experiments. The simulated changes in AP duration (dAPD90) at increasing drug concentrations were compared to experimental results from 588 internal Purkinje fiber studies covering 555 different drugs with diverse modes of action. Using our minimalistic model, 80% of the Purkinje experiments could be quantitatively reproduced. This result allows for significant saving of experimental effort in early research and justifies the embedding of electrophysiological simulations into the DMTA (Design, Make, Test, Analyze) cycle in pharmaceutical compound optimization.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.