• Nanion技术: 离子通道研究的智能工具

    Nanion技术: 离子通道研究的智能工具

  • SyncroPatch 384: HTS Automated Patch Clamp

    SyncroPatch 384: HTS Automated Patch Clamp

  • SURFE²R 96SE: 非标记高通量转运体筛选

    SURFE²R 96SE: 非标记高通量转运体筛选

  • Dynamic Clamp: Patchliner

    Dynamic Clamp: Patchliner

  • 脂双层记录: Orbit产品系列

    脂双层记录: Orbit产品系列

  • CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

    CardioExcyte 96 SOL:用光遗传的手段起搏心肌细胞

我们的产品目录

SyncroPatch 384

SyncroPatch 384

Patchliner

Patchliner

Port-a-Patch

Port-a-Patch

Port-a-Patch mini

Port-a-Patch mini

CardioExcyte 96

CardioExcyte 96

FLEXcyte 96

FLEXcyte 96

SURFE²R 96SE

SURFE²R 96SE

SURFE²R N1

SURFE²R N1

Orbit 16 TC

Orbit 16 TC

Orbit Mini

Orbit Mini

Vesicle Prep Pro

Vesicle Prep Pro

Buffer Solution

Buffer Solution

14.07.2022 | Webinar: An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic proarrhythmia mechanisms

icon sp96  Patchliner Webinar

Date: July 14. 2022

220714 blog image on demand webinar An in silico in vitro pipeline for drug cardiotoxicity screening identifies ionic proarrhythmia mechanisms

Speakers:

Dr. András Horváth
(Application Scientist - Nanion Technologies)

Alex Clark
(Ph.D. Student - Christini Lab, Cornell University)



Presenter: 
Dr. András Horváth, Application Scientist (Nanion Technologies)

Title: 
Automating action potential pharmacology in hiPSC cardiomyocytes

Presenter: 
Alex Clark, Ph.D. Student - Christini Lab (Cornell University)

Title: 
An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic proarrhythmia mechanisms

Abstract:

All new drugs are screened for their proarrhythmic potential using a method that is overly conservative and provides limited mechanistic insight, which can lead to the misclassification of beneficial drugs as proarrhythmic. Here, we developed an in silico-in vitro pipeline to circumvent these shortcomings. An iPSC-CM computational model was used to design electrophysiological voltage-clamp (VC) protocols for use during in vitro drug studies. Such VC data, along with AP recordings, were acquired from iPSC-CMs before and after treatment with a control solution or verapamil, cisapride, quinine, or quinidine. AP prolongation was seen in response to quinidine and quinine. The VC protocol identified all strong IKr blockers. The protocol also detected block of ICaL by verapamil and Ito by quinidine. The VC data also uncovered a previously unidentified If block by quinine, which was confirmed with experiments using a HEK-293 expression system and automated patch-clamp.




Access the Q&A from the webinar here

返回总览

 

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.