• Ammonia Transporter Amt

    SURFE²R N1 recordings of the ammonium transporter AmtB. AmtB was purified from E.Coli and incororated into liposomes. Mirandela et al, 2018.

2014 - Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins

Icon N1   SURFE²R-technology (custom-built system) publication in PNAS (2014)

Wacker T., Garcia-Celma J.J., Lewe P., Andrade S.L.

Proceedings of the National Academy of Sciences of the United States of America (2014) 111(27):9995-10000


We have detected and analyzed electrogenic transport of ammonium and methylammonium by members of the ammonium transport (Amt) family of membrane proteins using solid-supported membrane electrophysiology. Amt transport is pH-dependent and occurs at a rate of 30–300 ions per s per trimer, well in the range of other transport proteins. The study establishes, to our knowledge, the first in vitro assay system for Amt transport in a fully controlled setup and settles debate about whether Amt proteins function as passive ammonia channels or active ammonium transporters.


Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4+ scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4+/NH3 transport is used instead in acid–base and pH homeostasis in kidney or NH4+/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.