mTRPM7 raw current responses to a voltage ramp voltage procotol recorded on the Port-a-Patch under control conditions and after subsequent internal perfusion with Mg2+

TRPM7 - "TRPM7 activation by internal sequestering of Mg2+ ions recorded on the Port-a-Patch"

icon pap   Port-a-Patch application note:  logo pdf   (0.8 MB)


Transient receptor potential (TRP) channels are an important class of receptors found widely distributed throughout the mammalian central and peripheral nervous systems. They have been shown to be activated by many stimuli including temperature, mechano-stimulation, divalent cations and pH, amongst others. TRP channels are receiving much attention as potential targets for the treatment of, for example, pain, respiratory diseases such as asthma, cancer and immune disorders. The TRPM7 receptor is thought to play a role in magnesium homeostasis. A role for TRPM7 in intracellular pH sensing, the pathological response to blood vessel wall injury and cell adhesion has also been suggested. In electrophysiological studies TRPM7 can be recorded using a voltage ramp protocol. It displays a characteristic large outward current with little inward current and can be blocked by the presence of internal Mg2+ ions. Here we present data recorded on the Port-a-Patch with internal perfusion showing recordings of mouse TRPM7 (mTRPM7) and block of this channel by the internal perfusion of Mg2+ ions.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.