mTRPM7 raw current responses to a voltage ramp voltage procotol recorded on the Port-a-Patch under control conditions and after subsequent internal perfusion with Mg2+

2016 - Human T cells in silico: Modelling their electrophysiological behaviour in health and disease

icon pl  Patchliner publication in Journal of Theoretical Biology (2016)

Ehling P., Meuth P., Eichinger P., Hermann A.M., Bittner S., Pawlowski M., Pankratz S., Herty M., Budde T., Meuth S.G.


J Theor Biol (2016) 404:236-250 


Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4+ T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.