• Orbit 16 TC

    fully parallel recording of 16 bilayers

2018 - Hand-held DNA-sequencing and biosensing with nanopores

Icon Orbit   Orbit 16 Oral Presentation

Prof. Dr. Stefan Howorka, University College London, Department of Chemistry
Webinar: "Artificial Lipid Bilayers in focus: Hand-held DNA-sequencing and biosensing with nanopores", June 28, 2018

Hand-held DNA-sequencing and biosensing with nanopores


Portable DNA sequencing and biosensing can advance research, bedside-diagnostics, and homeland security. I describe how label-free sensing is achieved with atom-scale designed membrane nanopores. In this strategy, nanopores act as electronic sensors that detect when individual molecules pass the pores’ nanoscale hole. The temporary blockages cause changes in ionic pore current. The approach has helped pioneer portable DNA sequencing with protein pores(1) to discriminate individual bases. More recently, synthetic pores have been built by folding DNA strands into defined channels(2). The DNA nanopores are relevant as they overcome the narrow size range of protein pores and thereby accommodate folded protein analytes. The DNA nanostructures are also easier to rationally design than proteins(3) and thereby enable new applications, also in synthetic biology(4).

(1) Nature 2014 516 250;
(2) Nat. Nanotechnol. 2016 11 152;
(3) Nat. Nanotechnol. 2017 12 619;
(4) Science 2016 352 890; Nat. Chem. 2017 9 611


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.