• Orbit 16 TC

    fully parallel recording of 16 bilayers

2018 - Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores

Icon Orbit   Orbit 16 publication in The European Physical Journal E (2018)

Talarimoghari M., Baaken G., Hanselmann R., Behrends J.C.

The European Physical Journal E (2018) 41:77, DOI: 10.1140/epje/i


We use two pore-forming proteins, alpha-hemolysin and aerolysin, to compare the polymer size-dependence of ionic current block by two types of ethyleneglycol polymers: 1) linear and 2) 3-arm star poly(ethylene glycol), both applied as a polydisperse mixture of average mass 1kDa under high salt conditions. The results demonstrate that monomer size sensitivity, as known for linear PEGs, is conserved for the star polymers with only subtle differences in the dependence of the residual conductance on monomer number. To explain this absence of a dominant effect of polymer architecture, we propose that PEG adsorbs to the inner pore wall in a collapsed, salted-out state, likely due to the effect of hydrophobic residues in the pore wall on the availability of water for hydration.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.