• Orbit 16 TC

    fully parallel recording of 16 bilayers

2022 - Highly shape- and size-tunable membrane nanopores made with DNA

 Icon Orbit  Orbit 16 Icon Orbit Mini Orbit mini and icon vpp Vesicle Prep Pro publication in Nature Nanotechnology (2022)

Xing Y., Dorey A., Jayasinghe L., Howorka S.

Nature Nanotechnology (2022) doi:10.1038/s41565-022-01116-1


Membrane nanopores are key for molecular transport in biology, portable DNA sequencing, label-free single-molecule analysis and nanomedicine. Transport traditionally relies on barrel-like channels of a few nanometres width, but there is considerable scientific and technological interest for much wider structures of tunable shape. Yet, these nanopores do not exist in nature and are challenging to build using existing de novo routes for proteins. Here, we show that rational design with DNA can drastically expand the structural and functional range of membrane nanopores. Our design strategy bundles DNA duplexes into pore subunits that modularly arrange to form tunable pore shapes and lumen widths of up to tens of nanometres. Functional units for recognition or signalling can be optionally attached. By dialling in essential parameters, we demonstrate the utility and potential of the custom-engineered nanopores by electrical direct single-molecule sensing of 10-nm-sized proteins using widely used research and hand-held analysis devices. The designer nanopores illustrate how DNA nanotechnology can deliver functional biomolecular structures to be used in synthetic biology, single-molecule enzymology and biophysical analysis, as well as portable diagnostics and environmental screening.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.