• Port-a-Patch

    世界上最小的膜片钳系统
  • Port-a-Patch

    易学易用——教学的理想工具
  • Port-a-Patch

    可记录细胞、细胞器与脂双层
  • Port-a-Patch

    世界上首款平板芯片膜片钳设备
  • Port-a-Patch

    可进行内灌流——更换细胞内液的理想工具

2009 - T-type channel blocking properties and antiabsence activity of two imidazo[1,2-b]pyridazine derivatives structurally related to indomethacin

icon pap  Port-a-Patch publication in Neuropharmacology (2009)

Authors: 
Rimoli M.G., Russo E., Cataldi M., Citraro R., Ambrosino P., Melisi D., Curcio A., De Lucia S., Patrignani P., De Sarro G., Abignente E.

 

Journal: 
Neuropharmacology (2008) 56(3):637-646


Abstract: 

It is presently unclear whether the antiseizure effects exerted by NSAIDs are totally dependent on COX inhibition or not. To clarify this point we investigated whether 7-methyl-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM1) and 6-methoxy-2-phenylimidazo[1,2-b]pyridazine-3-carboxylic acid (DM2), two imidazo[1,2-b]pyridazines structurally related to indomethacin (IDM) but ineffective in blocking COXs, retain IDM antiabsence activity. When administered by intraperitoneal injection in WAG/Rij rats, a rat strain which spontaneously develops SWDs, both DM1 and DM2 dose-dependently suppressed the occurrence of these seizures. Importantly, these compounds were both more potent in suppressing SWD occurrence than IDM. As T-type channel blockade is considered a mechanism of action common to many antiabsence drugs we explored by whole cell patch clamp electrophysiology in stably transfected HEK-293 the effect of DM1 and DM2 on CaV3.1 channels, the T-type channel subtype preferentially expressed in ventrobasal thalamic nuclei. Both these compounds dose-dependently suppressed the currents elicited by membrane depolarization in these cells. A similar T-type blocking effect was also observed when the cells were exposed to IDM. In conclusion, DM1 and DM2 whilst inactive on COXs, are potent antiabsence drugs. This suggests that compounds with structural features typical of NSAIDs may exert antiepileptic activity independently from COX inhibition and possibly by a direct interaction with T-type voltage-dependent Ca2+ channels.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.