• Port-a-Patch

    世界上最小的膜片钳系统
  • Port-a-Patch

    易学易用——教学的理想工具
  • Port-a-Patch

    可记录细胞、细胞器与脂双层
  • Port-a-Patch

    世界上首款平板芯片膜片钳设备
  • Port-a-Patch

    可进行内灌流——更换细胞内液的理想工具

2016 - Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1

icon pap  Port-a-Patch publication in Biophysical Journal (2016)

Authors: 
Briones R., Weichbrodt C., Paltrinieri L., Mey I., Villinger S., Giller K., Lange A., Zweckstetter M., Griesinger C., Becker S., Steinem C., de Groot B.L.

 

Journal: 
Biophysical Journal 2016 Sep 20, 111:1223-1234


Abstract: 

The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an “open” channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.


Download here

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.