• Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch


2019 - Structure of the human ClC-1 chloride channel

icon pap   Port-a-Patch,  icon vpp   Vesicle Prep Pro and   Icon Orbit Mini   Orbit mini publication in PLOS Biology (2019)

Wang K., Preisler, SS, Zhang, L., Cui, Y., Missel, JW., Grønberg C., Gotfryd, K., Lindahl E., Andersson, M., Calloe, K., Egea P.F., Klaerke D.A., Pusch M., Pedersen P.A., Zhou, Z.H., Gourdon, P.

PLoS Biol (2019) 17(4):e3000218


ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue (“fast gate”) known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClCK and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-β-synthase (CBS) domains and the intracellular vestibule (“slow gating”). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1–related diseases.

Author summary Chloride transporting CLC proteins are expressed in a wide range of organisms, and the family encompasses several members with numerous roles in human health and disease by allowing movement of chloride ions across the membranes that encapsulate cells and cellular organelles. Structurally, CLCs form dimers possessing a separate ion translocation pathway in each monomer, and they can operate as either channels or transporters that exchange chloride for protons. The CLC channel ClC-1 is critical to skeletal muscle excitability and has been proposed as a target to alleviate neuromuscular disorders. Here, we have analyzed the structure of human ClC-1 and revealed the high similarity of its ion conducting pathway to those observed in other CLC members, including prokaryotic and algal transporters. Our data suggest how ClC-1 is regulated by environmental cues to allow opening and closure, thereby permitting attenuation of muscle function. Our results help with understanding the principal determinants that govern CLC proteins and may guide downstream translational applications to combat muscle pathologies.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.