• Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch


2019 - Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells

icon pap   Port-a Patch Publication in Nature Scientific Reports (2019)

Tay Y.L., Amanah A., Adenan M.I., Wahab H.A., Tan M.L.

Scientific Reports (2019) 9, 19757 doi:10.1038/s41598-019-56106-6


Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.