• Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch

  • Port-a-Patch


2020 - Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage

icon pap   Port-a-Patch publication in Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (2020)

Sáez J.C., Contreras-Duarte S., Labra V.C., Santibañez C.A., Mellado L.A., Inostroza C.A., Alvear T.F., Retamal M.A., Velarde V., Orellana J.A..

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (2020) 14:118720


Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.