• SURFE²R N1

    易学易用的集成设备,适用于教学与大学研究
  • SURFE²R N1

    可实现非标记的转运体功能试验
  • SURFE²R N1

    相对与膜片钳更高的信号放大: 转运 & 结合试验
  • SURFE²R N1

    市面上唯一的基于SSM电生理技术的设备
  • SURFE²R N1

    到手可用的高效转运体蛋白分析设备

SURFE²R N1 - 转运体工作站

与传统膜片钳设备相比,SURFE²R (表面电荷事件读取器,surface electrogenic event reader)是专用于测量带电转运体 (同向转运体、交换体与单向转运体)与离子泵的技术。 通常这些蛋白相对与离子通道的转运率较低。 SURFE²R技术通过更大的芯片面积从而同时记录最多达109 个转运体从而获取最佳的信噪比。SURFE²R N1是适用于基础研究与大学教学的设备。如果需要高通量, SURFE²R 96SE 可提供最多平行96芯片的转运体记录。

SURFE²R N1的特点

• 支持最多52种不同溶液的自动记录
• 每天可记录150数据点
• 移液设备、电生理设备与电脑整合的一体化设备
• 易学易用,适用于教学与科研

基于SSM的电生理技术特点

• 已在超过100 目标上通过验证,发表了超过 100篇同行评审过的文献
• 可测量转运体、离子泵与配体门控通道
• 也可测量电中性交换体、糖结合蛋白
• 可使用从细胞提纯的生物膜与囊泡或蛋白脂质体
• 非标记电学测量手段
• 每孔仅需要0.1 – 1 µg蛋白样品,并足够进行最多100次实验
• 实时数据与5 ms的高时间分辨率,非单点读取
• 相对膜片钳更高信号放大率
• 可完成快速绑定动力学测量
• 可完成EC50、 IC50、转运速度常数、转运体亚型比较...

基于固体支撑膜技术(solid-supported membrane,SSM) 的电生理技术建立于90年代末,关于SSM电生理技术的详细资料请参考 技术细节。 可重复使用的芯片包含一个镀金电极,在上面可以通过一次快速移液形成SSM,然后将包含转运体的样品加到SSM表面上。任何包含目标蛋白的膜制成品都可以用来测量,包括细胞破坏后形成的膜囊泡或重建提纯的蛋白形成的蛋白脂质体。这些样品可以冷冻保存数月甚至数年,因此不需要细胞培养室。
基于SSM的电生理技术的关键是通过溶液交换来施加底物或者配体来激活转运体,然后电荷的迁移可以被检测出来并被分析以得出需要的数据。 由于SSM的高稳定性,同一个样品可以进行上百个实验,所以可以测定诸如EC50 或IC50等参数 。拥有目前最先进的溶液交换的时间分辨率,SURFE²R N1不但可以测量慢的转运过程,也可以分析快速的结合反应以及确定其反应速度常数。 

SURFE²R N1易学易用,可以在一天时间内学会并掌握。该设备通过机械臂自动进行实验,极大的减少了操作人员的工作量。SURFE²R N1在一个设备里包含了实验所需的所有设备,包括溶液处理元件、电生理硬件和电脑主机。

 

更多信息:

SURFE²R N1设备与软件

The SURFE2R N1 设备

N1 slide 1

The SURFE2R (surface electrogenic event reader) technology is the only available commercial solution for SSM-based electrophysiology on the market. Nanion Technologies developed the SURFE2R 96SE, a high-throughput system mainly used in pharmaceutical industry for drug screening purposes and the SURFE2R N1 designed for basic research.

The SURFE2R N1 device contains electrophysiological hardware, liquid handling components and the computer running Windows, plus the data recording and analysis software SurfControl. It’s an easy-to-learn, all-in-one robotic workstation which can measure 150 data points a day in a fully automated manner.

The SURFE2R N1 works with reusable sensor chips on which the membranes containing the protein of interest are adsorbed. The measurement is initiated by a substrate concentration jump. The solution exchange is controlled by the Ionjet, a robot-controlled pipette which loads solution from storage containers and injects them to the sensor enclosed by a Faraday cage. The Ionjet allows the measurement of fast kinetics with low solution consumption. An autosampler on top of the device allows placing up to 53 solutions for automated sequential measurements. During the measurement, the transport current can be viewed, compared and analyzed within the SurfControl software. The main characteristics of the device include a low-noise amplifier and a large sensor surface which both ensure a superior signal to noise ratio.


SURFE2R N1 控制软件与自动化

The device comes with the SURFE2R N1 Control software pre-installed on the internal computer. This forms both the recording and analysis software. The functions of SurfControl include the managing and coding of workflows which represent protocols for SURFE2R assays. Workflows can contain multiple measurements, e.g. using different substrate concentrations or the comparison of transport before and after inhibition. The workflow includes parameters like duration, speed and volume of solution flow during the experiment, the number and sequence of different buffers, the number of repetitions per measurement, the incubation times between experiments and the volume used for rinsing the sensor after an experiment. During the run of one workflow no interference by the researcher is required.

Beside the design of the experiment itself, SurfControl enables the researcher to view and compare recorded traces. The graphical window allows peak detection and the calculation of the peak integrals including baseline subtraction. An additional results window is used for automated documentation of the traces including file name, values for peaks and integrals and the time of measurement. For further analysis, e.g. the fitting of kinetic parameters or the subtraction of negative control currents, the software is capable of exporting the data to the standard file format ASCII.

耗材

SURFE²R N1单通道记录芯片

N1 Round V2 400x237

The SURFE²R N1 sensor chip is a proprietary innovative product by Nanion Technologies, developed for the SURFE²R N1. It is produced by an external partner, quality-assured in-house at Nanion headquarters and shipped from Munich to our international customers.


材质
The core structure of SURFE²R N1 sensor chip is a gold-coated sensor with 3 mm diameter. This structure is incorporated into a screw cap for easy handling. The SURFE²R N1 single sensor chips can be reused after an appropriate cleaning protocol.
可用的型号
  • "SURFE²R N1 Single Sensor Chip" (Order # 161001)

已经验证的对象: 基于SSM的电生理



用户评价与案例分析

Dr. Arnaud Javelle - Statement about the SURFE²R N1 Device

Icon N1  “Using the SURFE2R N1 we have recently obtained high quality data in a very short period of time. We have developed an assay to measure the activity of ammonium transporters from the Amt protein family. There has been considerable controversy over the mechanism of ammonium transport by Amt proteins and the controversy was due to the lack of quantitative kinetic data characterizing the activity of the proteins at the single channel level. The SSM technologies allows to overcome this hurdle and we are now capable of answering very challenging functional questions concerning the mechanisms and the energetics of these transporters."

Dr. Arnaud Javelle, Chancellor's fellow, Strathclyde Institute of Pharmacy and Biomedical Sciences

Dr. Thomas Seeger & Karin V. Niessen - Statement about the SURFE²R Technology

Icon N1   “The SURFE²R makes extremely challenging electrophysiological targets accessible to robust routine analyses. For example, we have developed an assay for investigating nicotinic acetylcholine receptor ion channels, using membranes from the Pacific electric ray, Torpedo California. In this way, we overcome many of the well-known difficulties associated with this ion channel, which allows us to efficiently obtain information regarding compound pharmacology. Obtained pharmacology values match those of patch clamp recordings exceptionally well. We find that the SURFE²R is an excellent platform for characterization of electrogenic processes in isolated membranes.”

Karin V. Niessen, Dr. Thomas Seeger
Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany

Prof. Dr. Klaus Fendler - Statement about the SURFE²R N1 Device

Icon N1   “SSM-based electrophysiology is a well-established technique developed in our lab in the early 1990s for the investigation of electrogenic membrane transporters. It works with a wide range of samples from mammalian cell membranes over microbial membrane vesicles to proteoliposomes. SSM-based electrophysiology is especially useful in cases where conventional electrophysiology cannot be applied, e.g. for transporters residing in intracellular membranes or plasma membranes of small microbial cells. The SURFE2R N1 is a commercial instrument for SSM based electrophysiology which facilitates basic research in the field of membrane transport.“

Prof. Dr. Klaus Fendler
Max-Planck Institute of Biophysics, Frankfurt, Germany

数据与文献

NCX1 - Block by KB-R7943

NCX1 KBR7943 iCell Cor4U HEK

Icon N1   SURFE2R N1 data and applications:

Cardiac NCX1 expressed in iCell® Cardiomyocytes2, Cor.4U® Cardiomyocytes or HEK cells was blocked by increasing concentrations of KB-R7943.  

 

NCX1 - Block by SEA0400

NCX1 iCell HEK SEA0400

Icon N1   SURFE2R N1 data and applications:

Cardiac NCX1 expressed in iCell® Cardiomyocytesor HEK cells was blocked by increasing concentrations of SEA0400, a specific blocker of NCX.  

 

NCX1 - Current traces recorded from Cor.4U Cardiomyocytes, iCell Cardiomyocytes and HEK cells

NCX1 Cor4U icell HEK

Icon N1   SURFE2R N1 data and applications:

Cardiac NCX1 was activated using 30 μM Ca2+ on the SURFE2R N1. NCX1 was recorded from Cor.4U® Cardiomyocytes, iCell® Cardiomyocytes2 or overexpressed in HEK cells. The calcium affinity was determined for NCX1 recorded from iCell® Cardiomyocytes2 and HEK cells, shown on the right.  

 

AmtB - Activation by ammonium

AmtB activation by ammonium

Icon N1 SURFE2R N1 data and applications:

Purified AmtB from E.Coli was incorporated into liposomes and used on the SURFE2R N1. Shown are transient currents measured after a 100 mM ammonium jump in empty liposomes (green) or proteoliposomes containing AmtB at a lipid protein ratio (LPR) of 50 (black), 10 (red) or 5 (blue). Insert: Normalized current measured in proteoliposomes containing AmtB at an LPR of 50 (black), 10 (red) or 5 (blue).

Data from Mirandela et al, 2018

AmtB - Substrate specificity

AmtB specificity for ammonium

Icon N1 SURFE2R N1 data and applications:

Purified AmtB from E.Coli was incorporated into liposomes and used on the SURFE2R N1. AmtB substrate specificity. (A) Transient current measured after a 100 mM substrate jump. Ammonium (red), methylammonium (black), potassium (green) or sodium (purple). Potassium and sodium do not act as substrates for AmtB and methylammonium translocates but at a much reduced rate compared with ammonium. Insert: Normalised current after a 100 mM substrate jump. Ammonium (red), methylammonium (black).

Data from Mirandela et al, 2018

EAAC1 - Current Traces at different Sodium Chloride Concentrations

EAAC1 SURFE2R N1 Website

Icon N1   SURFE2R N1 data and applications:

EAAC1 current traces were recorded after application of different Sodium Chloride concentrations. The EC50 of the peak current was determined as 42,2 mM. 

 

Organic Cation Transporter 2 (OCT2) - Pharmacology

OCT2 SURFE2R N1

Icon N1 SURFE2R N1 data and applications:

EC50 values and relative Vmax for three different substrates are shown.

The IC50 value for Choline was determined as 4.6 mM, for TEA as 0.33 mM and for Metformin as 8.6 mM.

Sodium-Potassium ATPase - Analysis

Surfer NaK ATPaseIcon N1   SURFE2R N1 data and applications:

The Sodium-Potassium ATPase, also known as Na+/K+ pump is responsible for the active transport of Na+ and K+ in the cells containing relatively high concentrations of K+ ions but low concentrations of Na+ ions. The Na+/K+-ATPase helps maintain resting potential, avail transport, and regulate cellular volume. Here, we demonstrate the conductance of the pump, in the presence of ATP, Na+ and K+, or in the presence of ATP and Na+.

Respiratory Chain Complex V - Action of the ATP Synthase after Application of ATP

Surfer RC VIcon N1   SURFE2R N1 data and applications:

The Respiratory Chain Complex V uses the transmembrane proton gradient (produced by Complex I, III and IV) to generates ATP from ADP plus phosphate. One component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. This reflux releases free energy, which is used to drive ATP synthesis, catalyzed by the other component of the complex. Experiments on the SURFE2R N1 show the action of the ATPase after application of ATP.

Respiratory Chain Complex IV - Current Traces

Surfer RC IVIcon N1   SURFE2R N1 data and applications:

The Respiratory Chain Complex IV, known as Cytochrom c oxidase, reduces oxygen by cunsumption of electrons from cytocrome c and transport of two protons to the intermembrans space. Here the reaction runs backwards.

 

 

Respiratory Chain Complex II and III - Current Traces

Surfer RC II IIIIcon N1   SURFE2R N1 data and applications:

Respiratory Chain Complex II is a succinate dehydrogenase. In this complex, succinate is oxidated to fumarate. The electrons are transfered to the quinone pool, the Complex III (cytochrome bc1 complex) and cytochrome c, while four protons are transported to the intermembrane space.

Respiratory Chain Complex I and III - Current Over Mitochondrial Membrane

Surfer RC complexI III traceIcon N1   SURFE2R N1 data and applications:

In the respiratory chain Complex I and III, oxidation of NADH leads to transport of 4 protons across the membrane. The electrons are transferred to cytochrome c. Because of the electron leakage to oxygen, both complex are the main sites of production of harmful superoxide. In these experiments using the SURFE2R N1, application of 100µM NADH results in a current over the mitochondrial membrane, where Complex I and III are expressed.

Adenine Nucleotide Translocator (ANT) - Recorded on the Surfer

Icon N1   Surfer ANT traceSURFE2R N1 data and applications:

The Adenine Nucleotide Translocator (ANT) is located in the inner membrane of mitochondria and transports, as the name suggests, either ADP or ATP alone or against each other.  Recordings were done on mitochondria inner membrane preparations from pigs heart.  Example traces display the action of ANT either in the presence of ATP, in an other experiment in the presence of ADP.

PepT1 - Pharmacology of Lys[Z(NO2)]-Val

Surfer PepT1 traces IC50Icon N1   SURFE2R N1 data and applications:

Representive traces of PepT1 overexpressed in CHO cells. PepT1 (SLC15A1) is expressed mainly in intestine and kidney, it enables uptake of oligopeptides. The PepT1 signal is evoked by glycylglycin. The transport of oligopeptides can be inhibited by addition of Lys[Z(NO2)]-Val. The IC50 of Lys[Z(NO2)]-Val was 380µM.

网络研讨会与影像

2018 - Electrophysiological Characterization of Sugar Transporters using SSM-based Electrophysiology

Icon 96SE   SURFE²R 96SE and   Icon N1   SURFE²R N1 Oral Presentation

Presenter: 
Dr. Andre Bazzone, Application Scientist, Nanion Technologies GmbH, Germany
Andre is an expert in the field of SSM-based electrophysiology: He made his PhD at the Max-Planck-Institute of Biophysics in Frankfurt, Germany on the electrophysiological characterization of sugar transporters using the SSM-based electrophysiology in 2016. Right afterwards, he started as Application Scientist at Nanion Technologies and today he is an important member of the Nanion SURFE²R team.

2018 - Transporters Investigated Using the SURFE²R Instruments

Icon 96SE   SURFE²R 96SE and   Icon N1   SURFE²R N1 Oral Presentation

Presenter: 
Dr. Maria Barthmes, Product Manager SURFE²R product family, Nanion Technologies GmbH, Germany

2017 - Variations on the Coupling Theme in Secondary Active Transport

Icon N1   SURFE²R N1 Oral Presentation

Presenter: 
Gregor Madej, University of Regensburg, Germany

下载:

应用数据

产品单页

SURFE2R N1 - 产品单页

Icon N1   SURFE²R N1 产品单页   logo pdf   (3.4 MB)

快速指南

发表文献

2018 - The lipid environment determines the activity of the E. coli ammonium transporter, AmtB

Icon N1   SURFE²R N1 publication in Faseb J. (2018)

Authors:
Mirandela G.D., Tamburrino G., Hoskisson P.A., Zachariae U., Javelle A.

2017 - SSM-Based Electrophysiology for Transporter Research

Icon N1   SURFE²R N1 and   Icon 96SE   SURFE²R 96SE book chapter in Methody in Enzymology

Authors:
Bazzone A., Barthmes M., Fendler K.

2017 - Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation

Icon N1  SURFE²R N1 publication in Structural Dynamics (2017)

Authors: 
Shah N.R., Wilkinson C., Harborne S.P.D., Turku A., Li K.-M., Sun Y.-J., Harris S., Goldman A.

2017 - Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter

Icon N1  SURFE²R N1 publication in Frontiers in Molecular Neuroscience (2017)

Authors: 
Choudhary P., Armstrong E.J., Jorgensen C.C., Piotrowski M., Barthmes M., Torella R., Johnston S.E., Maruyama Y., Janiszewski J.S., Storer R.I., Skerratt S.E., Benn C.L.

2016 - Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism

Icon N1  SURFE²R N1 publication in Nature Communications (2016)

Authors: 
Li K., Wilkinson C., Kellosalo J., Tsai J., Kajander T, Jeuken L.J.C., Sun Y., Goldman A.

2016 - Electrophysiological characterization of the archaeal transporter NCX_Mj using solid supported membrane technology

Icon N1  SURFE²R N1 and   icon vpp   Vesicle Prep Pro publication in Journal of General Physiology (2016)

Authors: 
Barthmes M., Liao J., Jiang Y., Brüggemann A., Wahl-Schott C.

2014 - Anticancer Ruthenium(III) Complex KP1019 Interferes with ATP-Dependent Ca2+ Translocation by Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA)

Icon N1  SURFE²R N1 publication in ChemMedChem (2014)

Authors: 
Sadafi F.Z., Massai L., Bartolommei G., Moncelli M.R., Messori L., Tadini-Buoninsegni F.

2013 - Enhanced adsorption of Ca-ATPase containing vesicles on a negatively charged solid supported membrane for the investigation of membrane transporters

Icon N1   SURFE²R N1 publication in Langmuir (2013)

Authors: 
Sacconi A., Moncelli M.R., Mergheri G., Tadini-Buoninsegni F.

2009 - Measuring Ion Channels on Solid Supported Membranes

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Biophysical Journal (2009)

Authors:
Schulz P., Dueck B., Mourot A., Hatahet L., Fendler K.

2006 - Establishment of Cell-Free Electrophysiology for Ion Transporters: Application for Pharmacological Profiling

Icon N1   SURFE²R ONE (a predecessor model of SURFE²R N1) publication in Journal of Biomolecular Screening (2006)

Authors:
Geibel S., Flores-Herr N., Licher T., Vollert H.

海报

2018 - Label-free analysis of Na+/Ca2+- exchanger (NCX) isolated from iPSC-derived cardiomyocytes

Icon N1   SURFE²R N1 and   Icon 96SE   SURFE2R 96SE poster, Europhysiology Meeting 2018  logo pdf   (1.5 MB)

2018 - Transported by light: optogenetic control of NCX1

Icon N1   SURFE²R N1 poster, Biophysics Annual Meeting 2018  logo pdf   (2.2 MB)

2015 - Organellar Transporters and Ion Channels - How to access their electrophysiology by using the SURFE2R technology and Planar Patch Clamp

Icon N1   SURFE²R N1 and   icon sp96   SyncroPatch 96 (a predecessor model of the SyncroPatch 384PE) and   icon pap   Port-a-Patch poster, GRC - Organellar Channels and Transporters 2015   logo pdf   (1.6 MB)

2017 - An emerging technique for the characterization of transport proteins: SSM-based electrophysiology

Icon N1   SURFE²R N1 and    Icon 96SE   SURFE²R SE96 poster, 19th IUPAB / 11th EBSA congress 2017  logo pdf   (3.3 MB)

2015 - Functional Characterization of Procaryotic NCX by Solid Supported Membrane Technology

Icon N1   SURFE²R N1 poster, Gordon Research Conference 2015  logo pdf   (0.9 MB)

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok