2012 - The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter

Icon N1   SURFE²R-technology (custom-built system) publication in Biochimica et Biophysica Acta (BBA) - Biomembranes (2012)

Rycovska A., Hatahet L., Fendler K., Michel H.

Biochimica et Biophysica Acta (BBA) - Biomembranes (2012) 1818(5):1342-1350


In anaerobically grown bacteria, transport of nitrite is catalyzed by an integral membrane protein of the form ate–nitrite transporter family, NirC, which in Salmonella typhimurium plays a critical role in intracellular virulence. We present a functional characterization of the S. typhimurium nitrite transporter StmNirC in native membrane vesicles as well as purified and reconstituted into proteoliposomes. Using an electrophysiological technique based on solid supported membranes, we show nitrite induced translocation of negative charges into proteoliposomes reconstituted with purified StmNirC. These data demonstrate the electrogenicity of StmNirC and its substrate specificity for nitrite. Monitoring changes in ΔpH on everted membrane vesicles containing overexpressed StmNirC using acridine orange as a pH indicator we demonstrate that StmNirC acts as a secondary active transporter. It promotes low affinity transport of nitrite coupled to H+ antiport with a pH independent profile in the pH range from 6 to 8. In addition to nitrite also nitrate is transported by StmNirC, but with reduced flux and complete absence of proton antiport activity. Taken together, these data suggest a bispecific anion selectivity of StmNirC with an ion specific transport mode. This may play a role in regulating nitrite transport under physiological conditions.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.