2020 - Unlocking the Reversal Potential of Solid Supported Membrane Electrophysiology to Determine Transport Stoichiometry

Icon N1   SURFE²R N1 pre-publication in bioRxiv (2020)

Henzler-Wildman K.A., Thomas N.E.

bioRxiv (2020) doi: org/10.1101/2020.05.07.082438


Transport stoichiometry provides insight into the mechanism and function of ion-coupled transporters, but measuring transport stoichiometry is time-consuming and technically difficult. With the increasing evidence that many ion-coupled transporters employ multiple transport stoichiometries under different conditions, improved methods to determine transport stoichiometry are required to accurately characterize transporter activity. Reversal potential was previously shown to be a reliable, general method for determining the transport stoichiometry of ion-coupled transporters (Fitzgerald & Mindell, 2017). Here, we develop a new technique for measuring transport stoichiometry with greatly improved throughput using solid supported membrane electrophysiology (SSME). Using this technique, we are able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx. Our SSME method requires only small amounts of transporter and provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.

Download here


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.