• SyncroPatch 384

    Next level versatility and flexibility
  • SyncroPatch 384

    True HTS and GigaOhm seals
  • SyncroPatch 384

    Your multi purpose instrument
  • SyncroPatch 384

    Powerful analysis software
  • SyncroPatch 384

    Assay flexibility via high tech
  • SyncroPatch 384

    Heating and cooling of solutions, cells and patch clamp sites

2021 - Cation and anion channelrhodopsins: Sequence motifs and taxonomic distribution

icon sp96  SyncroPatch 384i (a predecessor model of the SyncroPatch 384) Pre-Publication in bioRxiv (2021)

Authors:
Govorunova E.G., Sineshchekov O.A., Li H., Wang Y., Brown L.S., Palmateer A., Melkonian M., Cheng S., Carpenter E., Patterson J., Wong G. K-S., Spudich J.L.

Journal:

bioRxiv (2021) doi:10.1101/2021.03.23.436664


Abstract: 

Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from three channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins. Our results show that association of a reduced number of glutamates near the conductance path with anion selectivity depends on a wider protein context, because prasinophyte homologs with the identical glutamate pattern as in cryptophyte ACRs are cation-selective. Desensitization is also broadly context-dependent, as in one branch of stramenopile ACRs and their metagenomic homologs its extent roughly correlates with phylogenetic relationship of their sequences. Regarding spectral tuning, two prasinophyte CCRs exhibit red-shifted spectra to 585 nm, although their retinal-binding pockets do not match those of previously known similarly red-shifted channelrhodopsins. In cryptophyte ACRs we identified three specific residue positions in the retinal-binding pocket that define the wavelength of their spectral maxima. Lastly, we found that dinoflagellate rhodopsins with a TCP motif in the third transmembrane helix and a metagenomic homolog exhibit channel activity.


Download here.

返回总览

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.