• SyncroPatch 384/768i

    全球最高通量的全自动膜片钳系统
  • SyncroPatch 384/768i

    平行记录384个细胞 => 最高可升级到768个
  • SyncroPatch 384/768i

    真正的高通量与GΩ级封接
  • SyncroPatch 384/768i

    Analysis Software even more powerful than before
  • SyncroPatch 384/768i

    高科技保证实验的灵活性

2016 - Use-dependent Block of Human Cardiac Sodium Channels by GS967

icon sp96  SyncroPatch 384PE (a predecessor model of SyncroPatch 384i) publication in Molecular Pharmacology (2016)

Authors: 
Potet F., Vanoye C.G., George Jr. A.L.

Journal: 
Mol Pharmacol (2016) 90(1):52-60


Abstract: 

GS-458967, 6-(4-(Trifluoromethoxy)phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (GS967) is a recently described, novel, sodium channel inhibitor exhibiting potent antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current. However, there has been no reported systematic investigation of the effects of this compound on isolated sodium channels. Here, we examined the effects of GS967 on peak (INaP) and late (INaL) sodium current recorded from cells that heterologously expressed human cardiac voltage-gated sodium channel, the principle cardiac sodium channel. As previously described, we observed that GS967 exerted tonic block of INaL (63%) to a significantly greater extent than INaP (19%). However, GS967 also caused a reduction of INaP in a frequency-dependent manner, consistent with use-dependent block (UDB). GS967 evoked more potent UDB of INaP (IC50 = 0.07 µM) than ranolazine (16 µM) and lidocaine (17 µM). Use-dependent block was best explained by a significant slowing of recovery from fast and slow inactivation with a significant enhancement of slow inactivation in the presence of GS967. Furthermore, GS967 was found to exert these same effects on a prototypical long QT syndrome mutation (delKPQ). An engineered mutation at an interaction site for local anesthetic agents (F1760A) partially attenuated the effect of GS967 on UDB, but had no effect on tonic INaL block. We conclude that GS967 is a preferential inhibitor of INaL, but it also exerts previously unreported strong effects on slow inactivation and recovery from inactivation, resulting in substantial UDB that is not entirely dependent on a known interaction site for local anesthetic agents.


Download here

返回总览

SyncroPatch 384i brochure

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.